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Siamese anchor‑free object 
tracking with multiscale spatial 
attentions
Jianming Zhang1,2*, Benben Huang1,2, Zi Ye1,2, Li‑Dan Kuang1,2 & Xin Ning3

Recently, object trackers based on Siamese networks have attracted considerable attentions due 
to their remarkable tracking performance and widespread application. Especially, the anchor‑based 
methods exploit the region proposal subnetwork to get accurate prediction of a target and make 
great performance improvement. However, those trackers cannot capture the spatial information 
very well and the pre‑defined anchors will hinder robustness. To solve these problems, we propose a 
Siamese‑based anchor‑free object tracking algorithm with multiscale spatial attentions in this paper. 
Firstly, we take ResNet‑50 as the backbone network to generate multiscale features of both template 
patch and search regions. Secondly, we propose the spatial attention extraction (SAE) block to 
capture the spatial information among all positions in the template and search region feature maps. 
Thirdly, we put these features into the SAE block to get the multiscale spatial attentions. Finally, an 
anchor‑free classification and regression subnetwork is used for predicting the location of the target. 
Unlike anchor‑based methods, our tracker directly predicts the target position without predefined 
parameters. Extensive experiments with state‑of‑the‑art trackers are carried out on four challenging 
visual object tracking benchmarks: OTB100, UAV123, VOT2016 and GOT‑10k. Those experimental 
results confirm the effectiveness of our proposed tracker.

Object tracking, aiming to predict the position of a target given in the initial frame of a video sequence in 
each subsequent frame, is a fundamental yet challenging task in the field of computer vision. Object tracking 
has received much attention, because of the wide range of application scenarios, such as video surveillance, 
robotic vision navigation medical diagnosis and augmented reality. Although much remarkable progress has been 
achieved in recent years, it still faces multiple challenges mainly from the two aspects: (1) the outside environ-
ment: background clutter, illumination variation, low resolution, full occlusion, etc.; (2) the inside target itself: 
rotation, scale variation, deformation, etc.

Recently, visual object tracking algorithms have been receiving continuous attentions, which can be roughly 
divided into two branches: one is based upon correlation filter, the other is based upon deep learning. The cor-
relation filter-based (CF) trackers train a regressor of a target given in the initial frame of a video, and use this 
regressor with Fourier transforming to calculate the location of the target in the candidate region. Those CF-
based trackers can track the object online, and update the parameters of filters during this process efficiently. 
 KCF1 introduces kernel trick into correlation filter, which maps the ridge regression in linear space to a high-
dimensional nonlinear feature space, to get better performance. Hand-crafted features are used in those  works2–6 
to get more comprehensive appearance representations. Those  methods7–10 use multiscale features to improve 
tracking accuracy. Besides several  methods11–13 combine both deep features and hand-crafted features to get 
better performance. As time goes by, the convolutional neural networks (CNN)-based methods have made great 
performance in many domains, such as object detection, image  processing14–18. The CNN-based object track-
ing methods have achieved great success during in recent years, which mainly have two categories. The one is 
widely-used Siamese-based  trackers19–21 which usually stores the appearance information of the initial target as 
an explicit template. The other intends to store the appearance information as the fine-tuned parameters into 
the neural  network22.

Recently, Siamese-based methods, the mainstream branch of deep learning method, have become popular due 
to their considerable performance. Siamese Fully-Convolutional (SiamFC)19 first introduces Siamese network 
into visual object tracking, which transforms the tracking problem into similarity calculation problem between 
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target and search region. SiamFC constructs a lightweight Siamese network to extract target and search area 
features respectively. The target bounding box is determined according to the maximum position of the response 
map. After offline training, the parameters of the network won’t be updated during the tracking process. Siamese 
region proposal network (SiamRPN)20 proposes a region proposal network (RPN) after Siamese feature extrac-
tion, which removes the time-consuming scale pyramid and improves the speed and accuracy of FC-based 
 trackers19,23. The RPN module turns the similarity learning problem to a classification and regression problem. 
After that, many advanced trackers, like Distractor-aware Siamese Region Proposal Networks (DaSiamRPN)21, 
 SiamMask24 and SiamRPN++25, improve SiamRPN. The above RPN-based algorithms obtain accurate target 
bounding boxes by designing multiscale anchor boxes, which not only seriously affect the robustness but also 
increase the interference of human factors.

