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Active strategies for multisensory 
conflict suppression in the virtual 
hand illusion
Pablo Lanillos1*, Sae Franklin2, Antonella Maselli3 & David W. Franklin4,5

The perception of our body in space is flexible and manipulable. The predictive brain hypothesis 
explains this malleability as a consequence of the interplay between incoming sensory information 
and our body expectations. However, given the interaction between perception and action, we might 
also expect that actions would arise due to prediction errors, especially in conflicting situations. Here 
we describe a computational model, based on the free-energy principle, that forecasts involuntary 
movements in sensorimotor conflicts. We experimentally confirm those predictions in humans using 
a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual 
hand, regardless of its location with respect to the real arm, with little to no forces produced when 
the virtual hand overlaid their physical hand. The congruency of our model predictions and human 
observations indicates that the brain-body is generating actions to reduce the prediction error 
between the expected arm location and the new visual arm. This observed unconscious mechanism is 
an empirical validation of the perception–action duality in body adaptation to uncertain situations and 
evidence of the active component of predictive processing.

Self-body perception is a malleable complex construct, crucial to our interaction with the environment, that 
emerges from the integration of multisensory stimuli that the brain receives from the physical  body1–3. The 
different sensory channels continuously stream information about the state (physiological) and the configura-
tion (postural and in relation to the environment) of the body, and this information needs to be processed and 
integrated online in order to assure a successful interaction with the dynamic environment in which we live and 
 act4. Experimentally induced bodily illusions provide a compelling demonstration of such flexibility, showing 
how it is possible to transiently induce aberrant bodily experiences—distorted body proportion and impossible 
 postures5,6, illusory  movements7, and the embodiment of external  objects8 —by manipulating ad-hoc the spati-
otemporal correlations of bodily stimuli from different sensory channels.

Hence, one key approach to the understanding of self-body perception is the investigation of body ownership 
illusions (BOIs)8, where external bodily shaped objects like rubber (or virtual) hands are processed as part of 
one’s own body. These illusions show indeed how the brain can flexibly accommodate for quite coarse sensory 
conflicts while preserving the integrity of the body percept. In the classic rubber-hand illusion (RHI)  experiment9, 
a rubber hand is placed next to the real hidden hand and the illusion is elicited by stimulating both hands with 
spatiotemporally congruent trains of visuotactile stroking. Once the illusion is established, visual stimuli from 
the rubber hand (e.g. strokes from a  paintbrush10 or unexpected threatening  events11) are processed as if “coming 
from” the real hand that keeps streaming proprioceptive and tactile sensations. An important element of body 
ownership illusions is indeed the visuo-proprioceptive binding that is established between visual stimuli from 
the fake hand and somatosensory stimuli from the physical  one12,13. Crucially, the illusion is sustained even if the 
information about the spatial location of the hand provided by proprioception (real hand) and vision (rubber 
hand) is  conflicting9,14; and experimental evidence shows how participants undergoing the illusions recalibrate 
the proprioceptive and visual encoding of the hand location towards the rubber  hand15. This effect, known as pro-
prioceptive drift, has been interpreted as a way to “explain away” the sensory conflict and can be neatly accounted 
for within predicting processing computational frameworks as the result of prediction error  minimization16.
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Effects akin to the proprioceptive drift observed in the classic RHI have been consistently reported across 
different experimental studies whenever the real and the fake limbs were spatially  misaligned13,17–19. For example, 
during a full-body ownership illusion experienced over a virtual body initially collocated with the real one, par-
ticipants previously instructed to be still showed an illusory perceived change in their posture after seeing their 
embodied avatar slowing moving into a new posture, even in absence of actual  movement13. In line with this, in 
a classic RHI experiment in which participants were explicitly instructed to keep their posture and not move, 
Asai and colleagues showed how participants undergoing the ownership illusion tend to unintentionally apply a 
force in the direction of the rubber  hand20. Unfortunately, the experimental design was not able to fully disam-
biguate whether the observed forces were indeed active strategies for sensory conflict compensation or the result 
of body posture corrections due to a body midline  effect15,21,22, as the only location tested was with the rubber 
hand placed close to the body midline. Besides, automatic and unconscious motor adjustments to reduce conflict 
between the vision of the arm and proprioception were also  reported23. Still, if confirmed this form of automatic 
compensatory movements can be regarded as an active strategy for suppressing the sensory conflict that may 
arise in bodily illusions, an alternative to “passive” perceptual recalibrations such as the proprioceptive drift.

Similar forms of active compensatory movements have been also observed during intentional actions in par-
ticipants controlling the movements of an embodied virtual avatar. A clear example is the “self-avatar follower 
effect”19, a motor behavioral pattern observed in immersive virtual reality when users embody a virtual avatar and 
control it with a many-to-one visuomotor mapping. In particular, participants could control the extension and 
bending of the virtual arm, while the virtual shoulder rotation was controlled by a Virtual Reality (VR) system 
independently on the real shoulder configuration (so that the two arms were not spatially overlapping). Under 
this condition, when asked to perform a sequence of reaching actions, participants tended to integrate within the 
correct task execution an additional motor component irrelevant to the task, but functional to bringing the real 
arm closer or overlapping with the virtual one. This motor component cannot be directly explained by optimal 
control theories of  movement24,25 but finds instead a natural interpretation in the active inference  framework26 as 
an active strategy for suppressing sensory prediction  errors19. We hypothesize that the brain resolves the sensory 
conflicting information about the body posture by exerting involuntary active strategies that physically reduce 
the conflict following a similar principle as the proprioceptive drift.

