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Assessment of CT to CBCT contour 
mapping for radiomic feature 
analysis in prostate cancer
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This study provides a quantitative assessment of the accuracy of a commercially available deformable 
image registration (DIR) algorithm to automatically generate prostate contours and additionally 
investigates the robustness of radiomic features to differing contours. Twenty-eight prostate cancer 
patients enrolled on an institutional review board (IRB) approved protocol were selected. Planning 
CTs (pCTs) were deformably registered to daily cone-beam CTs (CBCTs) to generate prostate contours 
(auto contours). The prostate contours were also manually drawn by a physician. Quantitative 
assessment of deformed versus manually drawn prostate contours on daily CBCT images was 
performed using Dice similarity coefficient (DSC), mean distance-to-agreement (MDA), difference 
in center-of-mass position (ΔCM) and difference in volume (ΔVol). Radiomic features from 6 classes 
were extracted from each contour. Lin’s concordance correlation coefficient (CCC) and mean absolute 
percent difference in radiomic feature-derived data (mean |%Δ|RF) between auto and manual contours 
were calculated. The mean (± SD) DSC, MDA, ΔCM and ΔVol between the auto and manual prostate 
contours were 0.90 ± 0.04, 1.81 ± 0.47 mm, 2.17 ± 1.26 mm and 5.1 ± 4.1% respectively. Of the 1,010 
fractions under consideration, 94.8% of DIRs were within TG-132 recommended tolerance. 30 radiomic 
features had a CCC > 0.90 and 21 had a mean |%∆|RF < 5%. Auto-propagation of prostate contours 
resulted in nearly 95% of DIRs within tolerance recommendations of TG-132, leading to the majority of 
features being regarded as acceptably robust. The use of auto contours for radiomic feature analysis is 
promising but must be done with caution.

Radiomics is a promising tool with potential diagnostic, prognostic and predictive powers. The extraction and 
analysis of quantitative radiological features provides valuable information before, during and after radiation 
therapy (RT)1. Previous studies have linked several radiomic features directly to patient  survival2. Research has 
shown the power of radiomics for many disease sites; however, these studies also show variability with respect to 
imaging modality, reconstruction algorithms, feature selection, and volume of interest (VOI)3–9. Several groups 
have studied the robustness of radiomic features with respect to contouring  variability3–5,10–12. Contours are 
typically created by a trained radiation oncologist; however, inter-, and intra-observer contouring variation can 
still be significant when considering  radiomics10,13.

A recent study by Yang et al., investigated the impact of contouring variability on PET-based radiomic fea-
tures for lung  cancer14. The study demonstrated that the impact of contour uncertainty on PET-based radiomic 
features varied widely and cautioned predictive use in the context of contouring uncertainty for models involv-
ing PET-based radiomic features. A study by Pavic et al., examined intra-observer variation effects on radiomic 
features extracted from CT  images12. This study extracted a total of 137 radiomic features from planning CT 
images of head and neck cancer patients and warned that variation in delineation can significantly affect some 
radiomic features.

On-board imaging (OBI) utilizing megavoltage (MV) and kilovoltage (kV) cone beam CT (CBCT) is a widely 
used imaging technique for daily patient bony alignment and prostate marker  alignment15. The prostate can 
deform and rotate daily due to differential bladder and rectal filling resulting in suboptimal dosimetry over the 
course of  treatment16. By utilizing CBCT setup images, changes in anatomy can be accounted for at the time of 
treatment  delivery17. Deformable image registration (DIR) can automatically propagate the contours drawn on 
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the planning CT (pCT) to daily CBCT images, accounting for the anatomical changes and allowing adaptive 
radiotherapy (ART)18,19. The American Association of Physicists in Medicine (AAPM) Task Group 132 (TG-132) 
provides recommendations on the use of image registration and fusion algorithms and provides quantitative 
methods of evaluating DIR  accuracy20.

