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Response‑locked classification 
image analysis of perceptual 
decision making in contrast 
detection
Hironori Maruyama, Natsuki Ueno & Isamu Motoyoshi*

In many situations, humans make decisions based on serially sampled information through the 
observation of visual stimuli. To quantify the critical information used by the observer in such dynamic 
decision making, we here applied a classification image (CI) analysis locked to the observer’s reaction 
time (RT) in a simple detection task for a luminance target that gradually appeared in dynamic 
noise. We found that the response‑locked CI shows a spatiotemporally biphasic weighting profile 
that peaked about 300 ms before the response, but this profile substantially varied depending on 
RT; positive weights dominated at short RTs and negative weights at long RTs. We show that these 
diverse results are explained by a simple perceptual decision mechanism that accumulates the output 
of the perceptual process as modelled by a spatiotemporal contrast detector. We discuss possible 
applications and the limitations of the response‑locked CI analysis.

While humans and animals can immediately recognize objects and scenes at a  glance1–3, in many situations 
they assemble information in a sequence to take more appropriate  decisions4–6. In cognitive psychology, such 
dynamic information processing has been investigated mainly by measuring the reaction times and correct 
rates of observers. However, the reaction time alone is not powerful enough to reveal what kind of information 
in the stimuli led the observers to make a decision at that moment in time, unless data obtained under various 
conditions are compared.

In visual neuroscience, reverse correlation analysis is widely applied to reveal the information in stimuli 
that determines the system  responses7,8. This analysis has been applied not only to the responses of cortical 
 neurons9, but also to the analysis of the behavioral responses of human  observers10,11. The classification image 
(CI) method, one such technique, visualizes what information in the stimuli observers consider important for a 
given perceptual  judgement12–14. In typical experiments, the observer’s responses to a visual target embedded in 
white noise are collected, and the information in the stimulus that affected the observer’s response is mapped out 
by analyzing the correlation between the noise and the response in each trial. The CI technique has been used 
to reveal the spatial distribution of information, or perceptive field, that determines the observer’s judgments 
for a variety of visual  tasks15–17.

With dynamic stimuli, the CI method can also yield spatiotemporal perceptive  fields18–20. Neri and  Heeger18 
analyzed the correlation between spatiotemporal noise and responses in each trial in a contrast detection task for 
luminance bars that slowly appear in dynamic noise. They found CI profiles with biphasic weights in time and 
space, similar to the spatiotemporal impulse response of the early visual system. Recently, similar psychophysi-
cal reverse correlation with dynamic stimuli has been applied to the judgement on the average of time-varying 
visual information to investigate the mechanisms of perceptual decision  making21–28.

In the aforementioned studies, however, observers made decisions after the visual stimuli had been shown. 
Such a judgment, which is usually based on visual working memory, may be different from on-the-fly judgments 
that we make in the real world. To clarify when observers make decisions and what information observers rely 
on to make decisions during observation, one can analyze correlations at each time point of the stimulus locked 
to the reaction time of the observer during the presentation of the stimulus rather than the stimulus onset. 
This response-locked reverse correlation has been employed in several  studies10,29–31. For example, Caspi et al.30 
examined visual features that trigger saccadic eye movements by analyzing the noise at time points locked to 
the onset of the saccade while the observers views a multi-element display. Okazawa et al.31 adopted a reverse 
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correlation analysis locked to button-press responses to stochastic motion to explore the properties of global-
motion detectors and decision-making mechanisms.

In the present study, we applied the response-locked CI analysis to the most basic visual task, luminance 
contrast detection. Specifically, we used stimuli similar to those used by Neri and  Heeger18 to measure responses 
and reaction times for target stimuli that emerge slowly in dynamic noise, and we then analyzed the correlation 
between the noise and response at each time point backward, locked to the observer’s reaction time. This protocol 
allowed us to examine what signals and what point in the stimulus determined the observer’s decision about 
the target and the observer’s reaction time. The results revealed spatiotemporally biphasic CIs similar to those 
reported by Neri and  Heeger18. On the other hand, we also found that the profile of the CI substantially varied 
depending on the response time of the observer in a way that was unpredictable from the response properties of 
the early visual system. These apparently complicated results, however, were quantitatively described by a simple 
computational model incorporating a perceptual process approximated by a spatiotemporal filter and a decision 
process (drift–diffusion) that accumulates its  output32,43.

