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Retentive capacity of power 
output and linear versus non‑linear 
mapping of power loss 
in the isotonic muscular endurance 
test
Hong‑qi Xu1, Yong‑tai Xue1, Zi‑jian Zhou2, Koon Teck Koh3, Xin Xu4, Ji‑peng Shi1*, 
Shou‑wei Zhang1, Xin Zhang5 & Jing Cai2

The limit of dynamic endurance during repetitive contractions has been referred to as the point of 
muscle fatigue, which can be measured by mechanical and electrophysiological parameters combined 
with subjective estimates of load tolerance for revealing the human real‑world capacity required 
to work continuously. In this study, an isotonic muscular endurance (IME) testing protocol under 
a psychophysiological fatigue criterion was developed for measuring the retentive capacity of the 
power output of lower limb muscles. Additionally, to guide the development of electrophysiological 
evaluation methods, linear and non‑linear techniques for creating surface electromyography (sEMG) 
models were compared in terms of their ability to estimate muscle fatigue. Forty healthy college‑
aged males performed three trials of an isometric peak torque test and one trial of an IME test for 
the plantar flexors and knee and hip extensors. Meanwhile, sEMG activity was recorded from the 
medial gastrocnemius, lateral gastrocnemius, vastus medialis, rectus femoris, vastus lateralis, 
gluteus maximus, and biceps femoris of the right leg muscles. Linear techniques (amplitude‑
based parameters, spectral parameters, and instantaneous frequency parameters) and non‑linear 
techniques (a multi‑layer perception neural network) were used to predict the time‑dependent power 
output during dynamic contractions. Two mechanical manifestations of muscle fatigue were observed 
in the IME tests, including power output reduction between the beginning and end of the test and 
time‑dependent progressive power loss. Compared with linear mapping (linear regression) alone or 
a combination of sEMG variables, non‑linear mapping of power loss during dynamic contractions 
showed significantly higher signal‑to‑noise ratios and correlation coefficients between the actual and 
estimated power output. Muscular endurance required in real‑world activities can be measured by 
considering the amount of work produced or the activity duration via the recommended IME testing 
protocol under a psychophysiological termination criterion. Non‑linear mapping techniques provide 
more powerful mapping of power loss compared with linear mapping in the IME testing protocol.

Abbreviations
ANOVA  Analysis of variance
AV  Actual value
BF  Biceps femoris
CV  Coefficient of variation
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CWT   Continuous wavelet transform
EV  Estimated value
Fihlrx  High and low frequency ranges
Finsmk  Dimitrov’s spectral fatigue index
FT  Fourier transform
GM  Gluteus maximus
HT  Hilbert transform
IMDF  Instantaneous median frequency
IME  Isotonic muscular endurance
IMNF  Instantaneous mean frequency
IPT  Isometric peak torque
LG  Lateral gastrocnemius
MAV  Mean absolute value
MDF  Median frequency
MG  Medial gastrocnemius
MLPNN  Multilayer perceptron neural network
MNF  Mean frequency
MVC  Maximum voluntary isometric contraction
r  Pearson’s correlation coefficient
R2  Coefficient of determination
RF  Rectus femoris
RMS  Root mean square
sEMG  Surface electromyography
SNR  Signal-to-noise ratio
SSC  Slope sign changes
VL  Vastus lateralis
VM  Vastus medialis
WL  Wavelength
ZC  Zero crossings

Most human activities such as sports, industrial tasks, and daily living activities require dynamic endurance 
because most muscles are required to work continuously to accomplish these  activities1–3. The limit of human 
endurance during a physical task is usually decided by the point at which an individual is unwilling or unable 
to continue the physical task, and this point is referred to as the point of ‘exhaustion’ or ‘fatigue’4,5. Muscular 
endurance is thus the measurement of an individual’s level of stamina or fatigue, and it may be limited by numer-
ous physiological, biomechanical, mechanical, and psychological  factors6–8. Many investigators have defined 
neuromuscular fatigue as a decreased performance under certain  conditions9,10. During dynamic movement, 
neuromuscular fatigue can be directly assessed by any exercise-induced reduction in the ability to generate power 
or quantified as a time-dependent loss in power  output11–14. Furthermore, recording surface electromyography 
(sEMG) during activities is useful to assess and understand muscle fatigue or endurance involved in muscle 
excitation, recruitment, and  contraction12,15–17. Hence, sEMG is commonly used as an indirect and non-invasive 
method for assessing neuromuscular fatigue alongside mechanical variables (e.g., losses of force, torque, or power 
output)12,18. Furthermore, psychological fatigue is often incorporated as a part of the neuromuscular model of 
fatigue because fatigue is a psychophysiological symptom underpinned by interactions between performance 
fatigability and perceived  fatigability8,19,20. Psychological alterations and perceived exertion determine the uncon-
scious perception of fatigue, which can reduce power output and lead to the point of  exhaustion6,8,21.