The aim of the current study is to provide a theoretical account for the active component of the RHI described 
above, consisting of an implicit (not intentional) attempt to reduce the visuo-proprioceptive conflict arising from 
the misalignment between the real and the embodied fake hand. We cast the problem in the normative framework 
of active  inference27, implementing a model able to predict the force that an agent will produce at the level of the 
arm when exposed to a classic RHI configuration, where a spatial mismatch between the real and the fake hand 
is present and actual movement of the physical hand is “locked”. We further conducted an experimental study 
based on a customized setup integrating a robotic manipulandum with a VR system programmed to induce an 
immersive virtual version of the  RHI28. The setup allowed to systematically measure the force generated using a 
precise force-torque sensor. Force assessments can be then used for formally testing the hypothesis that the active 
effects observed during illusory ownership (e.g. the attempt to move the hand towards the embodied misplaced 
hand) are due to the minimization of the prediction error.

Active  inference29 (AIF), a mathematical framework inspired by the Predictive (Bayesian)  brain30 that 
accounts for both perception and action, has been successfully applied, for instance, to model goal-driven behav-
ior in  organisms31 and the physiology of  dopamine32. Moreover, AIF accounts of intentional reaching behavior 
in humans have been  proposed27 and investigated on humanoid  robots33,34. Relevant for this work, it was shown 
how tuning the relative influence of the sensor modalities affected the motoric response in a hand-target phase 
matching in the presence of visuo-proprioceptive  conflict35. Perceptual illusions in humans have been also inves-
tigated under this paradigm, such as the force-matching  illusion36. In a previous study, we synthetically replicated 
the proprioceptive drift observed in the  RHI16, supporting the general view that this perceptual recalibration 
results from the minimization of the prediction error produced by the visuo-proprioceptive spatial mismatch 
between the real and the rubber hands once the illusion is elicited. Here we extend this formulation to the active 
inference framework and show how the extended implementation can reproduce the experimentally observed 
forces applied by the hidden real arm in the direction of the rubber/virtual hand.

Results
We first sketch the main features of the computational model and approach (Fig. 1A) and show the model predic-
tions when simulating the virtual hand illusion (VHI). Model predictions are then compared with observations 
from a dedicated experiment (Fig. 1C) in which the VHI was elicited as in classical paradigms (via visuo-tactile 
stimulation, VT) and the force applied by the hidden arm during the illusion was measured. Although previ-
ous studies have shown that illusory ownership over a virtual hand spatially aligned with the real hand can be 
triggered also without the need for VT  stimulation12, we opted for the classical paradigm because we needed 
the illusion to be sustained also in the presence of spatial conflict. Several studies have indeed shown how in 
these cases, synchronous VT stimulations trigger significantly stronger illusions with respect to conditions 
with any tactile  stimuli37,38. In our study we need to retain a spatial conflict to facilitate the appearance of the 
proprioceptive drift, which in turn is the trigger for the active compensation strategies under testing. Results 
from simulations and experimental assessments were compared for different spatial configurations of the real 
and virtual hand (Fig. 1B), adopting different degrees of VT congruency (synchronous vs asynchronous) to 
control for the role of the ownership illusion. Altogether our results show that our AIF model can account for 
both passive (perceptual drift) and active (attempt to move the hand towards the embodied misplaced hand) 
effects observed in the laboratory.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22844  | https://doi.org/10.1038/s41598-021-02200-7

www.nature.com/scientificreports/

Computational model predictions
We model perception and action as an inference process using an  AIF27,39 based algorithm, sketched in Fig. 2A—
see the details in “Methods”. During stimulation, the real hand location is hidden (grey hand) and thus, only 
proprioceptive cues provide information about the current body pose. The virtual hand is treated as a possible 
source of information and integrated into the arm posture estimation as a visual cue weighted by causality, which 
in turn was considered as a proxy for the ownership illusion and modulated as a function of VT synchrony. 
According to the model, the force at the level of the arm arises as a consequence of the prediction error generated 
in the multisensory integration process of the visual arm location input and the predicted arm location from 
the estimated body joint angles.

The simulated VHI experimental design, had three different visual conditions (described in Fig. 1B), cor-
responding to three different locations of the virtual hand: Left, Right and Center (i.e. in the same location of 
their real hand). The output of the model is the predicted lateral force, being positive when it is towards the body 
midline (torso) and negative when it points away from the body. Figure 2B depicts the expected outcome depend-
ing on the force sign and the virtual hand location condition. In the left condition, a negative force indicates 
that the predicted force is towards the virtual hand and a positive one that the hand would move away from the 
virtual hand. In the right condition, this is inverted: negative force implies that the attempted force would make 
the real hand go away from the virtual hand and positive force indicates towards the virtual hand. In both left 
and right conditions zero force indicates no effect of the virtual hand location. Finally, in the center condition 
positive and negative forces would imply movement away from the virtual hand. In the presence of our proposed 
active strategies, we should see a trend similar to the one shown by the purple line.