Methods
Observers. Five naïves and two of the authors (average age: 22.8 years) with corrected-to-normal vision 
participated in the experiment. All experiments were conducted with permission from the Ethics Committee 
of the University of Tokyo. Observers gave written informed consent. The study followed the Declaration of 
Helsinki guidelines.

Apparatus. Visual stimuli were displayed on a gamma-corrected LCD monitor (BENQ XL2735) controlled 
by a PC. The refresh rate was 60 Hz, and the pixel resolution was 0.04 deg/pixel at the viewing distance of 50 cm 
that we used. The mean luminance of the uniform background was 88.9 cd/m2. All experiments were conducted 
in a dark room.

Stimuli. The visual stimulus was square dynamic one-dimensional noise (4.8 × 4.8 deg) comprising 16 verti-
cal bars with a width of 0.3 deg (Fig. 1). The contrast (Cnoise(t) ) of each bar was switched at a frame rate of 30 Hz 
according to Gaussian noise with an RMS contrast of 0.1. The total duration was 8000 ms. Two independent 
1D-noise fields were presented adjacent to the fixation point.

Here, t is the frame number (33 ms per unit) from stimulus onset. α is the rate of increase, which was set at 
three levels: 0.05, 0.1, and 0.2. The contrast of each bar was clipped in the range of − 1 to + 1. The two fields, with 
and without the target signal, were transformed into luminance images using the relation L(t) =  Lmean (1 + C(t)), 
where  Lmean is the mean luminance of the uniform background (88.9 cd/m2).

Procedure. In each trial, observers viewed the stimulus at a fixation point binocularly and indicated by 
pressing a button whether the target appeared in the left or right noise field as quickly as possible. If an observer’s 
response exceeded the deadline (8000 ms) or was an error, auditory feedback was given, and the data recorded in 
that trial were excluded from the analyses. The next trial started no less than 0.5 s after the observer’s response. 
The average error rates were 0.03, 0.02, and 0.02 for contrast increases (α) of 0.05, 0.1, and 0.2, respectively. In 

(1)logCtarget(t) = min(αt − 3, 0)

Figure 1.  Schematic diagram of the visual stimuli used in the experiment. The bright bar that appears on the 
left is the target.
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each trial, the contrast values of all individual bars (C noise(x,t)), the observer’s response (left, right), and the reac-
tion time were recorded. Each session of the experiment comprised 150 trials for a single condition. For each 
observer, sessions were repeated until at least 1200 trials were conducted for each condition.

Ethics approval. All experimental protocols were approved by Ethics Committee of the University of Tokyo.

Approval for human experiments. Written informed consent was obtained from all participants/
observers.

Results
Reaction time. Figure 2a shows the average logarithmic reaction time of the observer, plotted as a function 
of the contrast increase (α). On a linear scale, the reaction times were 1949 ms (s.e. = 36.1), 1207 ms (s.e. = 20.7), 
and 818 ms (s.e. = 22.7) for a contrast increase (α) of 0.05, 0.01 and 0.2, respectively. Figure 2b is a cumulative 
histogram of the reaction times of all observers. Figure 2b shows that a slower rate of increase in the contrast 
resulted in a longer average reaction time. One-way repeated-measure ANOVA on the average reaction time 
with increasing contrast showed a significant effect of the rate of contrast increase on the reaction time (F(2, 
12) = 1574.6, p < 0.001).