In our work, we propose a Siamese-based anchor-free algorithm with multiscale spatial attentions to solve the 
above problems. Our proposed framework consists of three following subnetworks. First, we use the ResNet-5026 
as backbone of our framework to extract the multilevel features for both template and search regions. Second, 
we design a spatial attention extraction (SAE) block to catch the long-range dependencies between the features 
extracted from the different layers of ResNet-50. As shown in Fig. 1, the anchor-based trackers usually deter-
mine the bounding boxes with the different ratio anchors. Third, inspired by those state-of-the-art anchor-free 
 detectors27–29, we design a classification-regression subnetwork to track object without the pre-defined operations 
or parameters. We directly predict the foreground and background score of the target, and regress a 4-channel 
vector representing the distance from the corresponding position of each pixel in the response map to the four 
sides of the ground-truth boxes.

Our main contributions of this work are as follows:

(1) We propose a Siamese anchor-free network with multiscale spatial attentions for visual object tracking, 
and use the modified ResNet-50 as backbone to extract multiscale features from both template and search 
region.

(2) We design a SAE block to generate the spatial information among all positions in the template and search 
region feature maps. We then put the multiscale features into the SAE block to generate multiscale spatial 
attentions. The multiscale spatial information can help our model distinguish between foreground and 
background more precisely.

(3) We use an anchor-free classification and regression subnetwork with the multiscale spatial attention to 
predict the template label and calculate the prediction bounding boxes. Without the pre-defined parameters, 
our tracker is more flexible and can regress the bounding box more accurately.

(4) The whole network of our tracker is trained offline on five datasets, including  COCO30,  Imagnet31, YouTube-
BoundingBoxes32, YouTube-VOS33, GOT-10k34, and achieves considerable results on the four mainstream 
challenging visual object tracking benchmarks:  OTB10035,  UAV12336,  VOT201637 and GOT-10k34. The 
success and the precision scores are 0.673 and 0.900 on the OTB100 dataset. On UAV123, the success and 
the precision scores can achieve 0.595 and 0.790, respectively. The accuracy, robustness and expected aver-
age overlap (EAO) score are 0.618, 0.172 and 0.448 on the VOT2016 dataset. On the GOT-10k dataset, the 
AO, SR0.50 and SR0.75 are 0.549, 0.660 and 0.377 respectively. The code and results are available at: https:// 
github. com/ csust 7zhan gjm/ Siame se- Anchor- free- Object- Track ing- with- Multi scale- Spati al- Atten tions.

Related work
Object tracking, a Basic yet challenging task in the field of computer vision, attracts increasing attention due to 
its balanced efficiency and accuracy in recent years. In this section, we provide a comprehensive review of the 
existing methods relevant to our work in three areas: Siamese-based object trackers, attention mechanisms and 
anchor-free object detectors.

Siamese‑based object trackers. The core of Siamese network is to construct fully convolutional network, 
which contains two weights-sharing branches. They are used to extract and save the features of the template 
patches and the search region, respectively. Siamese instance search tracker (SINT)38, the early Siamese tracker, 
divides the network into query stream and search stream based on similarity learning. The matching function 
in SINT is used to find the most suitable candidate region, but the speed is slow, just 2 frames per second (fps). 

eerf-rohcnAdesab-rohcnA

Figure 1.  The left side is the anchor-based method which uses the fixed different ratio aspects anchors to locate 
the location of an object, and the right side is the anchor-free method that directly estimate the bounding box.

https://github.com/csust7zhangjm/Siamese-Anchor-free-Object-Tracking-with-Multiscale-Spatial-Attentions
https://github.com/csust7zhangjm/Siamese-Anchor-free-Object-Tracking-with-Multiscale-Spatial-Attentions
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 SiamFC19 transforms the target tracking problem into similarity learning problem. By constructing lightweight 
Siamese network structure, the target features and search region features are extracted respectively, and the 
cross-correlation operations are carried out to combine those feature maps.  SiamRPN20 introduces the RPN into 
Siamese network, and transforms the similarity calculation problem of SiamFC into the classification and regres-
sion problem. Because RPN module does not need the scale pyramid of SiamFC, SiamRPN shows the speed and 
the precision improvements compared to SiamFC.  SiamMask24 uses the mask segmentation method to obtain 
the bounding box and mask at the same time. SiamRPN++25 extracts multi-level features by using ResNet-50 
as backbone. The deeper and wider Siamese networks (SiamDW)39 designs the cropping-inside residual units 
to build deeper and wider algorithms to improve tracking performance. Although these optimizations make 
tracking better, the pre-defined anchor boxes not only lead ambiguous similarity score that seriously affects the 
robustness but also increase the interference of human factors.