Figure 1.  Predictive brain approach and VHI experimental setup. (A) Schematic of the perceptual drifts (visual, 
proprioceptive) and the active component, and its relation to prediction minimization. Both the proprioceptive 
and visual drifts are produced by the same process of body estimation under visuo-proprioceptive mismatch and 
the active drift (forces towards the virtual hand) is a consequence of proprioception error minimization through 
the reflex arc pathway. (B) VHI conditions. At each trial the virtual hand was placed in one of the three different 
locations: Left (− 15 cm), Center (0 cm) and Right (+ 15 cm) with respect to the real hand location, i.e., the 
center corresponds to the real hand position. The real hand was placed 30 cm away from the body midline. (C) 
The perceptual stimulation was performed using immersive VR and a coin vibrator for the tactile stimulation. 
Lateral force measurements were recorded using a 6DOF force-torque sensor on the robotic manipulandum 
vBot.
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We simulated 20 participants (10 synchronous and 10 asynchronous). Participants’ variability was modeled 
by assigning different proprioceptive weighting (i.e. the precision or inverse variance of the proprioceptive cue) 
and randomizing the length of the limb. The results, summarized in Fig. 2C-E, predict lateral forces in the direc-
tion of the virtual hand in all conditions. Figure 2C shows the mean force for all simulated participants split by 
the location of the virtual hand (Left in blue, Center in green and Right in red), indicating three differentiated 
patterns. As expected, in the Center condition, characterized by congruent visuo-proprioceptive information 
(i.e. no conflict) the model is compatible with no force applied (mean is not significantly different from zero). 
Conversely, when a spatial conflict is present, the model forecasts an action towards the artificial hand to correct 
the error of the predicted arm location, which we should observe in human participants. Furthermore, the model 
in the asynchronous condition predicts attenuated forces (Fig. 2D vs Fig. 2E), as the asynchronous condition 
was associated with a suppression of the ownership illusion and therefore a lower level of reciprocal causality 
between visual and proprioceptive stimuli.

Active RHI experiment with human participants. To validate the model predictions, we investigated 
the exerted forces of fourteen human participants in the VHI experiment presented in Fig. 1. Participants wore 
an immersive virtual headset through which they could see a virtual body placed in an anatomically plausible 
position with respect to their visual perspective. Analogously to the computational model experiment, partici-
pants were presented with three different conditions, corresponding to three different locations of the virtual 
hand (Fig. 1B): Left, Right and Center. Center corresponds to the same location of their real hand. Participants 
were instructed to keep their arm still; the real arm was placed on a locked manipulandum equipped with a 
6DOF force-torque sensor (Fig. 1C) so that the implicit (non-intentional) horizontal forces applied by partici-
pants could be measured (sensitivity: 1/24 Newtons). As we were only interested in the active component of the 
illusory experience, to obtain enough force sample points for statistical robustness (120 samples per individual), 
no other typical measures of the RHI such as proprioceptive drift or subjective assessments were taken. However, 
to complement this analysis, we did a preliminary study with eight participants to assess the perceptual drift and 
the subjective level of body-ownership from the same experimental setup—See supplementary information.

Figure 2.  Computational model predictions. (A) Arm model description with one degree-of-freedom (DOF) 
and the VR hand as the visual input. Using the proprioceptive input sp (joint angle) and the prior information of 
the body state p(µ) the model predicts the expected location of the hand gv(µ) . However, the visual information 
(virtual hand, sv ) manipulated to appear in a different location produces a sensory conflict: my hand is not at 
the predicted location. Thus, producing an error that is propagated and generates the perceptual drifts and the 
active component. According to our hypothesis, the torque direction corresponds to reducing the prediction 
error: expected hand location minus the VR location. (B) Relation between the direction (sign) of the predicted 
force and the virtual hand location. Our model predicts a trend similar to the one shown by the purple line, e.g., 
negative force in the left condition implies that the attempted force is towards the virtual hand. (C) Mean and 
standard deviation of the predicted force with the active inference model for Left, Center and Right conditions. 
(D) Model predicted mean force for the synchronous condition. (E) Model predicted mean force for an ideal 
asynchronous condition.
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Lateral forces analysis. We first describe the registered lateral forces with respect to time during stimula-
tion averaged for all participants (Fig. 3) and second, we present the mean forces for each condition averaged for 
the stimulation interval 10 s–15 s (Fig. 4). Figure 3 shows the lateral force profile during the stimulation period of 
40 s, averaged for all participants and trials. Although both synchronous and asynchronous conditions had clear 
right vs left force patterns, the variability was higher in the asynchronous case producing noisier force profiles.

Figure 3.  Average participant lateral force exerted during stimulation for the synchronous and asynchronous 
conditions. The profile is shown separately for the three experimental conditions, Left (blue), Center (green) and 
Right (red), with solid lines indicating the mean value across participants and the shaded region representing 
the standard deviation.

Figure 4.  Mean forces applied during stimulation for the different virtual hand location conditions: Left (blue), 
Center (green), Right (red). The center condition corresponds to the location of the real hand. (A) Mean and 
standard deviation of the force applied by all subjects for the three different virtual hand locations. (B) Mean 
force in the synchronous condition, where tactile (vibrator) and visual stimulation (ball hitting the hand) events 
were concurrent (i.e. both occurring within less than 100 ms). (C) Mean force in the asynchronous condition, 
where the tactile event was generated randomly along the trajectory of the ball. (D) Mean force registered 
during stimulation for each participant. Three continuous points in the x-axis (L-blue, C-green, R-red) describes 
one subject. (E) Mean force histogram for the three virtual hand location conditions (all subjects).
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Figure 4 shows the registered average force—for the stimulation interval 10 s-15 s stimulation phase—and 
standard deviation for all trials and participants for the Left (blue), Center (green) and Right (red) conditions. 
The marker indicates the mean force and the line expresses the standard deviation. Mean forces in all condi-
tions (Fig. 4A-C) showed differentiated directional force patterns towards the virtual hand, in line with the 
hypothesized trend (purple line in Fig. 2A). Figure 4D also shows the mean force for each subject indicating the 
variability of the forces gains and Fig. 4E shows the forces histogram for all subjects split by VR arm location 
condition. Furthermore, the finding of non-null forces, comparable in intensity, in both left and right directions 
falsifies the hypothesis of body posture correction or body midline effect.