Various studies have investigated the accuracy of the DIR algorithms for the automatic creation of contours 
(auto contours) for prostate cancer; however, these studies often used very small sample  sizes18,21–23. A study by 
Woerner et al.18, evaluated the DIR performance from pCT to CBCT that was acquired near the end of treat-
ment for 6 prostate, 5 head and neck and 5 pancreas patients. The small sample size of their study limited their 
analysis to organs at risk (OAR). The authors cautioned the use of automatic DIR workflows to perform contour 
deformation to assess the changes during the course of treatment. Another study by Thor et al., evaluated DIR 
performance from pCT to CBCT through the course of prostate cancer treatment for 5  patients24. The study 
concluded that more advanced imaging and/or DIR algorithms should be developed to confidently use DIR 
workflows for contour deformation.

Unlike CT, PET and MR images that are used for diagnostic and treatment planning purposes, CBCT images 
are used for daily patient setup prior to radiation delivery and are collected as the current standard of care on 
a daily basis. Most radiomic studies performed thus far have been evaluated in a pre-treatment setting and are 
lacking a knowledge of early tumor response to therapy, hindering the possibility for timely treatment adapta-
tion. Hence, the day-to-day radiomic feature changes of the tumor obtained from CBCT may offer a possibility 
of treatment adaptation during the early course of treatment, distinct from radiomic predictions derived in the 
pre-treatment settings. These features can be examined for their use in early response assessment.

The automatic propagation of pCT contours to daily CBCT can also be used in the context of radiomics. 
However, to our knowledge, the robustness of radiomic features to varying prostate contours on daily CBCT’s has 
not been previously examined. By updating radiomic feature derived data on a more frequent basis, as could be 
done through utilizing daily CBCT derived data, radiomic features can help influence clinical decision making. 
The goal of this study is to utilize a commercially available DIR algorithm to deform manual prostate contours 
to the daily CBCTs and determine the robustness of radiomic features to DIR-based contour propagation.

Methods and materials
Patient selection. Twenty-nine prostate cancer patients who were treated with volumetric modulated arc 
therapy (VMAT) and had daily CBCT images were considered. The ethical approval for this study was obtained 
from the University of Miami Institutional Review Board (IRB). Written informed consent was obtained from 
all patients in this study. The data was retrospectively collected and analyzed. All methods undertaken in this 
work were carried out in accordance with the relevant guidelines and regulations. One patient was excluded 
due to prosthetic implants causing extremely poor image quality. Each patient was treated using conventional 
fractionation, consisting of 28–40 fractions, totaling 1,010 total fractions. Prostate volumes ranged from 15  cm3 
to 92  cm3.

Image acquisition and manual contouring. Planning CT (pCT) images were acquired using Somatom 
Definition AS and Sensation Open (Siemens Healthineers AG, Germany), and/or Gemini TF TOF 64 (Philips, 
Netherlands) for each patient. The mean field-of-view (FOV) was 670 mm with a range of 492–800 mm, recon-
structed with dimensions of 512 × 512 pixels, a thickness of 2 mm, and an average in-slice pixel size of 1.3 mm 
with a range of 0.9–1.6 mm. On the day of treatment, each patient was imaged with the same FOV using kV 
CBCT with 465 slices, voxel sizes of (0.9 mm, 0.9 mm, 2.0 mm) and reconstructed with dimensions of (512, 512, 
232). Each patient was imaged in supine position. All 28 patients had 4 gold fiducial markers implanted in the 
prostate prior to imaging. Prostate volumes were manually contoured on pCT and on daily CBCT setup images 
by the same expert radiation oncologist who has 4 years of experience in contouring prostate cases to eliminate 
interobserver variation. The pCT images and daily CBCT setup images, including manually drawn contours, 
were uploaded to a commercial image registration software (Velocity Advanced Imaging, ver. 4.1, Varian Medi-
cal Systems, Palo Alto, CA).