Anchor‑free mechanisms. Due to their simple architectures but superior performance, anchor-free detec-
tors have attracted wide attention in object detection recently. Different from the anchor-based approaches, 
anchor-free methods calculate the position of the target directly. You only look once (Yolov1)40 divides the image 
into a square gird, and predicts the location and the label of image on each grid unit.  Unitbox27 introduces 
an Intersection over Union (IoU) loss to train the four boundary positions as a whole unit.  FCOS28 regards 
each pixel in the ground-truth bounding box as positives, and predicts the labels of all pixels and regresses the 
distance from the corresponding position of each pixel to the border of the bounding box. Inspired by those 
anchor-free detectors, we introduce the anchor-free mechanism into our framework. There are several anchor-
free  trackers41,42 recently, which introduce some special methods to enhance trackers, like feature alignment or 
quality assessment. Different from them, our tracker takes the anchor-free framework with our own SAE block 
to track object.

Attention mechanisms. Attention mechanisms can catch long-range dependencies and have been used in 
many fields including image classification, image segmentation and object tracking.  SENet43 proposes a Squeeze-
and-Excitation (SE) block to rescale the different channels to build interdependencies between channels. Con-
volutional Block Attention Module (CBAM)44 proposes an efficient module to exploit both spatial and channel 
attention, which improves the performance compared to SENet. Non-Local Networks (NLNet)45 introduces 
a NL operation to get the long-range dependencies, and can be easily inserted into any structure. Inserting 
attention mechanisms into Siamese network is not a new concept. SA-Siam23 is a twofold Siamese object track-
ing algorithm consisting of an appearance branch and a semantic branch. In the semantic branch, SA-Siam 
proposed a channel attention module to calculate the channel-wise attention. There are three different kinds of 
attention mechanisms using in Residual Attentional Siamese Network (RASNet)46, including general attention, 
residual attention, and channel attention. In our work, we design a SAE block after Siamese network, which aims 
to better explore the potentials of different layers in Siamese network.

Methods description
In this section, we describe the details of our model. As we can see in Fig. 2, the overall framework manly 
consists of three modules: the Siamese-based subnetwork, the multiscale SAE block and the classification and 
regression subnetwork. The Siamese-based subnetwork is used for extract the features of the template branch 
and the search region branch with an offline manner. The proposed SAE block captures long-range dependency 
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Figure 2.  The overall of our Siamese anchor-free object tracking with multiscale spatial attention tracker, which 
consists of three modules: the Siamese-based subnetwork, the multiscale SAE block and the classification and 
regression subnetwork. The Siamese-based subnetwork (left side) utilizes the ResNet-50 as backbone to extract 
the feature of the last three stages for both the template branch and the search area branch. The backbone of 
these two branches shares the same structure. Those features are modified by the SAE block. The classification 
and regression subnetwork (right side), which takes the multiscale spatial attention features as input to predict 
the position of the target in search region. ⋆ denotes the depth-wise convolution operation. + denotes the 
channel-wise addition operation.
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among all positions effectively. The classification-regression subnetwork is a multi-level anchor-free structure, 
and have classification and regression branches. The classification branch is responsible for predicting the fore-
ground–background label on each pixel of the feature map. The regression branch is used for bounding box 
prediction on the corresponding position of each point of the feature map.

Siamese‑based feature extraction subnetwork. SiamFC19 introduces the Siamese network into visual 
object tracking field, which views the visual object tracking as a similarity calculating problem. And the whole 
framework is trained offline, and consists of two branches which share the same parameters in CNN. One branch 
is the template branch that takes the target patch (denotes as z ) given in the first frame as input. The other is the 
search branch taking the search region as input (denotes as x ). Modern deep convolutional neural  networks25,39 
have proven to be robust and accuracy as in object tracking. In our tracker, we take ResNet-5026 as backbone 
for feature extraction. The outputs of the two branches are regard as ϕ(x) and ϕ(z) respectively. To better utilize 
the detailed spatial information for prediction, we remove the down-sampling operations from the last two bot-
tleneck layers. We replace the 3× 3 convolutions in the last two bottleneck layers of ResNet-50 by the dilated 
convolution  operation47 with the strides are modified to 1 and the dilation rates are set to (a, b) ∈ {(2, 2), (4, 4)} , 
separately.