Specifically, power output, a combination of dynamic torque and joint angular velocity, and the duration 
of repetitive contractions are the two key contributors to dynamic  endurance22–24. Thus, the retentive capacity 
of muscular power output is of great importance to most kinds of  movements2,14. In previous studies, the iso-
metric, isokinetic, or isotonic modes on dynamometers have been used to test muscular  power2,3,25,26. Isotonic 
testing is considered to be more relevant to normal voluntary contractions, as the load is held constant but the 
velocity can  vary27,28, which allows for the measurement of normal human movements during both acceleration 
and deceleration without controlling the angular velocity and  acceleration25,27–29. Therefore, the isotonic testing 
protocol and database of muscular endurance is more applicable to the evaluation of sports science, rehabilitation 
medicine, and human-factor engineering. Moreover, the relationship between sEMG and power loss is useful 
for assessing and understanding neuromuscular fatigue, as it can be defined on the basis of electrophysiological 
or mechanical  events30–33, and linear techniques are often used to estimate muscle fatigue by relating changes in 
sEMG parameters to changes in power loss. However, myoelectric signals can be better modeled as outputs of 
a non-linear dynamic system rather than as random stochastic signals, so a non-linear model based on a learn-
ing procedure would provide more accurate tracking of power loss using sEMG variables compared to a linear 
 model12,31,34,35. Additionally, combining the subjective estimates of load tolerance and the subjects’ determinations 
of their own muscular endurance is beneficial for revealing the subjects’ real-world capacity during muscular 
endurance  experiments20,36, and the results can help balance the workload and physical capacity to prevent acute 
or overuse injuries in actual  application37,38. However, in many previous studies, subjects could not independently 
determine their load tolerance in dynamic fatiguing exercises, which involved fixed sets, repetitions, and rest 
times with the individual maximum load (e.g., repetition maximum, RM)15,30–33,39, so the actual muscle fatigue 
experienced by the subjects in those exercises may have exceeded their voluntary limits.
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There is a limited amount of information regarding neuromuscular fatigue assessed during isotonic loading 
protocols. However, such protocols are the most suitable for measuring dynamic muscular endurance during the 
everyday movements of humans because these movements can be characterized by ballistic sinusoidal changes in 
velocity with constant loads rather than movements of constant  velocity2,3. Therefore, in this study, the retentive 
capacity of muscular power output was assessed for the plantar flexors as well as the knee and hip extensors of 
college-aged males using an isotonic dynamometer and considering the subjective estimates of muscle fatigue. 
The isotonic endurance data of the lower limb muscles accumulated from the tests provide further insights into 
the relationships between human performance and muscle endurance required in real-world  activities19,40. In 
addition, to guide the development of more effective electrophysiological evaluation methods of muscular fatigue, 
the accuracy of a fatigue linear model and a non-linear model were compared for their ability to relate sEMG 
variables to power loss during dynamic contractions.

Methods
Subjects. Subjects were recruited through advertisement and invitations to participate in the study in a non-
random manner. The study was approved by the medical ethics committee of Jilin University and was performed 
in accordance with relevant guidelines and regulations of the institutional review board after each subject had 
given written informed consent, and all procedures performed in studies involving human participants were in 
accordance with the Declaration of Helsinki. Forty healthy college-aged males (age, 21.22 ± 1.10 years; height, 
173.81 ± 3.44 cm; weight, 65.29 ± 6.49 kg; body mass index, 21.61 ± 2.09 kg/m2) with no previous history of lower 
extremity or severe musculoskeletal injury participated in the study.

Experimental procedure. A BTE Primus RS dynamometer (Dynatracä, BTE Co., Hanover, MD, USA) 
and Noraxon surface electromyography system (Noraxon, Inc. Scottsdale, AZ, USA) were used to collect data 
synchronously during the tests. Each subject performed a specific warm-up for the lower limbs and was famil-
iarized with the experimental setup before the testing procedures. Next, each subject’s skin was dry-shaved and 
cleaned with alcohol. Then sEMG activity during the contractions of the right leg muscles was recorded from 
the medial gastrocnemius (MG), lateral gastrocnemius (LG), vastus medialis (VM), rectus femoris (RF), vastus 
lateralis (VL), gluteus maximus (GM), and biceps femoris (BF) by a pair of bipolar surface electrodes. Because 
the interelectrode distance influences the pick-up area, crosstalk, and signal  spectrum41–44, the commonly used 
22  mm spacing was selected for the interelectrode distance to enable quantitative comparisons of measured 
values with previous  studies30–32.