Deformable image registration and delineation propagation. The DIR of pCT to daily CBCT 
images were performed using an Adaptive Monitoring tool available in the commercial image registration soft-
ware. Figure 1 shows the DIR and delineation propagation workflow. DIR creation utilized the ‘Adaptive Moni-
toring’ navigator, which is comprised of three steps: (1) manual alignment, (2) rigid registration, (3) deformable 
registration. During the manual alignment step, a manual rigid alignment between the CBCT image and the 
pCT image was made using bony anatomy and the implanted gold fiducials as a guide. These were done inde-
pendently of clinical set-up shifts for consistency. In step 2 the region of interest was adjusted to include the 
prostate and, using the manual alignment created in step 1 as a starting point, a rigid registration was created 
by the software. Step 3 uses the rigid registrations of step 2 as a reference to create DIR’s. After the rigid regis-
tration, the DIR algorithm was utilized to deformably register the pCT to the daily CBCTs. The DIR algorithm 
uses an intensity-based B-spline algorithm based on the Mattes formulation; the details have been described 
 elsewhere14,25. For poor quality deformations, the deformable image registration workflow was repeated with 
smaller ROIs (67 fractions). Poor quality deformations were defined as a DSC < 0.75 and MDA > 3.5 mm, just 
beyond the TG-132 tolerance recommendations. For the three fractions that continued to produce poor quality 
deformations, a structure-guided deformation (hybrid DIR) was employed.

Assessment of deformable image registration. The DIRs from pCT to daily CBCTs were done using 
both qualitative and quantitative assessment metrics. First, a visual assessment of deformation vector fields 
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(DVFs) was carried out to ensure that the DIR transformation was physically and anatomically reasonable. The 
locations of anatomical landmarks (e.g., bones) and fiducial markers were visually inspected on fused images of 
the pCT and CBCT to verify that they matched. DIRs were refined by adjusting the ROI around the prostate to 
improve DIR  accuracy26, or by applying a structure-guided deformation.

The quantitative assessment of the registered prostate contours was done using several metrics. Dice similar-
ity coefficient (DSC) is a statistical measure of contour overlap with 0 being no overlap and 1 being a perfect 
 match27. Distance to agreement (DTA) between two contours, sometimes referred to as distance to conformity, is 
the shortest distance from a given point on the surface of one contour to the surface of the other contour. Mean 
distance to agreement (MDA) is the mean of all DTA  distances28. The geometric centers of both the auto and 
manual contours on the CBCTs were calculated and used to determine the difference in center of mass position 
(ΔCM). The difference in volume between the auto and manual contour (∆Vol) was also evaluated for all 1,010 
fractions. For a smaller sub-sample of 10 patients, on a bi-weekly basis (totaling 47 fractions), the Jacobian 
determinant (JD) was computed. Jacobian determinant values corresponding to volume expansion, no volume 
change and volume reduction are > 1, 1, and < 1, respectively. JD values equal to or less than zero correspond 
to non-physical transformations which are indications of a poor  DIR20. DSC, MDA, ΔCM, and ∆Vol were cal-
culated between the auto and manual prostate contours for all 1,010 fractions. TG-132 defines a clear method 
for assessing DIR  algorithms20. In this work, the tolerances defined in the TG-132 were used for quantitative 
assessment of the DIRs.

Radiomic features. To study the impact of contouring variability due to the DIR on CBCT radiomic fea-
tures in the prostate a total of 46 radiomic features derived from 6 different classes were analyzed for all 1,010 
fractions. Additionally, a subpopulation consisting of 149 fractions was identified having ∆Vol > |10%| to study 
the impact of larger contour variability on CBCT radiomic features. Radiomic features were extracted using the 
procedure described in Delgadillo et al.11, including Gray-Level Co-occurrence Matrices (GLCM), Neighbor-
hood Gray-Tone Difference Matrix (NGTDM), Gray-Level  Run-Length Matrices (GLRLM), Gray-Level Size 
Zone Matrices (GLSZM), Morphological and statistical  features29–31. Each radiomic feature is distinguished by 
the image biomarker standardization initiative (IBSI)  code32.

Percent difference in radiomic feature derived data (%∆RF) was compared to DSC to assess radiomic feature 
dependency on contouring variability using Spearman’s rank correlation coefficient (ρ)33,34. These correlations 
were classified as weak if |ρ|< 0.4, moderate if 0.4 ≤|ρ|< 0.6, relatively strong if 0.6 ≤|ρ|< 0.8, and strong if 0.8 ≤|ρ|33.