The rubber-hand illusion is active. Our study shows involuntary actions towards the virtual hand dur-
ing the stimulation phase, despite the inhibitory control and the passive nature of the experiment (participants 
were instructed not to move). First, we tested the dependence of the applied force, as measured across all trials 
and participants, on the experimental factors: the virtual hand location, the mode of visuo-tactile stimulation 
and their interaction. For this, we ran a mixed effect repeated measure ANOVA with virtual hand location (3 
levels) as a within-participants factor, VT stimulation modality (synchronous vs asynchronous) as a between-
participants factor, and including the possible effect of their integration. We found a significant main effect of the 
location of the virtual hand  (F2,1674 = 16.05, p = 1.2 ×  10–7). The VT stimulation mode was instead not significant 
neither as a main factor  (F1,1674 = 1.77, p = 0.18) nor in interaction with the virtual hand’s location  (F2,1674 = 0.18, 
p = 0.83). We next ran a post-hoc analysis to test our specific hypothesis on the origin of the force dependence 
on the virtual hand location, i.e., a t-test of the aggregated data across trial repetitions for each participant, 
taking into account possible inter-individual differences. First, we validated the hypothesis that in the absence 
of spatial conflict (Center condition) there was no action, i.e., the forces are compatible with a zero mean dis-
tribution. A one-sample two-tailed t-test showed that forces in the Center condition have mean 0  (t1,13 = − 1.33, 
p = 0.90). Second, we tested the hypothesis that in the lateral conditions (Left and Right) forces are different 
from zero and in the direction of the virtual hand. For this, we ran a one-tailed paired t-tests contrasting forces 
in each of the later conditions (Right and Left) with those measured in the Center condition. In both cases, our 
hypothesis is supported by data. For the Right condition the average force is F = 0.036 ± 0.0009 N, significantly 
larger (positive) than forces in the Center condition  (t1,13 = 1.84, p = 0.041). For the Left condition the average 
force is F = − 0.039 ± 0.0009 N, significantly smaller (negative) than forces in the Center condition  (t1,13 = − 2.00, 
p = 0.031).

The fact that the ANOVA revealed no effects of the VT stimulation modality indicates that the modulations of 
the force by the virtual hand location are similar in both synchronous and asynchronous conditions (Fig. 4B,C).

Model predictions versus human observations. Figure 5 shows the comparison between the mean 
forces registered in the human experiment and the ones predicted by the model. The model was able to predict 
lateral forces exerted by the participants in the virtual rubber-hand illusion, i.e. for the synchronous group, for 
the left, center and right conditions. The directions were congruent in all location conditions. In both, the left 
and the right forces were towards the virtual hand. In the center condition, no lateral forces are present. Statisti-
cal differences were only found between location conditions when comparing our model predicted forces with 
the human data using a two-sample t test (p < 0.05). A mismatch in the strength of the effect was found in the 
asynchronous condition. While the computational model predicted an attenuated response, in the human exper-
iment similar gains were found in the synchronous and asynchronous conditions. This is also described by the 
statistical difference in mean of the Left-Asynchronous condition between the model and the human data. This 
result might be because the VT stimulation adopted in our asynchronous condition was not able to suppress the 
causal link between the visual input and the body posture inference as intended (see “Discussion”). To validate 
this plausible interpretation of our experimental findings we performed additional simulations.

Figure 5.  Comparison between the model predictions and human behavior (A) Mean force comparison 
between the human participants and the simulated ones with the active inference model for Left, Center and 
Right conditions. The continuous line corresponds to the human data and the dashed line with a lighter color 
to the model predictions. (B) Force comparison for the synchronous condition. (C) Force comparison for the 
asynchronous condition.
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Visuo-tactile synchrony evaluation. We further studied the influence of the VT synchrony, taken as 
a proxy for the level of illusory ownership, on the predicted force. We evaluated the proposed computational 
model under different degrees of visuo-tactile synchronicity to, first, analyze whether the appearance of forces 
in the human experiment asynchronous condition may be due to the immersive setting and the formed implicit 
causal relation between the ball and the hand even using pseudo-random vibration intervals; and second, to 
assess the influence of the causal parameter κ in the visual term of the model.

In the classic RHI paradigm, the degree of VT temporal congruency (i.e. the relative timing of events) is 
known to modulate the illusory experience, and asynchronous conditions are typically adopted to implement 
control conditions where the illusion is not  elicited9. However, it has been shown that some degree of asynchrony 
can be  tolerated12,37 (e.g. delays up to about 300  ms40) without breaking the illusion. Furthermore, it has been 
shown that when experiencing an ownership illusion, the sensitivity threshold for detecting bodily-related VT 
asynchrony is  dampened41. Figure 6A shows two sequences of synthetically generated VT events depending 
on the random strategy used. The visual event refers to the ball on hand and the tactile event to vibration. In 
practice, in the real experiment, the randomness of the tactile event along the ball trajectory may yield unde-
sired consequences, where the participant assigns causality to both stimuli. This is better captured by the weak 
asynchronous generation. All together this experimental evidence highlights how the degree of VT asynchrony 
cannot be mapped one-to-one to a given degree of illusory ownership, which in turn enters in our model via the 
causal link parameter κ . Thus, to explore the effect of different degrees of illusory ownership on the predicted 
force, we simulated ten participants varying the causality parameter κ , which depends on the synchrony of the 
events (see “Methods”) and compared the resulting forces to the ideal asynchronous condition (i.e. the one imply-
ing no causal link between visual and tactile stimuli, κ = 0) . Hence, a high κ would imply that two events are 
likely to come from the same source. Figure 6B shows the mean forces and standard deviation of the simulated 
participants for the asynchronous condition comparing to fixing the causality parameter to 0.3, 0.6 and 0.9.