Features from different layers can provide different effects for tracking. The features from earlier layers con-
taining low-level information are indispensable for localization, while features from latter layers having abstract 
semantic information are more essential for discrimination. Inspired by those  methods25,39, we extract features 
from the last three residual block of ResNet-50, as shown in the left side of Fig. 3. We regard the outputs of the 
last three layers as. ϕ3

(x),ϕ4
(x),ϕ5

(x) and ϕ3
(z),ϕ4

(z),ϕ5
(z) , respectively:

where ϕ(·) denotes the features extraction operation of the template patch and the search region. After the 
feature extraction operation, we use three 1× 1 convolution layers ( conv1× 1 ) to reduce the channels of 
ϕ
i
(l)(l = x, z; i = 3, 4, 5) to 256, respectively. Therefore, ϕ(x) and ϕ(z) include 3× 256 channels, simultaneously.

Multiscale spatial attention extraction subnetwork. Spatial attention extraction block. In order to 
accurately pinpoint the borders of the target, it is important to use global contextual information. The Squeeze-
and-excitation networks (SENet)43 can capture the channel-wise independencies. The Non-local Neural Net-
works (NLNet)45 can effectively obtain the long-range dependencies through calculating the response map as a 
weighted sum of all location features in the input feature map. Inspired by the SE module and the NL module, 
we propose a SAE block. As shown in Fig.  4, the proposed module contains three blocks: a non-local (NL) 
context modeling block, a squeeze-excitation (SE) transforming block and a residual block. The proposed SAE 
block takes the feature maps of both target and search images computed from feature extracted network as in-
put. Taking the target image for example. We assume x is the input features of the SAE block with the shapes of 
h× w × c . In non-local context modeling block, two conv1× 1 are applied to reshape the input features to m, n 
respectively, where m ∈ R

N×c
′

, n ∈ R
c
′
×N and c′ = 0.5c,N = h× w. The attention of the NL block represent-

ing the relationship between different pixels on the feature map can be generated via matrix multiplication and 
row-wise softmax operations as:

At the same time, the conv1× 1 reshape x to s ∈ R
N×c

′

 . The NL context attention features N are generated:

where r(·) is a reshape operation to make the feature size back to h× w × c
′ . We then put the NL context attention 

features to the SE transforming block. The SE block contains one conv1× 1 , one batch normalization (BN), one 
ReLU and one conv1× 1 . After modifying by the SE transforming block, we can aggregate the spatial attentional 
features to the feature of each position with adding a residual module x as:

(1)ϕ(x)=Cat(ϕ3(x),ϕ4(x),ϕ5(x)),

ϕ(z)=Cat(ϕ3(z),ϕ4(z),ϕ5(z)),

(2)A = softmaxrow(mn) ∈ R
N×N .

(3)N = r(As) ∈ R
h×w×c

′

,

(4)z = x + ̺(N),

template/search
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Figure 3.  Multiscale spatial attention extraction process of template or search region images.
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where ̺(·) = conv1× 1(ReLU(BN(conv1× 1(·)))) , which is the SE transforming operation to generate the 
channel-wise dependencies. Therefore, the complete calculation formula of the SAE block can be defined as:

Multiscale spatial attention in Siamese network. In our work, we input the features of the last three layers of 
ResNet-50 of both template and search feature map into the SAE block. As shown in the right side of Fig. 3, 
we can get two multiscale spatial attention features for template and search region respectively, which help our 
tracker encode more global context information, defined as g(ϕ(x)) and g(ϕ(z)) respectively:

here g(·) is the whole spatial attention extraction operation, l = x, z.

Classification and regression subnetwork. For every pixel (i, j) in the feature map can be found a 
response region 

(

x, y
)

 in the search patch. The anchor-based methods consider the corresponding position on 
the search area as the center of multi-scale anchor boxes, and predicts the classification score and regress the 
borders with taking the anchor boxes as reference. In contrast, our tracker classifies the target image patch and 
regresses the corresponding bounding box at each location directly.