The protocol consisted of three sets of isometric peak torque (IPT) tests and one set of an isotonic muscular 
endurance (IME) test for the plantar flexors and the knee and hip extensors (Fig. 1). The right ankle, knee, and 
hip of the subjects were aligned with the mechanical axis of rotation of the dynamometer in a reclining posi-
tion, sitting position, and lying position. For the IPT test, three repetitions of maximum voluntary isometric 
contraction (MVC) were required, where each contraction lasted for 3 s, and there was a 5 s rest period between 
contractions. A coefficient of variation (CV) of less than 10% was required for the three contractions. Each sub-
ject performed gradually increasing isometric contractions with the ankle plantar flexed at 80°, knee extended 
at 110°, and hip extended at 90°. For the IME test, the resistance level was set to 50% of the subject’s average 
IPT, and the subject performed a complete repetition for each cycle according to a timing cycle (45–60 cycles/
min) displayed on the screen. Specifically, the timing cycle asked subjects to match the pace of a red horizontal 
“pacing bar” and to keep the work rate the same for the duration of the test. The subjects were asked to keep 
their range of motion and pace of each cycle consistent and continued the repetitions until they were fatigued. 
Each subject performed repetitive concentric contractions in the ranges of 80°–130° for ankle plantar flexion, 
80°–170° for knee extension, and 90°–180° for hip extension. Although a subject’s fatigue point was indicated 
by the dynamometer when the amount of power output recorded in two consecutive cycles was below 75% of 
the amount of power output generated during the first 5 s, verbal encouragement was also provided to motivate 
the subjects to continue with the test until they experienced fatigue and decided to stop.

Data acquisition and signal analysis. The length of lever arm (cm), force (N), and torque (N∙m) in three 
trials of the IPT test, and the work (J), time (s), and distance (°) in one trial of the IME test were recorded by BTE 
 PrimusRS software. Both the sEMG signals and biomechanical signals such as time (s), torque (N∙m), angular 
position (°), and angular velocity (°/s) of the BTE  PrimusRS dynamometer were recorded simultaneously by the 
TeleMyo 2400 T system (Noraxon, Inc., Scottsdale, AZ, USA) at a sampling rate of 1.5 kHz. Data analysis was 
performed offline using MATLAB 2014a software (MathWorks Inc., Natick, MA, USA).

Before acquiring the sEMG signal, an analog low-pass filter was used to suppress the high-frequency noise 
greater than 750 Hz in the system to eliminate the effect of its aliasing on the signal restoration. Then, a band-pass 
filter composed of a 5th-order high-pass filter and a 10th-order low-pass filter was adopted to digitally filter the 
collected sEMG signal to retain the frequency range of the signal within 20–250 Hz. Since wavelet transforms can 
realize the filtering function, wavelet transforms and the Hilbert transform were used when calculating IMNF and 
IMDF, and the cut-off frequency was 11.7188–350 Hz. In addition, the data of torque, angular position, angular 
velocity, and power output were smoothed by the adjacent averaging method. The angle of the limb segment 
increased from zero to the peak value or the positive bell-shaped part of the angular velocity, which was the 
concentric contractions phase of plantar flexors and knee and hip extensors (Fig. 1). The peak power output and 
sEMG parameters discussed in “Linear techniques used to estimate muscle fatigue”–“Time-dependent power 
output and power loss prediction” sections were calculated.
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Linear techniques used to estimate muscle fatigue. Amplitude-based parameters and spectral parameters. Two 
main sEMG amplitude-based parameters, mean absolute value (MAV) and root mean square (RMS), were used 
to quantify the amplitude or magnitude of the sEMG  signal12,28,45. Mean frequency (MNF) and median frequency 
(MDF) were estimated from the power spectrum using Fourier transform (FT). These two spectral parameters 
were used to quantify the changes in the spectral content of the sEMG  signal12,13,17,30,45,46.

Instantaneous frequency parameters. The sEMG data were analyzed offline with a continuous wavelet trans-
form (CWT) using MATLAB software with the signal processing and wavelet  toolbox32,47. The Harr wavelet (db1 
wavelet) was used as the mother wavelet, and the sEMG data were decomposed into six layers by the wavelet 
transform. The approximate scale of wavelet coefficients was retained, and the wavelet coefficients on the high-
frequency details were removed to eliminate the clutter. The reserved wavelet coefficients were used to recon-
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Figure 1.  The change of angle, angular velocity, torque and power output with time during each cycle of the 
IME test for plantar flexors and knee and hip extensors. Note IME, isotonic muscular endurance. Each cycle 
included a limb loop in which a limb moves from the starting position to the ending position and then returns 
to the starting position. The angular presented a bell-curve, indicating that the limb loop moves from the 
starting position to the ending position, and then returns to the starting position. Correspondingly, with the two 
acceleration and deceleration movements of the limb segment, and the angular velocity presents two bell-shaped 
curves with opposite directions.
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struct the sEMG signal and complete the denoising process after the wavelet transform; the instantaneous mean 
and median frequency (IMNF and IMDF) of sEMG data were calculated by the Hilbert transform (HT)13,17,48,49.