Reverse correlation analysis locked to the response time. We conducted a reverse correlation anal-
ysis between the contrast of each bar and the observer’s response (left, right) at each time (t) back from the reac-
tion time to characterize the noise common to the time before the reaction. Figure 3 is a diagram of the analysis. 
As in Neri and  Heeger18, μ1(x,t) is the mean of the noise contrast in the region where the observer responded that 

Figure 2.  (a) Average logarithmic reaction time as a function of the contrast increase rate. Error bars 
represent ± s.e. across observers (invisibly small). (b) Cumulative histogram of reaction times of all observers 
(solid line). Dashed lines represents the logarithmic contrast of the target stimulus over time. Red, blue, and 
green lines represent a contrast increase of 0.05, 0.1, and 0.2, respectively.

Figure 3.  Reverse correlation analysis locked to the reaction. The classification image (CI) was calculated for 
each bar contrast at each time from the reaction time.
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the target was present and μ0(x,t) is the mean of the noise contrast in the region where the observer responded 
that the target was not present. Since the reaction time varied across trials, the number of trials used to calcu-
late the mean at each time point was not constant and tended to decrease as time increased backward from the 
response. The results were calculated as follows.

here Mean Kernel refers to the effect of the noise contrast on the response.
The upper panels in Fig. 4 show the classification image (i.e., Mean Kernel) obtained in the reverse correla-

tion analysis locked to the reaction time. The horizontal axis represents the time (t) back from the reaction time, 
and the vertical axis represents the spatial position of each bar (x). In comparison with the grey background, the 
brighter points represent positive weights and the darker points represent negative weights. Individual panels 
show results for a contrast increase (α) of 0.05, 0.1, or 0.2. The lower panels show the mean of the weights of the 
two central bars (red) and the mean of the weights of the two adjacent bars (blue) in the CI. The vertical axis 
represents the weight and the horizontal axis represents the time from the reaction time. We refer to the plots 
as impact curves.

The above plots show characteristic temporal and spatial variations in the weights before the target detec-
tion response. At the center of the stimulus where the target appeared, a large positive weight was found about 
300 ms before the response, and a negative weight was found about 500 ms before the response. For the spatial 
variation, we find that the weights around the target are reversed from the center. This means that the decrease 
in luminance in the bars adjacent to the target are also useful for detecting the target. It is also found that the 
absolute magnitude of the weights tends to decrease as the contrast increase rate increases. We also conducted 
the same analysis for contrast variance, as was done in a previous  study18,44, but found no clear CI profile. This 
discrepancy could be due to the fact that the target appeared gradually in the present study, whereas the target 
was abruptly flashed in the previous study.

Relationship between the RT and CI. As shown in Fig. 2, the reaction time of the observer varied even 
under the same conditions. Each individual observer responded quickly in some trials and took a long time in 
others. Taking advantage of this fact, we investigated if and how the CI changes with the reaction time. To this 
end, we divided the observer’s data into 50% trials with short reaction times, 50% trials with intermediate reac-
tion times, and 50% trials with long reaction times for each condition of the contrast increase rate, and carried 
out the reverse correlation analysis for each group.

Figure 5 shows the CIs and impact curves obtained for each reaction time group. The results were surpris-
ingly different across the groups. The positive weights about 300 ms before the reaction are larger for the shorter 
reaction time group. Conversely, the negative weights 500 ms before the reaction are larger for the longer reac-
tion time group. This tendency is constant regardless of the contrast increase rate (α). The results indicate that 
the spatiotemporal profile of the weights of information correlated with the response is remarkably different 
depending on the reaction time.

Discussion
The present study examined the information utilization strategy adopted in dynamic decision making during 
stimulus observation in a simple contrast detection task. Applying the classification image method, we calcu-
lated the weights of the embedded noise at each time point retrospectively from the reaction time for the target. 
The resulting CIs indicate that observers responded by utilizing the biphasic luminance change and the central 

(2)MeanKernel(x, t) = µ1(x, t)− µ0(x, t)

Figure 4.  Results of response-locked reverse correlation analysis. The upper panels show the classification 
image (CI). The vertical axis represents the space and the horizontal axis represents the time from the reaction 
time. Each pixel represents a positive (bright) or negative (dark) weight. The lower panels show the average of 
the weights in the central two bars (red curves) and the average of the weights in the two adjacent bars (blue 
curves). The vertical axis represents the weights and the horizontal axis represents the time from the reaction 
time. Error bars represent ± s.e. across observers. Individual panels show the results for a contrast increase (α) of 
0.05, 0.1, or 0.2.
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antagonistic spatial contrast before the response. In addition, we found that these spatiotemporal profiles of CIs 
varied significantly depending on the reaction time.