Therefore, one of the possible reasons to observe forces in the asynchronous condition is that participants 
developed an implicit causal relation between the visual virtual arm and their body despite the ball vibrating 
randomly.

Discussion
We presented a computational model based on active inference that can predict the active component of the 
rubber-hand illusion, i.e. a tendency to generate involuntary forces towards the embodied virtual hand, observed 
in previous experiments and replicated in more details and controlling more factors (under diverse configura-
tions) in the current study. Both model simulations and experimental results provide evidence for an active 
component of the RHI, which because of its static configuration has been overseen for a long time. This evidence 
supports the basic interdependence of perception and action.

The present study suggests that humans may move their body to adjust their expected location with respect 
to other (visual) sensory inputs, which corresponds to reducing the prediction error. This means that the brain 
adapts to conflicting or uncertain information from the senses by unconsciously acting in the world. We specu-
late that the proposed theoretical framework can be useful for applications, such as rehabilitation, prosthetics, 
gaming, etc.

Previous computational models have focused on the perceptual effects of the RHI. For instance, the Bayes-
ian causal model was able to predict the proprioceptive drift by fitting the likelihood to experimental data in 
 humans42 and  macaques43. Our previous predictive coding  model16 was able not only to replicate the propriocep-
tive drift but also to show the potential mechanism and the dynamics behind the perceptual effect. The model 
presented here extends this approach with the inclusion of an active component. Our model, supported by the 

Figure 6.  Visuo-tactile stimulation synchrony study. (A) Synthetic visual and tactile events in the asynchronous 
condition depending on the random seed used to generate the vibrations. Y-axis defines how far in time the two 
events happen. (B) Average and standard deviation of the simulated force as obtained for 10 virtual participants 
each characterized by a different value of the causality parameter κ , which depends on the synchronicity of the 
visual and tactile events.
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AIF mathematical framework, can account at the same time for three observed effects in the rubber-hand illusion: 
 proprioceptive9 and  visual15 drifts, and the active component which is the main focus of our study. The percep-
tual drifts, i.e., proprioceptive and visual, result from a perceptual estimate based on the integration of the two 
conflicting sensory information, so can be regarded as perceptual biases. The active component or drift (lateral 
forces) instead may emerge by the active proprioception error minimization through the reflex arc pathway.

Although the free energy  principle26 (i.e. the basis behind AIF) has been widely proposed to account for 
several brain processes, such as perception and  action27,  interoception44 or self-recognition45–47, it is has been 
difficult to find behavioral validation for its active component. The active inference formulation postulates that 
both perception and action minimize the surprise, formalized as the discrepancy between our beliefs and the 
real world. Our model predicts that subjects experiencing body illusions in presence of a visuo-proprioceptive 
mismatch, tend to generate actions (in the form of exerted forces in the arm) that reduce this discrepancy. During 
the VHI, the new visual input (virtual hand) is merged with proprioceptive information generating a prediction 
error on the body location  estimation16, which can be corrected by an active strategy moving the physical hand 
to reduce the conflict. The predicted behavior was validated empirically in the human experiment. We observed 
and measured forces exerted by the physical hand in the direction of the virtual hand. This is, the body may 
reduce the error of the predicted body location, triggered by the new visual input, by moving the arm. Thus, this 
could be potential experimental evidence of the active inference  framework48. However, we should be cautious 
regarding the model comparison as other computational approaches could also fit our results. For instance, 
cross-modal  learning49 could also retrieve these forces by means of sensory reconstruction. Moreover, there are 
relevant differences between the simplified joint model here adopted and the real musculoskeletal human body.

In contrast with our initial expectations, compensatory forces were observed in our “asynchronous” condition, 
which was initially expected to be a control condition in which no illusion occurs. The fact that we found a similar 
active effect (i.e. non-null forces in the direction of the virtual hand) in both synchronous and asynchronous 
conditions, may be due to our implementation of asynchronous VT stimulation, where the associated sensory 
conflict might have been not sufficiently high to break the illusion. The accountability of the proposed model to 
fit human behavioral data depends on the weighting of the visual cue, modulated by the causal parameter κ , here 
taken as a proxy for the visuo-proprioceptive binding and indirectly, the level of the experienced illusion. Thus, 
a limitation of this study is the missing relation between the observed active strategies and the proprioceptive 
drifts and the strength of the illusion, as we do not explicitly simulate the emergence of the ownership illusion. 
According to our model, we could expect correlations between the proprioceptive drift and the recorded forces 
indicating that both effects may be driven by the same underlying process.