Non‑linear techniques used to estimate muscle fatigue. A multi-layer perception neural network (MLPNN) was 
chosen to relate changes in sEMG variables and power output because it shows good accuracy to relate sEMG 
variables and fatigue  indices12,31,35. Four sEMG parameters were calculated from each contraction of all of the 
subjects: (1) MAV is an estimate of the mean absolute value of the signal, as the integrated EMG is divided by the 
integration  time15,34,50; (2) zero crossing (ZC), as the number of times that the waveform crosses zero, is a simple 
measure of the main frequency of the  signal15,34,50; (3) slope sign change (SSC), as the number of times that the 
slope of the waveform changes sign, provides another measure of frequency  content15,34,50; and (4) wavelength 
(WL) provides information on the waveform complexity in each  segment15,34,50. These parameters contain both 
amplitude and frequency information and have been shown to be useful in other sEMG pattern recognition 
 applications15,31,51. The sEMG data were analyzed offline with MLPNN using MATLAB software with the signal 
processing and neural network toolbox. The training function adopted Levenberg–Marquardt backpropagation, 
which includes the gradient descent Weight algorithm and bias items, to learn the parameters of MLPNN. The 
number of hidden layer nodes was 10, the maximum number of training iterations was set to 100, the maximum 
mean square deviation of training results was set to 0.00004, the learning rate was set to 0.1, and the maximum 
number of failures was set to 18.0. Peak power output and sEMG parameters of all the subjects were subdivided 
into four training segments and one validation segment. This process resulted in a set of 4 × 1 training vectors 
and validation vectors for each subject and each test condition. Finally, the actual value (AV) and estimated value 
(EV) of the peak power output in the training-prediction process of five groups were compared to evaluate the 
performance of MLPNN.

Time‑dependent power output and power loss prediction. The sEMG variables (individually and in combina-
tion) were used to estimate the power loss, and the relationship between sEMG variables and peak power output 
of all the subjects was mapped by the artificial neural network or linear regressions. The performance of different 
approaches was quantified by the signal-to-noise ratio (SNR) for the  outputs2,15,31,32,51.

Statistical analysis. The results of torque in the IPT test, and the number of repetitions, work, time, and 
distance in the IME test were compared using analysis of variance (ANOVA) and multiple comparisons. The 
power outputs (W) of the first five repetitions and last five repetitions were compared using paired-samples 
t-test. The association between changes in the percentage of power output and changes in the percentage of 
sEMG-based parameters, and the relationship between the estimated changes and actual changes in power out-
put of MLPNN were determined by Pearson’s correlation coefficients (r) and multiple linear regression. The 
differences of slope and intercept from two linear regressions were determined by F-test or equivalent t-test. 
P-values less than 0.05 were considered statistically significant (two-tailed).

Ethics approval. The study was approved by the medical ethics committee of Jilin University and was per-
formed in accordance with relevant guidelines and regulations of the institutional review board after each sub-
ject had given written informed consent, and all procedures performed in studies involving human participants 
were in accordance with the Declaration of Helsinki.

Consent to participate. Each participant provided informed written consent prior to participation.

Consent for publication. Additional informed consent was obtained from all individual participants for 
whom identifying information is included in this article.

Results
The results of IPT and IME tests for plantar flexors and knee and hip extensors. The IPT test 
was first performed to determine the appropriate resistance level for the IME test (i.e., 50% IPT). The results 
of torque for the plantar flexors and knee and hip extensors were 154.90 ± 25.17  N∙m, 166.45 ± 27.53  N∙m, 
and 198.56 ± 24.53  N∙m in the IPT test, respectively. Distinct increments were evident in the three muscle 
groups (P < 0.05) (Fig. 2a). Furthermore, the values of CV were all less than 10%, and they were 5.13 ± 3.10%, 
5.11 ± 2.63%, and 4.46 ± 3.21% for the plantar flexors and knee and hip extensors, respectively.

The values of work, distance, and time in the IME test from low to high were the knee extensors 
(1407.28 ± 456.93 J, 1582.90 ± 635.88°, and 35.20 ± 8.77 s), plantar flexors (2259.56 ± 771.88 J, 2431.07 ± 1088.14°, 
and 58.65 ± 25.43 s), and hip extensors (6460.69 ± 2521.18 J, 6550.79 ± 2421.75°, and 59.10 ± 18.13 s). Distinct 
increments were evident in these muscle groups for the work and distance (P < 0.01) (Fig. 2b–d). The number of 
repetitions in the IME test from low to high were the knee extensors (31.48 ± 9.52), hip extensors (48.42 ± 16.51), 
and plantar flexors (51.84 ± 13.30). Regarding the number of repetitions and time in the IME test, the results of 
the hip extensors and plantar flexors were significantly higher than the results of the knee extensors (P < 0.01) 
(Fig. 2d, e).