The complex diversity of the results depending on the reaction time appears to be difficult to understand 
intuitively. This may seem to indicate that the observers were so flexible that they use different strategies for 
utilizing information depending on whether they could respond quickly to the target or not. However, we should 
first consider a simple explanation—that the results are a natural consequence of an interplay between the sen-
sory system and the decision process. Therefore, we tested a simple model consisting of the early visual process 
(linear filtering model) and the perceptual decision process (drift–diffusion model). As a result, we found that 
this conservative model with a fixed set of parameters successfully duplicated the human data for all conditions 
and RT ranges.

Computational model. Figure 6 shows an outline of the model, which is inspired by a previous study on 
spatiotemporal ensemble perception (Yashiro et al.28). The model compares the spatially summarized outputs 
of the perceptual process, which is approximated using linear spatiotemporal filters, between the two regions. 
The decision process accumulates the differential signal between the two regions as sensory evidence over time 
and makes a decision when the evidence reaches a given boundary. The basic structure of the perceptual process 
follows that of a previous CI study (Neri and  Hereger18), and the computation of the decision making follows 
traditional drift–diffusion model (DDM) for a two-alternative forced-choice  task32–35. Figure 6 shows each step 
of the process graphically for the case that a target appears on the left. The calculation of each step is described 
in detail below.

Following previous  studies18, the perceptual system is approximated as a space–time separable linear filter, 
Fst(x,t), as follows.

Here Fs(x) is the spatial filter and Ft(t) is the temporal filter. The spatial filter Fs(x) is given as a DoG func-
tion, which has been widely used as a first-order approximation for contrast detectors in the visual  system36 

(3)Fst(x, t) = Fs(x) · Ft(t)

Figure 5.  Results for each reaction time group. Results for (a) short reaction times, (b) intermediate reaction 
times, and (c) long reaction times. Upper panels show the CIs and lower panels show the impact curves.
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(Enroth-Cugell and Robson 1966). Note that t is the frame number (33 ms per unit) and x is the pixel (0.04 deg 
per unit).

Here σc is the standard deviation for the central region and σs is the standard deviation for the adjacent region. 
The temporal filter Ft(t) is given as the following biphasic  function37,38.

Here n is the number of stages in the time integrator, t is the transient factor, and B is a parameter that defines 
the amplitude ratio of the positive and negative phases.

The response of the perceptual system was obtained by convolving the above spatiotemporal filter Fst(x,t) 
with the stimulus input I(x,t).

Decisions concerning whether the target presented in the left or right region were made by comparing the 
spatial sum of the absolute values of the responses in each region between the left and right. Thus, the model 
observer continually monitored the difference ΔR(t) between the left and right responses at time t from the 
stimulus onset. Here, ΔR(t) is regarded as the sensory evidence at time t in the decision-making model.
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Figure 6.  Schematic diagram of a model based on spatiotemporal filtering and the accumulation of sensory 
evidence.
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Decisions for targets are based on evidence accumulated over time. However, a number of decision-making 
studies suggest that sensory evidence decays with time; that is, the evidence weakens as it  ages22,39,40. This property 
is practically described as a leaky temporal integration, and it is potentially a product of the adaptive gain control 
of evidence  signals41,42. According to these findings, the present modeling assumes that the cumulative evidence 
S(T) at time T is given by the following equation, which approximates the noisy leaky integration of ΔR(t).

Here g is the time constant of evidence integration and εt is the internal noise following a normal distribution. 
The model observer makes a decision about whether the target is on the left or right when S(T) exceeds a certain 
decision boundary, that is, b or − b, respectively. The observer was assumed to execute a manual response after 
a constant motor delay of 250 ms from T.