Several experiments reported that body ownership is not elicited during asynchronous  stimulation28,50,51. 
Such evidence was nevertheless taken from experiments in which other sources of sensory conflict were present 
(e.g. the spatial mismatch in the classic RHI). In these cases, synchronous visuo-tactile stimulation is required 
as a trigger for eliciting illusory ownership, while asynchronous stimulation provides additional sensory conflict 
that keeps the illusion off. Other studies however have shown that VT stimulation is not necessary to trigger 
the illusion. In fact, ownership illusion can be triggered by congruent visuo-proprioceptive cues only, i.e. for 
the simple case of spatial overlap between the virtual and real body—as achievable in immersive virtual reality 
applications—with no further multisensory  stimulation12. Furthermore, it was shown that once the illusion is 
established, e.g. through visuo-proprioceptive or visuo-motor triggers, incongruent visuo-tactile stimuli can be 
tolerated without breaking the  illusion41,52. This result emerges as a consequence of the fact that the temporal 
window for VT integration expands due to the causal binding, established by the illusion, between visual stimuli 
seen on the virtual hand and somatosensory stimuli experienced through the physical  hand41. It is therefore 
plausible that the asynchronous visuo-tactile stimulation adopted in our experiment as a control condition did 
not work as such. This may occur as a consequence of the enhanced immersivity/plausibility of our virtual setup, 
in combination with repeated exposures to conditions of perfect visuo-proprioceptive overlap between the vir-
tual and the real hands. As reviewed above, previous works show that under this spatial configuration illusory 
ownership can be sustained even in presence of visuo-tactile asynchronies. Along these lines, it is possible that 
a residual sense of ownership could be present even in our lateral conditions under visuo-tactile asynchronous 
stimulation. In this case, the fact that we did not find a significant difference in the forces recorded in the syn-
chronous versus asynchronous conditions, possibly because of a saturation effect whereby even low levels of 
illusory ownership elicited in the asynchronous condition may trigger perceptual displacements that saturate 
the active component to the level observed in the synchronous case (in which the exerted forces are very weak).

The interpretation above should be nevertheless taken with cautiousness. Due to experimental requirements 
(see “Methods”), we did not include explicit assessments of the subjective experience of illusory body owner-
ship. Although lateral configurations in our experiment induced a proprioceptive drift, which is the actual 
trigger for the predicted force of our model, we cannot properly correlate with the illusion ownership. There is 
no clear consensus in the literature about this relation. Some works describe a dissociation between ownership 
and proprioceptive drift based on the lack of a clear correlation between the  two53. Such lack of correlation 
appears to be mainly associated with the fact that in visuotactile asynchronous conditions non-null drifts are 
observed while the reported sense of ownership drops significantly with respect to the synchronous condition. 
Still, other relevant studies reported clear correlations between subjective ratings of the illusory experience and 
objective measures of the proprioceptive  drift54,55. In our pilot study (see Supplementary Material) we found that 
participants exposed to the asynchronous condition, besides displaying a proprioceptive drift, scored positive 
(although with lower values than in the synchronous condition) to the explicit question on hand ownership 
(Q3 – “There were moments in which I felt that the virtual hand was my own hand”). Similar results with non-
negative scores on ownership assessments in visuotactile asynchronous conditions (but significantly lower than 
in the synchronous condition) have been reported in previous  studies37,41,53, including in works questioning the 
causal relationship between ownership and proprioceptive  drift37,53. Altogether, this might suggest the presence 
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of a residual degree of illusory ownership in our VR asynchronous condition. However, the possibility that the 
force we measured is dissociated from the sense of ownership cannot be excluded by our experiment alone. In 
any case, seen in the larger framework of the experimental evidence on ownership illusion from the last decade, 
our results provide new evidence for the active component of the RHI and novel insights for understanding its 
underlying computational base.

Previous work has shown the strong link between self-perception and action. This coupling has been observed 
in reactive responses to the threat observed on an embodied fake  body11,56. Further support comes from experi-
mental evidence showing how the sense of agency over the movements of virtual hands or full body avatars 
enhances the sense of illusory body  ownership52,57,58. Our results point to a possible complementary effect, i.e. 
to how the sense of body ownership can potentially affect motor behavior, depending on the sensory cues avail-
able. Further studies in which the subjective sense of ownership is explicitly assessed are nevertheless needed 
to ascertain this possibility.

Our model provides an active inference perspective on motor behavior showing how the need to suppress 
sensory conflict could trigger movement, as an active strategy to preserve the integrity of self-perception. We 
expect that such sensory-conflict-driven actions could affect motor performance in goal-directed, as in the case 
of the self-avatar follower effect observed in VR  settings19. Our proposed perception–action coupled approach 
would be furthermore advantageous for modeling adaptation during interaction, as world/body variability can 
be instantly taken into account while maintaining a coherent body pose estimation.

Future research needs to address the computational model behind the dynamics of illusory experience itself 
and more realistic visual  input59. One possibility could be to integrate, in a hierarchical fashion, our AIF model 
with Bayesian causal inference models previously proposed for body ownership  illusions8,42. These models are 
based on the assumption that the illusory sense of body ownership arises when the brain attributes the visual 
information from the rubber or virtual hand to the same entity that gives origin to somatosensory input. The 
causal inference model we propose here, instead, simulates the perceptual process inferring the location of the 
hand and the origin of actions that minimize sensory conflicts while assuming that the agent believes to some 
degree (represented by the κ parameter) that the visual and the proprioceptive/tactile sensory input are associ-
ated to the same origin. The observation of forces in the asynchronous condition in human experiments reflects 
the need for further testing the model under several control conditions and for integrating the two models. 
Even more importantly, observing the active component in a non-static environment will be an important step 
to corroborate the robustness of the proposed model. Heading in this direction, we plan to test the model in 
conditions where the real hand is able to move, and further when the virtual arm can be controlled by the agent.