Two subjects repeated ankle plantar flexion more than 69 times, four subjects repeated knee extension more 
than 40 times, and six subjects repeated hip extension more than 65 times (Fig. 2g–i). Except for these more pow-
erful subjects, the power output measured from all other subjects decreased continuously with the number of rep-
etitions for plantar flexors and knee and hip extensors. The power output had a significant difference between the 
first five repetitions and the last five repetitions for plantar flexors (629.62 ± 13.27 W vs. 388.73 ± 15.96 W), knee 
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extensors (606.21 ± 30.20 W vs. 377.47 ± 15.30 W), and hip extensors (2036.58 ± 180.96 W vs. 1227.73 ± 186.19 W) 
(P < 0.01) (Fig. 2f).

The association between changes in percentage of power output and changes in percent‑
age of sEMG‑based parameters. As shown in Table  1 and Fig.  3, the changes of power output were 
inversely correlated with amplitude-based parameters, the correlations were significant in most muscle groups 
(r = 0.077–0.215, P < 0.05), and RMS percentage (RMS%) had a higher correlation coefficient than MAV per-
centage (MAV%). Also, the changes of power output were positively correlated with spectral parameters, the 
correlations were significant in most muscle groups (r = 0.078–0.301, P < 0.05), and MDF percentage (MDF%) 
had a higher correlation coefficient than MNF percentage (MNF%). Moreover, the changes of power output were 
also positively correlated with instantaneous frequency, the correlations were significant in all muscle groups 
(r = 0.121–0.443, P < 0.01), and IMDF percentage (IMDF%) had a higher correlation coefficient than IMNF 
percentage (IMNF%). Furthermore, all of the correlation coefficients and most of the SNRs of instantaneous 
frequency (SNR = 4.811–8.341) were higher than amplitude-based parameters (SNR = 4.438–7.763) and spectral 
parameters (SNR = 3.971–7.878).

The difference between linear regression and non‑linear neural network for predicting the 
power loss. The square of Pearson’s correlation coefficient (r) was equal to the coefficient of determina-
tion (R2) of univariate linear regression, where R2 reflects the percentage of total variation of a dependent vari-
able that can be explained by the regression relationship of an independent variable. Thus, RMS%, MAV%, 
MNF%, MDF%, IMNF%, and IMDF% as single parameter predictors accounted for 1.02–4.62%, 0.59–2.79%, 
0.61–5.95%, 1.02–9.06%, 1.46–15.92%, and 1.49–19.62% of the performance variance of changes in power 
output, respectively (Table 1 and Fig. 3). Stepwise multiple linear regression showed that the combination of 
sEMG-based parameters provided more accurate power mapping in a linear mapping than a single sEMG-
based parameter predictor and accounted for 5.52–23.72% of the performance variance of changes in power out-
put (Table 2). Moreover, the non-linear neural network based on the combination of sEMG-based parameters 
also provided higher correlation coefficients and SNR values (r = 0.231–0.491; SNR = 6.692–11.652) compared 
to multiple linear regression (r = 0.218–0.475; SNR = 5.555–8.590). Furthermore, the comparison between the 
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Figure 2.  The result of IPT and IME test for plantar flexors and knee and hip extensors. Note: IPT isometric 
peak torque, IME isotonic muscular endurance. PFs plantar flexors, KEs knee extensors, HEs hip extensors. 
The comparison between PFs and KEs, PFs and HEs, or the power output of the first 5 repetitions and last 5 
repetitions, * is p < 0.05, * * is p < 0.01; the comparison between KEs and HEs, # is p < 0.05, ## is p < 0.01.
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regression lines of actual versus estimated changes in power output for both techniques indicated statistical 
significance (P < 0.01) (Table 2 and Fig. 4).