Lin’s concordance correlation coefficient (CCC) was computed for all 46 radiomic features between the auto 
and manual contours to find the strength of  correlation35, with a perfectly linear relationship equal to 1 and no 
relation being  034,36. Adapting the classification scheme proposed by McGraw et al.37, radiomic features were 
classified as robust with CCC > 0.90, acceptable with 0.75 < CCC < 0.90, and uncertain with CCC < 0.75.

Additionally, mean absolute percent difference in radiomic feature derived data (mean |%∆|RF) was used to 
evaluate the stability of radiomic features to differences in prostate contours. Radiomic features were indepen-
dently classified as robust with mean |%∆|RF < 5%, acceptable with 5% < mean |%∆|RF < 15%, and uncertain 
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Figure 1.  Deformable image registration and delineation propagation workflow. All steps included in the 
Adaptive Monitoring Navigator on Velocity are inside the dotted-line box. The re-evaluation of poor-quality 
fractions (DSC < 0.75, MDA > 3.5 mm) is shown in the light-red box. Exportation of data to MATLAB for data 
extraction and analysis is done in the final green box.
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with 15% < mean |%∆|RF < 50%. Processing and analysis were performed using scientific computation software 
(MATLAB, ver. 2018b, Math-Works Inc., Natick, MA).

Results
Assessment of prostate contour accuracy. Table  1 summarizes the mean, standard deviation and 
range for DSC, MDA, ΔCM, ∆Vol, JD minimum and JD maximum between auto and manual prostate contours, 
and Fig. 2 shows the distribution of DSC, MDA, ΔCM and ΔVol over 1010 fractions. The mean DSC of all 1,010 
fractions, 0.90 ± 0.04, is within the TG-132 recommended DSC value of ~ 0.8 to 0.9. A total of 42 fractions had 
DSC < 0.8, below the lower tolerance recommendation of TG-132.

The mean MDA of 1.81 ± 0.47 mm is well within the TG-132 recommended ~ 2 to 3 mm. A total of 33 frac-
tions had MDA > 3 mm with a maximum MDA of 4 mm. The mean ΔCM found to be 2.17 ± 1.26 mm and mean 
∆Vol of 5.1 ± 4.1%. The mean minimum and mean maximum values of the JD were found to be 0.77 ± 0.18 and 
1.31 ± 0.23 respectively, with no JD values ≤ 0 (Table 1).

Table 1.  Similarity metrics between auto and manual contours.

Mean SD Range TG-132 recommendation

Dice similarity coefficient 0.90 0.04 (0.74, 0.98) ∼ 0.8 to 0.9

Mean distance to agreement (mm) 1.80 0.50 (0.88, 4.16) ∼ 2 to 3

Difference in center of mass position (mm) 2.17 1.38 (0.06, 8.18) NA

Difference in volume (%) 5.10 4.10 (0.06, 22.8) NA

Jacobian minimum 0.77 0.18 (0.25, 0.97) > 0

Jacobian maximum 1.30 0.23 (1.02, 1.97) NA

Figure 2.  Histograms of (A) DSC, (B) MDA, (C) ΔCM and (D) %Δ volume between the auto and manual 
contours for all 1010 fractions are shown in (A)–(D) respectively.
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Impact of contouring variability on radiomic features. Spearman rank correlation coefficient for 
%∆RF versus DSC for each radiomic feature is shown in Fig. 3. As previously mentioned, a subpopulation of 
fractions with ∆Vol > |10%| was also considered, results from these fractions are plotted in red (Fig. 3). All 46 
radiomic features were classified as having a weak correlation between %∆RF and DSC with |ρ|< 0.4 for both 
populations under consideration (all fractions and sub-population of fractions with ∆Vol >|10%|).