Without anchor boxes, the classification score of each pixel reflects the reliability whether the target is in the 
corresponding position directly. As shown in Fig. 2, the subnetwork consists of two branches: a classification 
branch, and a regression branch. Each branch takes the multi-level spatial attention features as input. We modify 
and put the g(ϕ(x)) and g(ϕ(z)) to the corresponding module into the classification branch and regression 
branch, respectively: [g(ϕ(x))]cls , [g(ϕ(x))]reg and [g(ϕ(z))]cls , [g(ϕ(z))]reg . We use a depth-wise convolution 
layer to generate the feature maps. Thus, we can get a classification map pclsh×w×2 , and a regression map pregh×w×4 , 
denoted as:

where h and w represent the width and the height of those feature maps, respectively. ⋆ denotes the depth-wise 
convolution operation. Each pixel in pclsh×w×2 is a 2-channel vector representing the positive and negative acti-
vation scores at the corresponding position in the initial search region. Meanwhile every pixel in pregh×w×4 is a 

(5)z = x + ̺

(

r
(

softmaxrow(mn)s
))

∈ R
h×w×c.

(6)g(ϕ(l)) = Cat
(

g
(

ϕ
3
(l)

)

, g
(

ϕ
4
(l)

)

, g
(

ϕ
5
(l)

))

,

(7)
pclsh×w×2

=
[

g(ϕ(x))
]

cls
⋆

[

g(ϕ(z))
]

cls
,

p
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=
[

g(ϕ(x))
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reg
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[
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]
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,

Figure 4.  The proposed SAE block, which consists of three blocks: a NL context modeling block, a SE 
transforming block and a residual block. It takes template features and search region features as inputs, and 
calculates the spatial attentions of both branches.
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4-channel vector, which denotes as Q = (l, t, r, b) ∈ R
4 measuring the distance from the corresponding position 

to the borders of the prediction bounding box in the search area.
We put the multiscale spatial attentional features into the classification and regression branch respectively. 

Therefore, we can get three pairs of prediction feature maps. The final classification feature maps and regression 
feature maps can be respectively fused:

where αl and βl are the weights for classification and regression, separately, and trained together with the network.
We make B =

(

x0, y0, x1, y1
)

∈ R
4 denote the left-top and right-bottom corners of the ground-truth box of 

the target. Each pixel 
(

i, j
)

 in the final feature map can be considered as a positive label if the corresponding 
location 

(

xi , yi
)

 falls within the ground-truth box B. The distance from the coordinates 
(

xi , yi
)

 of the positive point 
(

i, j
)

 to the ground-truth box can be calculated as Q̃ =

(

l̃, t̃, r̃, b̃
)

∈ R
4:

With Q = (l, t, r, b) and Q̃ = (l̃, t̃, r̃, b̃) , the IoU between the prediction bounding box and the ground-truth 
bounding box of each positive pixel can be calculated.

To further optimize our model, we use a binary cross-entropy (BCE)48 loss and a  IoU27 loss to train the clas-
sification and regression networks respectively. The loss in regression branch is defined as:

Inspired by  GIoU49, we define LIoU
(

Q, Q̃
)

= 1− IoU(Q, Q̃) , and G
(

Q̃
)

 is an operation to judge whether 
(

xi , yi
)

 
is in the ground-truth box, defined by:

Therefore, the overall loss function is calculated as follows:

where Lcls and Lreg represent the BCE loss function and the IoU loss function respectively, meanwhile �1 and �2 
are the weights of those loss functions, which are set to 1 empirically in our implementation.

Results and analysis
Implementation details. Our tracker is implemented in python 3.7 with PyTorch 1.7.1 on 3 RTX2080ti. 
We use the modified ResNet-50 as backbone of our proposed tracker, and its weights are pre-trained on the 
 ImageNet31. By following  SiamFC19, the template patches with 127× 127 pixels and the search regions with 
255× 255 pixels are used for both training and testing.