Discussion
Losses of force, torque, and power output are typically used as direct mechanical variables to measure muscle 
 fatigue11–14. Historically, muscle fatigue has been defined as the inability to maintain the required or expected 
force in isometric testing protocols. This determination of muscular endurance emphasizes the maximum force 
capacity and assumes strong muscles are also more powerful  muscles2,3,52. In the present study, IPT was meas-
ured first to determine the appropriate resistance level for the IME test. As a larger muscle has a stronger force-
generating capability with a greater physiologic cross-sectional  area22,23,53, IPT exhibited a distinct increment 
in the plantar flexors, knee extensors, and hip extensors. However, isometric testing can only test the ability of 
the neuromuscular system to generate force or torque rapidly, and it does not determine muscular power, as its 
stationary nature prevents any assessment of  velocity53,54. Therefore, the dynamic assessment of fatigue is not 
interchangeable with the isometric assessment of  fatigue52, and optimal performance of dynamic contractions 
requires not only muscle force production but also a velocity  component2,24. The order of IME differed from the 
order of IPT for the three tested muscle groups, showing that the ability to sustain maximal power output has 
a different physiological basis than muscle  strength52. Specifically, knee extensors had the weakest endurance, 
with moderate torque output and minimum repetitions, plantar flexors had moderate endurance with minimum 
torque output and maximum repetitions, and hip extensors had the most powerful endurance with maximum 
torque output and moderate repetitions. Muscles must be activated quickly to produce maximal power, and the 
rapid force also correlates with the function of both neural activation and muscle contraction  velocities2,3,52. Thus, 
the torque–velocity (T–V) and power–velocity (P–V) relationships are frequently used to evaluate the contractile 
and functional consequences of muscle  fatigue52,53,55.

Muscular power is generated and can be measured during dynamic contractions associated with an applied 
force, regardless of  speed55,56. However, muscles must be activated quickly to produce maximal power, and 
maximal power development usually occurs at velocities where force is  moderate3,24,55. Indeed, maximal power 
output occurred at the point representing one-half of the projected maximal velocity and one-half of the pro-
jected maximal  torque3,24,55. Thus, 50% IPT was the acceptable highest resistance for subjects to produce the 
maximal power output during each contraction in the fatigue protocol of the IME  test3,14,57, and muscle fatigue 
was defined as a time-dependent loss in maximal power output. Different from fatigue protocols used by previous 
 studies15,30–33,58, the duration or number of repetitive contractions of the IME protocol in the present study was 
the total output until the subject could not carry on and voluntarily gave up. The limit of a subject’s endurance 
during the IME test, that is, the point at which the subject is unwilling or unable to continue repetitive contrac-
tions, has been referred to as the point of ‘exhaustion’, ‘the limit of tolerance’, or the point of ‘fatigue’4,5.  I n this 
study, two of the same mechanical manifestations of muscle fatigue found in previous studies were observed: 
one was a significant difference in power output between the first five repetitions and the last five repetitions, and 
the other was a progressive decrease of power output as the number of repetitions  increased1,14,39,59. T herefore, 

Table 1.  Percent changes of linear time–frequency parameters against percent changes of peak power 
output and signal-to-noise ratio. PFs plantar flexors, KEs knee extensors, HEs hip extensors. MG medial 
gastrocnemius, LG lateral gastrocnemius, VM vastus medialis, RF rectus femoris, VL vastus lateralis, GM 
gluteus maximus, BF biceps femoris. r pearson’s correlation coefficients, R2 coefficient of determination, SNR 
signal−to−noise ratio. RMS root mean square, MAV mean absolute value, MNF mean frequency, MDF median 
frequency, IMNF instantaneous mean frequency, IMDF instantaneous median frequency. *P < 0.05, **P < 0.01, 
the correlations were significant.

Muscle groups

Amplitude-based parameters Spectral parameters Instantaneous frequency

RMS% MAV% MNF% MDF% IMNF% IMDF%

PFs

MG
r  (R2)  − 0.119**(1.42)  − 0.117**(1.37) 0.078**(0.61) 0.104**(1.08) 0.121**(1.46) 0.122**(1.49)

SNR 6.264 6.781 6.359 6.362 7.453 7.926

LG
r  (R2)  − 0.094(0.88)  − 0.085*(0.72) 0.148**(2.19) 0.170**(2.89) 0.176**(3.10) 0.177**(3.13)

SNR 5.429 6.096 6.274 7.184 7.174 7.099

KEs

VM
r  (R2)  − 0.215**(4.62)  − 0.167**(2.79) 0.093*(0.86) 0.123**(1.51) 0.227**(5.15) 0.248**(6.15)

SNR 7.763 7.418 5.671 5.235 7.715 8.301

RF
r  (R2)  − 0.159**(2.53)  − 0.117**(1.37) 0.147**(2.16) 0.233**(5.43) 0.399**(15.92) 0.443**(19.62)

SNR 7.334 7.208 7.878 7.724 8.136 8.341

VL
r  (R2)  − 0.160**(2.56)  − 0.135**(1.82) 0.054(0.29) 0.121**(1.46) 0.300**(9.00) 0.308**(9.49)

SNR 7.586 7.558 7.593 7.374 7.726 7.727

HEs

GM
r  (R2)  − 0.070(0.49)  − 0.069(0.48) 0.088*(0.77) 0.101*(1.02) 0.130**(1.69) 0.226**(5.11)

SNR 4.438 4.438 4.096 3.991 4.811 4.974

BF
r  (R2)  − 0.101**(1.02)  − 0.077**(0.59) 0.244**(5.95) 0.301**(9.06) 0.307**(9.42) 0.361**(13.03)

SNR 4.784 4.773 3.971 5.012 4.843 5.115
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by keeping all of the variables consistent except for time, muscular endurance can be measured by considering 
the amount of work produced or the activity duration via the recommended IME testing protocol in this study.