Table 2 displays Lin’s concordance correlation coefficient (CCC) for all 46 radiomic features. Using the clas-
sification scheme mentioned earlier, 30 of 46 radiomic features were classified as robust, 8 radiomic features were 
classified as acceptable, and 8 radiomic features were classified as uncertain (Table 2). Neighborhood Gray-Tone 
Difference Matrix (NGTDM) and Gray-Level Co-occurrence Matrices (GLCM) had the highest mean CCC with 
values of 0.963 and 0.943, respectively.

Independent classification according to mean |%∆|RF can also be seen in Table 2 separated by class. In total 
21 of 46 radiomic features were classified as robust and 7 of the 13 GLRLM radiomic features were classified as 
robust. 14 radiomic features were classified as robust according to both CCC and mean |%∆|RF. 24 radiomic 
features did not have matching stability classifications when comparing the classifications from CCC and mean 
|%∆|RF.

Discussion
DIR and contour accuracy. Mean DSC and mean MDA of the current study (Table  1) are both well 
within the TG-132 recommended tolerances, indicating that the DIR workflow followed here can produce accu-
rate prostate contours. A study done by Forde et al., found that 37% of contours created through DIR had a 
DSC < 0.75. The DIR algorithm of our study, having no contours with DSC < 0.7, outperformed the one used by 
Forde et al. which used an earlier version of Varian’s auto contouring (SmartSegmentation version 15.5) which 
used an atlas-based algorithm. However, 4.1% of contours created in this study still had DSC below the TG-132 
recommendation of 0.8—further inspection of these fractions found acceptable displacement vector fields and 
acceptable contours as shown in Fig. 4 for a poor performing fraction (DSC = 0.79, MDA = 3.02).

While ΔCM and ∆Vol are not included in the TG-132 recommendation, both are useful indications of auto 
and manual contour matching. A previous study by Studenski et al., considered 16 patients on hypo-fractionated 
schemes and found percent difference in prostate volume from contours created through a DIR workflow to 
be < 10%38, and a previous study by Forde et al., which looked at inter-observer delineation variability and its 
impacts on radiomic feature robustness found the interobserver variation in contour sizes were as high as 80%5. 
In the study presented here, 149 of the 1,010 fractions had a difference in volume between the auto and manual 
contours (∆Vol) > 10% (Table 1). Large discrepancies in volume indicate a poor DIR, however, the mean DSC of 
these 149 fractions was 0.88, and visual inspections resulted in acceptable contours.

The radiomic features belonging to the morphological features class can also be used as a measure of contour 
accuracy. As can be seen in Table 2, the mean |%∆|RF for all 4 morphological features is less than 0.1%. These 
low mean absolute percent difference in radiomic feature derived data for the morphological feature class is 
another indication that the automatically generated contour and the manual contour are in good agreement.

Radiomic feature robustness. Spearman rank correlation coefficient for %∆RF versus DSC for each radi-
omic feature as shown in Fig. 3, shows that all 46 radiomic features were classified as having a week correlation 
(for both populations under consideration). A low Spearman rank correlation coefficient between %∆RF versus 
DSC simply highlights the complex interplay between radiomic feature derived data of differing contours. That 
is, a large difference in contour does not necessarily translate to a large difference in radiomic feature derived 
data, and a small difference in contour does not necessarily translate to a small difference in radiomic feature 
derived data.

Higher Lin’s concordance correlation coefficient (CCC) translates to robust radiomic features. As seen from 
Table 2, the NGTDM class radiomic features had the highest mean CCC of 0.963, while GLRLM class radiomic 
features had the lowest mean of 0.820. Based on this, NGTDM was the most robust class of radiomic features, 
while GLRLM was the least robust class of radiomic features when considering differences in prostate contours. 
In contrast to our study, Rizzetto et al., found that GLRLM was the most robust to differing contours, considering 
colorectal liver metastases  contours10. These incongruous results may be due to the differing locations within 
the body (prostate versus liver) and/or the differing contour sizes, but only further the idea that the robustness 
of radiomic features should be evaluated as they can vary by location. Future radiomic studies should consider 
the location specific radiomic feature robustness, as the radiomic feature derived data has varying dependence 
on contour as seen in this study and  others3–5,10–12.