Training. Our entire network is trained with six lager datasets:  COCO30, YouTube-BoundingBoxes32, GOT-
10k34, ImageNet-VID31, YouTube-VOS33, ImageNet-DET31. We train our model with stochastic gradient descent 
(SGD) and set the minibatch to be 28 pairs. We train our model for 20 epochs, which takes 60 h to finish train-
ing. In the first 5 epochs, we use a warmup learning rate from 0.001 to 0.005. Meanwhile, an exponentially 
decayed from 0.005 to 0.00005 learning rate is used for the last 15 epochs. For the first 10 epochs, we only train 
the multiscale SAE block and the classification-regression subnetwork with the parameters of the Siamese-based 
subnetwork frozen. For the last 10 epochs, we train the whole network together.

Testing. We follow the same strategy as in  SiamFC19 and  SiamRPN20 to test our proposed tracker. Take the tar-
get in the first frame of a video as the template patch, and then match it in the subsequent video search sequence. 
We evaluate the performance of our proposed algorithm on four widely-used object tracking benchmark data-
sets, including  OTB10035,  UAV12336,  VOT201637 and GOT-10k34.

Quantitative evaluation with state‑of‑the‑art tracker. On OTB100. The classical OTB100 bench-
mark dataset, contains one hundred videos, is widely used in evaluation for visual object tracking. OTB100 ranks 
trackers using area under curve (AUC) and precision (Prec.). We compare our algorithm with 11 advanced meth-
ods on the OTB100 dataset, including  KCF1,  SRDCF3,  BACF4,  ECO12,  SiamFC19,  SiamRPN20,  DaSiamRPN21, 
 SiamDW39,  TADT50, GCT 51. As can be seen in Fig. 5, the performance of our tracker is relatively excellent among 
those compared models. Although the precision score of our tracker ranks second blew SiamDW-RPN39 by 2.3% 
reached 0.900, the success rate of our tracker outperforms these trackers reached 0.673.

On UAV123. The UAV123 benchmark dataset can be divided into three parts: the first 103 video sequences by 
UAV-stabilized cameras; the middle 12 video sequences by UAV-unstable cameras; the last 8 video sequences 
by UAV simulator. The evaluating indicators of UAV123 are the same as OTB100. The objects in UAV123 suffer 
from many challenges including large-scale variation, occlusions, and are small which make tracking tasks more 

(8)
Call =

∑5
l=3 αl ∗ p

cls,l
h×w×2

,

Rall =
∑5

l=3 βl ∗ p
reg ,l
h×w×4

,

(9)l̃ = xi − x0, t̃ = yi − y0, r̃ = x1 − xi , b̃ = y1 − yi .

(10)Lreg =
∑

∀i,j
1

∑

G
(

Q̃
)G

(

Q̃
)

LIoU
(

Q, Q̃
)

.

(11)G
(

Q̃
)

=

{

1 if Q̃k
> 0, k = 0, 1, 2, 3

0 otherwise
.

(12)L = �1Lcls + �2Lreg ,
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difficult. We compare our algorithm with the recently-developed 9 methods, that is,  KCF1,  SAMF2,  SRDCF3, 
 SiamRPN20,  DaSiamRPN21, GCT 51,  MEEM52,  MUSTer53,  DSST54 on this dataset for evaluation. As we can see in 
Fig. 6, our tracker achieves the considerable performance in both precision and success among these trackers. 
We achieve the precision of 0.790 and the success rate of 0.595, which both outperforms those classical anchor-
based trackers  (DaSiamRPN21 and  SiamRPN20).

On VOT2016. The VOT2016 dataset is made of 60 videos with various challenges. The VOT2016 benchmark 
evaluates the overall performance of a tracker from three aspects: accuracy (A), robustness (R) and expected 
average overlap (EAO). Specially, the EAO is the combination of both R and A. The following advanced meth-
ods, including MCCT 9,  ECO12,  SiamRPN20,  DaSiamRPN21,  SiamMask24, SiamRPN++25,  SiamDW39,  TADT50, 
 ASRCF55 are put on VOT2016 for evolution. Table  1 shows the comparison at VOT2016. We achieve the 
top-3 performance among those compared trackers, which are 0.448 in EAO, 0.618 in accuracy and 0.172 in 
robustness. Especially in terms of robustness, our trackers run the first, better than the compared trackers, like 
 SiamMask24, SiamRPN++25,  DaSiamRPN21, which are 0.233, 0.177 and 0.224.