 The electrical activity of muscle fibers can be characterized by sEMG and used to indirectly assess muscle 
fatigue caused by the prolongation of muscle contractions over  time17,60. Traditional parameters such as ampli-
tude-based parameters or spectral parameters based on FT may be questionable for mapping muscle fatigue due 
to the non-stationarity of the sEMG signal during dynamic  contractions12,13,30,46. Similar to previous  studies28,30,45, 
the results of this study also showed that the use of traditional time-domain indices or spectrum indices alone 
were not sensitive enough to determine muscle fatigue due to their poor association with power output, and these 
indices as single parameter predictors accounted for a low percentage of the performance variance of changes 
in power output. Studies addressing the non-stationarity of the sEMG signal confirmed that the CWT had the 
best accuracy and estimation capacity on a simulated data test and better accuracy for mapping changes in 
sEMG signals recorded during dynamic contractions when compared with other time–frequency distributions, 

a b

c d

e f

Figure 3.  The association between changes in percentage of power output and changes in percentage of 
instantaneous frequency parameters (percentage of the first two repetitions). Note: IMNF instantaneous mean 
frequency, IMDF instantaneous median frequency. MG medial gastrocnemius, LG lateral gastrocnemius, VM 
vastus medialis, RF rectus femoris, VL,vastus lateralis, GM gluteus maximus, BF biceps femoris.
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and the indices of fatigue based on the CWT were instantaneous frequency  parameters12,13,32. Using the CWT, 
which enables variable window sizes in analyzing different frequency components within a signal, a shift toward 
lower frequencies and, thus, a decrease in the IMNF and IMDF over the fatiguing dynamic contractions were 
 observed32. Practically, these two indices provided greater accuracy to map losses in power output than the 
traditional sEMG-based parameters. In addition, some common behavior was identified, such as that the RMS 
was more sensitive than MAV, MDF was more sensitive than  MNF17,46,51, and IMDF was preferable to IMNF as 
it had higher sensitivity and lower estimation  error17,51,61,62.

 For linear versus non-linear mapping of power loss during dynamic fatiguing contractions, some studies 
showed that a non-linear model based on a learning procedure provided more accurate tracking of fatigue using 
sEMG variables during isometric, isokinetic, and random elbow  contractions12,34.  However, another study 
showed that the linear and non-linear approaches were equally valid to estimate changes in power loss during a 
fatiguing repetitive leg extension  exercise12,31. In the present study, non-linear techniques were developed using 
an MLPNN to combine different time and spectral features of the sEMG signal into a fatigue index representing 
the estimated changes in power  output12,31,34,35. The results showed that the estimation errors were smaller when 
using non-linear mapping of power loss during dynamic contractions compared to linear mapping, as it showed 
higher SNR and correlation coefficients between the actual and estimated power output in three muscle groups 
of lower limbs.  Therefore, non-linear mapping is a more powerful approach for training the network with data 
from all subjects, and using just one neural network can provide a more general technique to track changes in 
power loss for different  subjects12,15,51. Differences in accuracy may be associated with different fatigue protocols, 
muscle groups, and muscle actions, but these differences remain unclear and of potential interest for further 
studies. Furthermore, it should be noted that non-linear techniques provided more accurate mapping of power 
loss but required more computational time.

 Isotonic and isokinetic movements are two dynamic methods used to assess muscle power and improve 
muscle strength, and their respective superiority has been  demonstrated27,57. Isokinetic testing controls the 
angular velocity and allows the force or torque to vary as muscle output changes, and it tends to “accommo-
date” the patient’s effort and is mainly used to measure the muscular power under constant velocity during 
 rehabilitation28,53,63. Isotonic testing is considered to be more relevant to normal voluntary contractions, as the 
load is held constant but the velocity can  vary27,28.  Thus, the isotonic testing protocol and corresponding data-
base presented herein should have wide application in the evaluation of sports science, rehabilitation medicine, 
and human-factor engineering. For instance, it is more important to maximize the neural drive than to increase 
absolute force levels during the early stages of rehabilitation, so clinicians have been recommended to incorporate 
early isotonic training and evaluation, as those contractions resulted in greater motor unit activation per unit of 
work  performed2,57. In addition, the isotonic testing protocol is beneficial for developing and evaluating training 
programs that effectively enhance maximal power production, since sports activities involve the acceleration and 
deceleration of the lower  extremities22,23. Moreover, dynamic contractions are more closely related to day-to-day 
activities and are psychologically more demanding since they require both movement and postural  control36. The 
debilitating effects of increased physiological strain on endurance performance are accompanied by debilitating 
effects of increased perceived  fatigability19,20. When evaluating physical ability or functionality related to work 
activities, an IME test might offer more convincing and accurate results that provide further insights into the 
relationships between human performance and muscle endurance required in real-world  activities19,40.