In this modeling, the perceptual process part has five parameters: the standard deviations of the spatial filter 
(σc and σs, in pixels), number of biphasic temporal filter integration stages (n), time constant (τ , in frames), and 
ratio of positive to negative phases (B). The decision-making process part has three parameters: the decision 
boundary (b), internal noise (εt), and time constant for evidence reduction (γ, in frames).

(8)S(T) =

T
∑

t=1

(γ(T−t)�R(t)+ ǫt)

Figure 7.  Results of the model simulations. (a) Impact curves and CIs derived from the data for all RTs. (b–d) 
Impact curves and CIs when divided into reaction time groups, with solid lines representing results for model 
observers and light-colored bands representing the ± 1 s.e. range for human data.
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Model simulation. We analyzed the CI and impact curves of the model observer using the image input 
data that were presented to each observer in the experiment. In the simulations, for all data in the condition of 
α = 0.05, the model parameters were optimized for each observer to minimize the squared error between the 
impact curve obtained for the model observer and that of the human observer. To achieve the steady fitting, only 
the number of integration steps of the biphasic temporal filter (n) was fixed to 5, for all model observers.

Figure 7 shows the simulation results. The thick impact curve represents the average of results obtained for the 
optimized model for each observer, and the light-colored bands represent the ± 1 se range of the average for the 
human observer data. Estimated parameters and the s.e. across model observers were [σc, σs, B, τ, γ, b, εt] = [4.15, 
17.4, 0.47, 1.360, 0.046, 496.5, 49.6] (s.e. = 0.18, 1.67, 0.07, 0.158, 0.002, 3.58, 2.64). For all values of the contrast 
increase (α), we find that the model successfully duplicated both the CI and the impact curve of the observers. 
For the three different reaction time groups (Fig. 7b–d), the model duplicated the observers’ data, reflecting the 
characteristic differences of RT-dependent CI and impact curves. The root-mean-square error (i.e., difference) 
between the fitted models and the model observers’ data averaged over all observers was 0.005 (s.e. = 0.0001). 
The difference in the behavior of the impact curves for each reaction time group can be intuitively explained as 
follows. In the short reaction times, the positive weights are larger about 300 ms before the response because 
there is not enough time for the negative part of the biphasic temporal impulse response to activate. On the 
other hand, in the long reaction times, the negative weight of the biphasic temporal impulse response acts and 
becomes visible, but the positive weight is thought to occur because the effect decreases via leaky integration.

To investigate the importance of the functional processes assumed in the model in Fig. 6, we simulated the 
model without some of the functional processes. We found that (1) the unique shape of the observers’ CIs and 
impact curves could not be simulated if even one of the parameters of the spatiotemporal filter was omitted and 
(2) without the leaky integration property being assumed in the decision making, the effect of the early stage 
of stimulus presentation did not decrease even after a long observation in some RT ranges. On the other hand, 
modifying the model to accumulate the responses in each domain separately as two pieces of evidence and then 
calculate those differences, instead of accumulating the differences in responses between the two domains as evi-
dence, did not change the behavior of the model, because the model essentially accumulates evidence  linearly43.

The present results support the idea that on-the-view behavioral responses to visual stimuli can be explained 
by a simple combination of the conventional perceptual model and the standard perceptual decision-making 
model. This finding may allow us to perform a response-locked reverse correlation analysis of human responses 
to sensory stimuli during observation, rather than after observation, to explore the characteristics and strate-
gies of human information use in various cognitive tasks. In further investigations, a similar framework may 
be used to understand the mechanisms for attentional selection and for high-level visual cognition. The present 
computational model can be used as a baseline account in these investigations.

It should be noted that psychophysical analysis cannot reliably separate the properties of decision making 
from the low-level perceptual  process31. Although one can partially overcome this limitation by making full use 
of various aspects of data, such as by dividing the data into different RT ranges as in the present study, it is dif-
ficult to distinguish between some properties such as the latency of the perceptual sensors and the motor delay 
in the decision process.
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