Similar to the results of this study, a different study done by Yang et al., evaluating radiomic feature robust-
ness taken from PET images of lung cancer patients, found only weak or moderate correlations between %∆RF 
and  DSC14. A weak correlation implies a more complex interplay between the delineation of the volume and the 
contents of the volume. While two contours of a volume may have a high DSC, the percent difference in radiomic 
feature-derived data from the two contours may be very different.

Mean |%∆|RF alone was also used to evaluate the stability of radiomic features to differences in prostate 
contours. Forde et al., found that GLRLM had the smallest mean |%∆|RF considering parotid gland  contours5. 
The results of Forde et al. agree with the work presented here, finding 7 of the 13 GLRLM radiomic features were 
classified as robust, the highest performing class.

Severe discrepancies between CCC and mean |%∆|RF do occur. For example, statistical features of ‘Skewness’ 
and ‘Kurtosis’ had CCC values of 0.879 and 0.946 respectively and mean ± SD in |%∆|RF of 143.2 ± 694.1 and 
85.7 ± 4786, respectively. If the auto contour radiomic feature derived data and manual contour radiomic feature 
derived data have similar means and standard deviations over all fractions, CCC will be high and indicate high 
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Figure 3.  Spearman’s rank correlation coefficient between the mean absolute percent difference in radiomic 
feature derived data (%∆RF) between auto and manual contours plotted against Dice similarity coefficient 
(DSC), stratified by class. This was done for two populations, all fractions (blue) and for fractions with 
ΔVol > |10%| (red).
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Radiomic 
feature [IBSI 

code] 
CCC 

Stability 
classificatio

n 

Mean ± 
SD|%∆|RF 

Stability 
classification

2 

Stability 
classificatio
n match? 

Energy 
[8ZQL] 0.959 Robust 7.4 ± 14.5 Acceptable No 

Contrast 
[ACUI] 0.959 Robust 6.7 ± 9.1 Acceptable No 

GLCM Correla�on 
[NI2N] 0.957 Robust 3.0 ± 3.0 Robust Yes 

Mean CCC = 
0.943 

Dissimilarity 
[8S9J] 0.957 Robust 3.6 ± 4.7 Robust Yes 

Entropy 
[TU9B] 0.949 Robust 0.6 ± 0.9 Robust Yes 

Homogeneit
y [IB1Z] 0.968 Robust 2.8 ± 3.8 Robust Yes 

SumAverag
e [ZGXS] 0.861 Acceptable 0.6 ± 0.8 Robust No 

Variance 
[UR99] 0.936 Robust 5.6 ± 8.6 Acceptable No 

GLN [R5YN] 0.972 Robust 7.5 ± 13.0 Acceptable No 

GLV [BYLV] 0.580 Uncertain 12. 6 ± 11.8 Uncertain Yes 

HGRE 
[G3QZ] 0.891 Acceptable 1.1 ± 1.7 Robust No 

LGRE 
[V3SW] 0.705 Uncertain 23.5 ± 23.0 Uncertain Yes 

GLRLM LRE [W4KF] 0.969 Robust 0.3 ± 0.5 Robust Yes 

Mean CCC = 
0.820 

LRHGE 
[3KUM] 0.875 Acceptable 1.1 ± 1.7 Robust No 

LRLGE 
[IVPO] 0.699 Uncertain 23.6 ± 23.2 Uncertain Yes 

RLN [W92Y] 0.985 Robust 6.1  6.4 Robust Yes 

RLV [SXLW] 0.447 Uncertain 25.8 ± 31.2 Uncertain Yes 

RP [9ZK5] 0.968 Robust 0.1 ± 0.2 Robust Yes 

SRE [220V] 0.968 Robust 0.1 ± 0.1 Robust Yes 

SRHGE 
[GD3A] 0.898 Acceptable 1.0 ± 1.7 Robust No 

SRLGE 
[HTZT] 0.706 Uncertain 23.4 ± 22.9 Uncertain Yes 

GLN [JNSA] 0.982 Robust 6.6 ± 10.7 Acceptable No 

Table 2.  (continued)
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GLV [8CE5] 0.958 Robust 21.1 ± 20.8 Uncertain No 