On GOT‑10k. The GOT-10k consisting of 10k videos is a massive dataset. We make evaluation on GOT-10k 
test set with 180 videos. The GOT-10k test dataset has three indicators, including success plots, success rates 
( SR0.50 and SR0.75 ) and average overlap (AO). In our experiment, we compare trackers according to SR0.50 , SR0.75 
and AO. The SRi represents the ratio of successfully tracked frames with overlap exceeds i(i = 0.5, 0.75) , while 
the AO represents the average overlaps between all predicting bounding boxes and ground-truth boxes. We fol-
low the protocol of GOT-10k to make evaluation with our tracker and the other advanced trackers, that is,  KCF1, 

Figure 5.  Precision and success plots of our tracker and 11 excellent trackers on OTB100.

Figure 6.  Precision and success plots of our tracker and 9 excellent trackers on UAV123.
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 SRDCF3,  BACF4,  ECO12,  SiamFC19,  SiamRPN20,  DaSiamRPN21, SiamRPN++25,  ATOM56. The evaluation results 
we used are obtained from the official GOT-10k website. As can be detailed seen in Table 2, our experimental 
results rank scores by 3.2%, 4.4%, 5.2% for AO, SR0.50 and SR0.75 , respectively. Figure 7 shows that our tracker 
outperforms all those trackers on GOT-10k in terms of AO.

Ablation study. On network structure. To validate the performance of our tracker, we make the ablation 
study for our model on the  VOT201637 dataset. The verification results are listed in is reported in Table 3, We 
take  SiamRPN20 as baseline, anchor-free framework and multiscale spatial attention extraction block are gradu-
ally added. The basic description is as follows. (a) ‘Baseline’ is the classical SiamRPN. (b) ‘Baseline + AF’ defines 
the baseline with an anchor-free framework. (c) ‘Baseline + NL’ is a tracker that we add non-local block to the 
baseline tracker. (d) ‘Baseline + AF + NL’ is a tracker that we add non-local block to the (b) tracker. (e) ‘Base-
line + AF + SAE’ is our final model, which combines the baseline method with anchor-free framework and our 
proposed multiscale spatial attention extraction module. As we can see, our contribution improves the baseline 
by 4%, 14%, 11.1% in accuracy, robust and expected average overlap, respectively.

On training data. In our experiment, we discuss the impact of different training datasets on our tracker. We 
train our model with  COCO30, ImageNet-VID31, ImageNet-DET31 and YouTube-VOS33 at the first time, and 
achieve success of 0.626 and precision of 0.846. We then additionally add YouTube-BoundingBoxes32, and 
improve the performance by 1.7% and 1.2%. At last, we add GOT-10k34 to the above training sets, and achieve 
our current tracking results. The evolution results on OTB100 dataset are shown in Table 4. We can conclude 
from Table 4 that using the current large-scale training sets like YouTube-BoundingBoxes and GOT-10k for 
training can improve our tracking performance with 3.4% success and 4% precision on OTB100, while our 
model can still achieve the excellent performance using different choices of the tracking datasets.

Qualitative comparison. We select eight challenging tracking scenarios from OTB100 in this section. 
As shown in Fig. 8, from top to bottom, those tracking scenarios are basketball, carDark, coke, couple, doll, 
faceocc, liquor, suv, trellis, tiger. Due to our flexible anchor-free framework, the bounding boxes of our tracker 
can vary along with the change of the target during tracking phase. Compared to several classical FC-based and 

Table 1.  Performance comparisons of our tracker with 9 excellent trackers on VOT2016. Bold, Italic and bold-
italic fonts represent the top-3 trackers on each indicator. ↑ denotes the highest is the best, and ↓ denotes the 
lowest is the best.

Tracker EAO ↑ A ↑ R ↓

MCCT 0.393 0.579 0.186

SiamRPN 0.337 0.578 0.312

SiamDW-RPN 0.376 0.574 0.266

DaSiamRPN 0.401 0.609 0.224

TADT 0.301 0.551 0.326

ECO 0.374 0.555 0.200

ASRCF 0.391 0.568 0.186

SiamMask 0.442 0.670 0.233

SiamRPN++ 0.478 0.637 0.177

Ours 0.448 0.618 0.172

Table 2.  Performance comparisons of our tracker with 9 excellent trackers on GOT-10k. Bold, Italic and bold-
italic fonts represent the top-3 trackers on each indicator. ↑ denotes the highest is the best, and ↓ denotes the 
lowest is the best implementation.