Methods
Computational model. We model body perception as inferring the body posture by means of the sensa-
tion prediction errors (visual and proprioceptive) and the error in the predicted dynamics. Inspired by the fact 
that the RHI affects the joint angles  perception60, body posture is defined by the joint angles. To design the arm 
model we only consider one degree of freedom: the elbow that rotates over the vertical axis (Fig. 2A). Thus, we 
define sp as the measured/observed joint angle of the elbow and µ[0] ∈ (−π/2, π/2) as the inferred elbow joint 
angle. The subscript notation reflects the order of the dynamics. µ[0] , µ[1] , µ[2]  represents the position, velocity 
and acceleration of the inferred brain  variables61,62. Visual information is given by the horizontal location of the 
center of the virtual hand sv .. We further define that zero degrees measurement indicates when the arm is in 
perpendicular to the horizontal axis and parallel to the body sagittal plane. Hence, left and right rotations are 
negative and positive respectively. Given the length of the arm L , the generative model that predicts the hand 
visual location depending on the joint angle (µ[0]) is as follows:

where b is a localization perceptual bias (sampled from human  data15) that depends on each participant and zv 
is normally distributed noise. The rest of the observations can be predicted with a Gaussian with mean 0. Thus, 
the observed sensations s and the generative model g(µ, ν) that predicts the sensations are:

where sp and ṡp are the joint angle and velocity, ν is the causal variable, i.e., the perceived location of the virtual 
hand, sv is the measured position of the virtual hand and Z is the noise associated with each variable. Note that 
during the RHI experiment the participant does not have visual access to their hand.

The brain generative model f (µ, ρ) that drives the dynamics of the internal variables (state) does not expect 
any action as there is no task involved and it is modeled as a mass-spring system. Note that this function is an 
approximation of the real model of the arm:

 where W is the associated noise of the process, m is the mass of the arm and γ is the viscosity parameter. In the 
case of having a task we shall include a perceptual attractor in the sensory manifold and its transformation to the 
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joint variables. For instance, we can include the virtual arm as the goal by substituting in Eq. (3) the second row by (
T
(
µ[0]

)
A
(
µ[0], ρ

)
− γµ[0]

)
/m , where is A

(
µ[0], ρ

)
= β

(
ρ − gv

(
µ[0]

))
 and the T

(
µ[0]

)
= −Lsin(µ[0] − π/2) . 

However, in this case we do not have a desired goal.
We infer the elbow angle by optimizing the free-energy bound under the Laplace  approximation63. Defining 

the error between the inferred brain variables and the dynamics generative model as eµ = µ− f (µ, ρ) , the dif-
ferential equation that drives µ =

[
µ[0],µ[1],µ[2]

]T is:

Regarding the action, it only depends on the sensory input, as during the RHI the participant only relies on 
the proprioceptive input. Thus, we define its differential equation as:

where Ka is the gain that modulates the step size of the differential equation (similar to gradient descent). Note 
that although we computed the action and use it as an estimate of the force applied at the level of the arm, we 
did not use it in the update of the real hand position, to simulate the constraint of the RHI where the real hand 
is fixed and cannot move.

Experiments have shown that during the RHI participants modify the precision of visual and proprioceptive 
 cues14. Thus, we optimize their precision also to reduce the prediction error:

We set a minimum of exp(1) and exp(0.1) for visual and proprioception precision respectively.
Finally, we considered that the perception of the virtual hand location is another unobserved variable. Thus, 

the model also infers the visual horizontal location, allowing the blending of the real hand perception error with 
the virtual hand and therefore, producing a visual drift.

To generate individual differences between participants we fixed all parameters and we randomly selected 
the initial proprioceptive variance σ2sp ∼ N (1, 0.5) . This means that each participant has a different precision of 
the proprioceptive cue. We further included the bias in the predicted real hand location based on reported data 
of RHI human experimentation (in cm) b ∼ N (0, 4.2794) . The length (in cm) of the forearm was drawn from 
a normal distribution L ∼ N (44.7208, 2.4807) . Bias and the forearm lengths data were taken from participants’ 
real  data15. During stimulation, we also introduced artificial noise in sp and sr readings.

Finally, to generate the effect of synchronous and asynchronous stimulations on the illusion and therefore 
on the predicted force, we introduced the parameter κ as the probability of touch and visual cues being gener-
ated by the same source, so as an estimate for the level of illusory ownership over the virtual  hand8,42 The κ 
parameter weights the error between the expected visual location of the arm and the virtual hand location input: 
κ(ν − gv(µ)) . The synchronous and asynchronous VT stimulation were synthetically implemented producing 
tactile and visual events in the ranges of 100 ms in the synchronous condition and 800 ms  otherwise34, and we 
considered these as two extreme cases where the illusion was either saturated or completely suppressed. So a 
κ value of 1 was set for the synchronous case, meaning that the visual input is generated by our body, and a κ 
value of 0.3 was set for the asynchronous condition, assuming that in this case the virtual hand was perceived 
as an external object not related to the real body. In addition we performed additional simulations, adopting 
different values of κ to explore how different degree of the illusion intensity would affect the forces applied at 
the level of the real arm.