To develop electrophysiological evaluation methods of muscle fatigue in IME tests, linear mapping alone and 
a combination of sEMG variables with non-linear mapping of power loss were compared, indicating that the 

Table 2.  The difference between linear regression and non-linear neural network for predicting the power 
loss. PFs plantar flexors, KEs knee extensors, HEs hip extensors. MG medial gastrocnemius, LG lateral 
gastrocnemius, VM vastus medialis, RF rectus femoris, VL vastus lateralis, GM gluteus maximus, BF biceps 
femoris. r pearson’s correlation coefficients, R2 coefficient of determination, SNR signal-to-noise ratio. 
RMS root mean square, MAV mean absolute value, MNF mean frequency, MDF median frequency, IMNF 
instantaneous mean frequency, IMDF instantaneous median frequency. Changes in percentage of power 
output (power%) was the dependent variable and changes in percentage of sEMG-based parameters such as 
RMS%, MAV%, MNF%, MDF%, IMNF%, and IMDF% were the predictor variables in these stepwise multiple 
regressions.

Linear regression of sEMG-based parameters Actual versus predicted
Non-linear 
neural network

Linear versus non-linear

Slope Intercept

Muscle groups R2 Regression equation SNR r r SNR F P F P

PFs
MG 11.02 Power% = 0.176 × IMNF% + 0.064 × MNF% + 32.473 8.590 0.218 0.353 9.040 38.89 0.000 0.08 0.780

LG 5.52 Power% = 0.134 × IMNF% + 0.068 × MDF% + 33.891 7.199 0.221 0.231 8.720 15.30 0.000 0.01 0.911

KEs

VM 8.24 Power% = 0.340 × IMNF% − 0.151 × MAV% + 29.999 7.668 0.353 0.361 8.244 30.54 0.000 0.05 0.816

RF 21.07 Power% = 0.679 × IMDF% + 0.073 × MDF% − 0.212 × MA
V% + 15.220 7.669 0.459 0.491 8.916 19.18 0.000 0.00 0.957

VL 9.67 Power% = 0.421 × IMNF% − 0.050 × RMS% + 20.875 8.527 0.313 0.383 10.103 21.60 0.000 0.00 0.959

HEs
GM 13.76 Power% = 0.626 × IMDF% + 9.881 5.555 0.355 0.437 6.692 23.20 0.000 0.00 0.996

BF 23.72 Power% = 0.290 × IMDF% + 0.414 × MDF% + 5.833 5.761 0.475 0.482 11.652 23.21 0.000 0.59 0.441
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non-linear techniques (e.g., MLPNN) might have an advantage in analyzing non-linear dynamic systems (e.g., 
the IME testing protocol). Practically, the linear technique may be preferable for mapping power changes based 
on sEMG variables due to the lower computational time required by the linear  approach12,17,60. Fatiguability was 

a b

c d

e f

g

Figure 4.  Actual changes versus estimated changes in peak power output obtained from both linear and non-
linear models. Note: r pearson’s correlation coefficients, R2 coefficient of determination. NN neural network, 
MR multiple regression. MG medial gastrocnemius, LG lateral gastrocnemius, VM vastus medialis, RF rectus 
femoris, VL vastus lateralis, GM gluteus maximus, BF biceps femoris.
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examined by assessing the subject’s endurance time until they experienced fatigue and decided to stop, and the 
protocol may better fit the views in which they considered fatigue as a safety mechanism aimed at preventing 
overuse injuries in previous  studies6,7,9. However, there may be different mechanisms behind fatigue develop-
ment and exhaustion in the IME testing protocol compared with previous dynamic fatiguing protocols using 
fixed sets, repetitions, and rest  times15,30–33,39. This may partially explain the low correlations between power loss 
and the sEMG-based parameters, but further research is needed. Moreover, the sensitivity of other proposed 
fatigue indices, such as Dimitrov’s spectral fatigue index  (Finsmk), wavelet spectral parameters, the ratios of EMG 
power content in the high- and low-frequency ranges  (Fihlrx), and other non-linear  parameters12,16,17,51,64, was 
not investigated.  Further studies can be conducted to determine more effective electrophysiological evaluation 
methods of neuromuscular function while considering the parameters in the IME testing protocol. 

Conclusion 
Muscular endurance required in real-world activities can be determined by measuring the amount of work 
produced or the activity duration via the recommended IME testing protocol under a psychophysiological 
termination criterion. Furthermore, non-linear mapping techniques provide more powerful mapping of power 
loss compared to linear mapping techniques for the IME testing protocol.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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