Tracker AO ↑ SR0.50 ↑ SR0.75 ↑

KCF 0.203 0.177 0.065

SRDCF 0.236 0.227 0.094

BACF 0.260 0.262 0.101

SiamFC 0.348 0.353 0.098

ECO 0.316 0.309 0.111

SiamRPN_R18 0.483 0.581 0.270

DaSiamRPN 0.444 0.536 0.220

ATOM 0.556 0.634 0.402

SiamRPN++ 0.517 0.616 0.325

Ours 0.549 0.660 0.377
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RPN-based  trackers19–21, the proposed SAE block can capture considerable information around the target. In 
basketball, carDark and walking scenarios, those trackers such as SiamFC and SiamRPN cannot keep tracking 
the target in the following video frames. But due to the proposed SAE block, we can still pinpoint the target.

Attributes comparison with excellent trackers. To evaluate the performance of our proposed tracker 
in dealing with many difficult challenges, we compare our algorithm with those advanced trackers using the 11 
challenging object tracking scenarios of  OTB10035 in detail, including out-of-plane rotation (OPR), in-plane 
rotation (IPR), deformation (DEF), occlusion (OCC), scale variation (SV), out of view (OV), fast motion (FM), 
motion blur (MB), background clutter (BC), low resolution (LR), illumination variation (IV). In Fig. 9, we com-
pare our tracker with those advanced CNN-based trackers. We can conclude that our tracker is the most robust 

Figure 7.  Success plots of our tracker and other 10 excellent methods on GOT-10k in regards to AO.

Table 3.  Effects of each component in our method. Results are reported on VOT2016. ↑ denotes the highest is 
the best, and ↓ denotes the lowest is the best.

Method EAO ↑ A ↑ R ↓

Baseline 0.337 0.578 0.312

Baseline + AF 0.371 0.608 0.261

Baseline + NL 0.418 0.608 0.224

Baseline + AF + NL 0.420 0.619 0.210

Baseline + AF + SAE 0.448 0.618 0.172

Table 4.  Results on OTB100 with different training datasets as listed. ↑ denotes the highest is the best, and ↓ 
denotes the lowest is the best.

Method Training set Success ↑ Precision ↓

Ours VID, VOS, COCO, DET 0.639 0.860

Ours VID, VOS, BB, COCO, DET 0.656 0.872

Ours VID, VOS, BB, COCO, DET, GOT 0.673 0.900
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and accurate than other CNN-based trackers in most of aspects, such as out of view, fast motion, motion blur 
and scale variation, etc. In Figs. 10 and 11, we compare our trackers with other excellent trackers on those 11 
challenging scenarios of OTB100 in detail. As we can see that our tracker performs top-3 in most of complex 
tracking scenarios. However, because of the proposed SAE block, we need to calculate more in each pixel that 
makes our tacker is not robust to track object in low resolution (LR) scenario than other advanced trackers sli
ghtly.

Conclusion
In this paper, we put forward a high-performance object tracking framework, and train the deep Siamese model 
with an end-to-end fashion. Our proposed tracker directly predicts the label on each pixel of the search region 
and regress the prediction bounding boxes without requiring a multi-scale test or the pre-defined anchor boxes. 

Ours DaSiamRPN SiamRPN SiamFC

Figure 8.  Qualitative comparison with three classical Siamese-based trackers on 8 challenging tracking 
scenarios of OTB100.
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Figure 9.  Precision and success plots of our tracker and those 5 excellent CNN-based trackers on the 11 
challenges of OTB100.
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Figure 10.  Detailed precision plots of our tracker and other 11 excellent trackers on the 11 challenges of 
OTB100.

Figure 11.  Detailed success plots of our tracker and other 11 excellent trackers on the 11 challenges of OTB100.
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Furthermore, we extract multiscale features through ResNet-50, and modify those features by the proposed 
spatial attention extraction block to enhance the ability of our model to obtain long-range dependencies. To dem-
onstrate the generalizability of our tracker, we experiment our tracker on four mainstream challenging tracking 
benchmarks: OTB100, UAV123, VOT2016 and GOT-10k, and get the excellent results. Although our tracker can 
achieve considerable performance, it still cannot deal with challenges from low-resolution scenarios very well.

Received: 15 June 2021; Accepted: 10 November 2021
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