HGZE 
[5GN9] 0.880 Acceptable 1.0 ± 1.6 Robust No 

LGZE 
[XMSY] 0.697 Uncertain 23. 6 ± 22.9 Uncertain Yes 

GLSZM LZE [48P8] 0.969 Robust 5.0 ± 11.0 Robust Yes 

Mean CCC = 
0.884 

LZHGE 
[J17V] 0.968 Robust 5.4 ± 11.0 Acceptable No 

LZLGE 
[YH51] 0.586 Uncertain 27.0 ± 28.5 Uncertain Yes 

SRE [220V] 0.963 Robust 0.1 ± 2.2 Robust Yes 

SZE [5QRC] 0.950 Robust 0.7 ± 0.9 Robust Yes 

SZHGE 
[HW1V] 0.917 Robust 1.3 ± 2.0 Robust Yes 

SZLGE 
[5RAI] 0.678 Uncertain 25.0 ± 24.6 Uncertain Yes 

ZSN [4JP3] 0.985 Robust 6.2 ± 7.5 Acceptable No 

ZSV [3NSA] 0.959 Robust 20.6 ± 22.1 Uncertain No 

Busyness 
[NQ30] 0.986 Robust 6.2 ± 7.1 Acceptable No 

NGTDM Coarseness 0.966 Robust 5.8 ± 7.1 Acceptable No 

Mean CCC = 
0.963 

Complexity 
[HDEZ] 0.956 Robust 4.0 ± 4.9 Acceptable No 

Contrast 
[65HE] 0.937 Robust 7.4 ± 14.6 Acceptable No 

Strength 0.968 Robust 6.4 ± 7.1 Acceptable No 

Eccentricity 
[25C7] 0.810 Acceptable 0.08 ± 0.08 Robust No 

Morphologic
al 

Major Axis 
Length 
[TDIC] 

0.983 Robust 0.02 ± 0.01 Robust Yes 

Mean CCC =  Sphericity 
[QCFX] 0.854 Acceptable 0.04 ± 0.03 Robust No 

0.907 Surface 
Area [C0JK] 0.980 Robust 0.04 ± 0.03 Robust Yes 

Sta�s�cal Kurtosis 
[IPH6] 0.946 Robust 85.7 ± 478.6 Unstable No 

Mean CCC =  Skewness 
[KE2A] 0.879 Acceptable 143.2 ± 694.1 Unstable No 

0.920 Variance 
[ECT3] 0.935 Robust 5.3 ± 8.3 Acceptable No 

Table 2.  Lin’s concordance correlation coefficient (CCC) and mean absolute percent difference in radiomic 
feature derived data (|%∆|RF) between auto and manual contours for all radiomic features. Corresponding 
stability classifications were given according to each independently and compared for consistency. CCC values 
classified as robust CCC > 0.90, acceptable with 0.75 < CCC < 0.90, and uncertain with CCC < 0.75. Radiomic 
features were classified according to mean absolute percent difference in radiomic feature derived data (|%∆|RF) 
as robust with mean |%∆|RF < 5%, acceptable with 5% < mean |%∆|RF < 15%, and uncertain with 15% < mean 
|%∆|RF < 50%.
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similarity. However, in the same situation, |%∆|RF per auto and manual contour pair can be large and varying. 
Thus, leading to situations where a radiomic feature has both a desirable high CCC and an undesirable high 
mean |%∆|RF.

Conclusions
This study demonstrated that an intensity-based DIR algorithm applied to daily CBCTs is sufficiently robust and 
accurate to meet the recommendations of TG-132 for prostate cancer. The radiomic features derived from DIR-
generated auto contours and manually drawn contours were acceptably similar for 22 of 46 radiomic features. 
However, there is a varying dependence on contours from one radiomics class to another and from one radiomic 
feature to another. Weak correlations between mean |%∆|RF and DSC imply a complex interplay of volume and 
contents when considering radiomic feature data extraction from prostate contours that requires further insight.
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