Devices. Subjects were seated with their shoulders restrained against the back of a chair by a shoulder har-
ness and their hand and forearm were rested by a flat surface attached to the vBOT robotic  manipulandum64 
with their forearm supported against gravity with an air sled (Top view Fig. 7; Lateral view Fig. 1C). The robotic 
was locked to prevent movements of the participants’ hand while measuring the applied force. Position and force 
data were sampled at 1 kHz. Endpoint forces at the handle were measured using an ATI Nano 25 6-axis force-
torque transducer (ATI Industrial Automation, NC, USA). The position of the vBOT handle was calculated from 
joint-position sensors (58SA; IED) on the motor axes. Visual feedback was provided using a virtual reality (VR) 
device (Oculus Rift V1, Facebook technology). When using the VR system, any visual information about the 
real body location was prevented. The virtual environment was designed and programmed in C# using the Unity 
engine. The virtual environment and body size were fixed for all participants (e.g. the length of the VR arm was 
always the same). Tactile feedback was provided with commercially available coin vibrators (model 10B27.3018) 
placed on the middle point of the participant’s hand dorsum, controlled with an embedded chip and connected 
via USB to the VR engine. The timing of the vibration events is controlled in relation to a visual animation of a 
virtual ball bouncing on the dorsum of the virtual hand. A random number was generated every time the ball 
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contacted the virtual arm. This random number was translated into the timing to trigger the tactile event along 
the trajectory of the ball.

Ethics. Informed consent was obtained from all participants, and the study was approved by the ethics com-
mittee of the Medical Faculty of the Technical University of Munich, and adhered to the Declaration of Helsinki. 
The study was performed in accordance with the ethical guidelines of the German Psychological Society (DGPs).

Participants. Fourteen right-handed volunteers (seven male and seven female) from 18 to 40 years old with 
normal or corrected-to-normal vision participated in this study. Handedness was evaluated using the Edinburgh 
Handedness Inventory. All participants had no neurological or psychological disorders, virtual sickness, nor 
skin hyper sensibility as indicated by self-report A pretest with the vibrator was performed on the participant 
hand who gave a written statement that the vibrator did not harm himself. We ensured that all participants were 
not wearing nail polish or had remarkable visual features on the left or right forearm and hand. Participants’ 
height was between 1.6 and 1.9 m to fit within the constraints of the experimental apparatus. Participants were 
economically compensated with eight euros per hour.

Experimental design and procedure. First, we randomly assigned seven participants for the synchro-
nous and seven for the asynchronous condition. In total, we registered 1680 trials or samples across all partici-
pants. The generation of the conditions was computed randomly in blocks as described in Fig. 8.

The center condition was always fixed in the beginning, the middle and the end of every trial. Four trials of 
the left or right condition were randomly selected between the center conditions. The selection of the center 
condition in the middle was imposed to reduce the localization bias (i.e. the effect of proprioceptive drift induced 
in the previous trial on the following ones) produced when stimulating in the left and right conditions.

Each trial corresponded to 40-s of VT stimulation where the force was recorded. To register the samples, we 
performed 10 blocks per participant separated by a short break. Each block was composed of 12 trials (4 trials 
for each virtual hand location condition, left, center, right). In total, each participant performed 120 trials (40 
per visual hand location condition).

Participants were seated on the experiment chair, in front of a table as described in Fig. 7, following the 
instructions of the experimenter. Once the chair was adjusted to the needed height, the experimenter attached 

Figure 7.  Experimental setup. Back-top view of a participant on the vBOT manipulandum with the VR system 
and the coin vibrator attached to the dorsum of the left hand.

Figure 8.  Generation of block and condition order for participants. Each participant did 10 blocks of 12 trials 
(4 for each VR location condition). Center trial positions were fixed while the right and the left set of four trials 
were randomly distributed between the center trials.
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the vibrator to the dorsum of the hand. Participants then wore the Oculus Rift VR system. The left hand rested 
on the vBOT manipulandum and the right hand on the table (Fig. 7). Participants were asked to stay relaxed 
and still in the chair.

The initial location of the left hand was fixed for all participants and was programmed in the Manipulandum. 
Each trial consisted of two phases and then a resting period:

1. Cross: At the beginning of each trial participants were asked to look frontal towards a cross that appeared in 
a random location around the middle of the scene to avoid the use of the head angle as a prior cue.

2. Stimulation: While participants were looking at the cross, a virtual arm in the Left, Center or Right condi-
tion appears in the virtual scene with a ball on the top of the hand. After this appears in the virtual scene, 
participants were asked to look down at the index finger of the left hand. Participants can only see the virtual 
hand once they look down. In the synchronous condition, every time the ball touches the virtual hand there 
is a tactile stimulus through the vibrator (a touch event every two seconds approximately). In asynchronous 
stimulation, the vibration occurs with a random delay after the visual stimulation.

3. Resting: At the end of each block, participants rested for 1 min alternating removing the VR system and 
moving the arms without removing the VR.

We tested both synchronous and asynchronous VT stimulation. In the synchronous condition, the events of 
ball contact with the virtual hand and the vibration on the real hand occurred within the temporal window for 
perceived simultaneity (less than 100 ms difference). On the other hand, the asynchronous condition vibration 
events were generated randomly between the visual hit and the highest height reached by the ball.

Data were analyzed offline using Matlab (R2019a) for data cleaning and preprocessing and using R for statisti-
cal testing. For force measurements we performed offset removal by subtracting the mean force over each 9-min 
block of trials (containing equal numbers of all three condition types) from the force data, to ensure that a bias 
on the force values was not introduced through shifts in participant limb posture. The impact and interaction 
of experimental factors on the observed forces was assessed running a mixed effect repeated measure ANOVA, 
while paired t-tests were run for specific post-hoc hypothesis testing.

Code and data. For reproducibility of the results, we provide an instance of the developed model (in python, 
Google colab) with fixed parameters that can be executed in the following link (http:// thero botde cision. com/ 
papers/ RHI_ AI_ vPub. html) and a Jupyter notebook in the supplementary material. Force data that support the 
findings are provided in the supplementary material. Manipulandum raw data is available from the correspond-
ing author upon request.
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