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Suppressing measurement 
uncertainty in an inhomogeneous 
spin star system
Saeed Haddadi 1, Mehrdad Ghominejad 1*, Ahmad Akhound 2 & 
Mohammad Reza Pourkarimi 3

The uncertainty principle is known as a foundational element of quantum theory, providing a striking 
lower bound to quantify our prediction for the measured result of two incompatible observables. 
In this work, we study the thermal evolution of the entropic uncertainty bound in the presence of 
quantum memory for an inhomogeneous four-qubit spin-star system that is in the thermal regime. 
Intriguingly, our results show that the entropic uncertainty bound can be controlled and suppressed by 
adjusting the inhomogeneity parameter of the system.

The uncertainty principle is undoubtedly one of the most fundamental aspects of quantum mechanics intro-
duced by  Heisenberg1. The first uncertainty relation for the position x̂ and the momentum p̂ was formulated by 
Kennard as �x̂�p̂ ≥ �/22. Literally, Heisenberg’s uncertainty principle states that two arbitrary incompatible 
observables Q and R cannot be measured accurately at the same time. Later,  Robertson3 proposed an inequality 
as �Q�R ≥ |�[Q,R]�|/2 where �X =

√

�X 2� − �X �2 is the standard deviation with X ∈ {Q,R} , 〈X 〉 is the 
mean value of operator X , and [Q,R] = QR − RQ is the commutator. In the recent decade, the outstanding 
achievement accomplished by many authors is a connection between the uncertainty relation and the information 
theory that is well known as the entropic uncertainty relation (EUR).  Deutsch4,  Kraus5, Maassen and  Uffink6 are 
researchers who have been pioneers in this subject. Formally, the EUR is defined as H(Q)+H(R) ≥ − log2 c 
where H(Q) = −

∑

i qi log2 qi and H(R) = −
∑

j rj log2 rj are the Shannon entropy of the probabilities of observ-
ables Q and R measurement results, respectively. The complementarity parameter c = maxi,j{|�qi|rj�|2} is the 
maximal overlap of Q and R with |qi� and |rj� being the eigenstates of Q and R, respectively.

Nevertheless, a new kind of the EUR in the presence of quantum memory (EUR-QM) has been presented 
by Berta et al.7 in which two players, Alice and Bob, play an uncertainty game. In this game, Bob prepares a cor-
related two-particle state ρAB and he then sends particle A to Alice which is correlated to his memory particle 
B. After that, Alice measures her particle with respect to operator Q or R and announces to Bob the result of 
her choice. Hence, Bob can guess and minimize his uncertainty based on Alice’s measurement result. This new 
uncertainty relation can be written as

where S(A|B) = S(ρAB)− S(ρB) being the conditional von Neumann entropy of ρAB with ρB = trA(ρ
AB) 

and S(ρ) = −tr(ρ log2 ρ) is  the von Neumann entropy. Also,  S(Q|B) = S
(

ρQB
)

− S
(

ρB
)

 and 
S(R|B) = S

(

ρRB
)

− S
(

ρB
)

 are the conditional von Neumann entropies of the post-measurement states 
ρQB =

∑

i(|qi�A�qi| ⊗ IB)ρ
AB(|qi�A�qi| ⊗ IB) and ρRB =

∑

j(|rj�A�rj| ⊗ IB)ρ
AB(|rj�A�rj| ⊗ IB) after the quan-

tum system A is measured, and IB being the identity operator.
Till date, the EUR-QM has been the topic of much  work8–48 and many attempts have been made to tighten this 

 inequality49–60. Moreover, many efforts have been made to generalize the various entropic uncertainty relations 
to more than two  measurements61–67. Amongst these encouraging efforts, one can refer to the result obtained by 
Adabi et al.53. In 2016, they proposed a tighter bound which has an extra term, comparing to the inequality (1), viz

with κ = I(A : B)− [I(Q : B)+ I(R : B)] where I(A : B) = S(ρA)+ S(ρB)− S(ρAB) is mutual information, 
I(X : B) = S

(

ρB
)

−
∑

x pxS
(

ρB
x

)

 is Holevo quantity, ρB
x = trA(�

A
x ρ

AB�A
x )/px is the post-measurement state 

(1)S(Q|B)+ S(R|B) ≥ − log2 c + S(A|B),

(2)S(Q|B)+ S(R|B) ≥ − log2 c + S(A|B)+max{0, κ},
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of Bob after measuring of X by Alice, and px = trAB(�
A
x ρ

AB�A
x ) is the probability of xth outcome. Note that the 

tightness of the uncertainty relation means that the difference between the uncertainty and its bound is the small-
est value. In this work, we consider the right-hand side of the inequality (2) as an entropic uncertainty bound, i.e.,

In recent decades, many researchers have been interested in studying spin systems because of their application 
in quantum  information68–71. The spin chain is one of the most popular spin systems in which spins interact with 
their neighbors, well known as the Heisenberg model, which has been sufficiently reviewed by many authors 
so  far72–84. Motivated by this, we study another kind of spin system known as a spin-star system for which spins 
cannot interact with each other directly, and a central spin is responsible for interacting with the other spins. 
Historically, the study of the spin-star system started in 2004 when Hutton and  Bose85 investigated the interesting 
properties of a physical system that a central spin interacts with the outer ones. In literature, lots of researches 
have been devoted to investigating quantum correlations in the spin-star  system86–96, e.g., Anzà et al.93 inves-
tigated tripartite thermal correlations in an inhomogeneous spin-star system using concurrence and tripartite 
negativity criteria. The authors examined the dependence of such quantum correlations on the homogene-
ity and inhomogeneity of the interactions, and they found some interesting differences between the tripartite 
negativity and concurrence. Moreover, Militello and  Messina94 examined the tripartite thermal entanglement 
in an inhomogeneous spin-star network with three external spins. From a practical point of view, the spin-star 
system can be realized in many solid state systems, such as the nitrogen-vacancy centre in  diamond97,98 and the 
semiconductor quantum  dot99–101 (see recent  paper102 and references therein for a detailed study on the spin-
star system). However, to the best of our knowledge, nobody has previously examined the entropic uncertainty 
for a spin-star system up to now. Because of the lack of such exploring, we are then motivated to investigate 
the entropic uncertainty bound in a four-qubit spin-star system and finding a suitable parameter to control the 
entropic uncertainty of the system. Hence, this paper is prepared as follows. In "Physical scenario", we consider 
a four-qubit spin-star system where three outer qubits are coupled to the central one with different strengths, 
and in "Results and discussion", thermal entropic uncertainty bound in different situations is analyzed. Finally, 
we discuss our results and present some conclusive remarks subsequently.

Physical scenario
This section considers a four-qubit spin-star system for which the schematic diagram of such a quantum system 
is sketched in Fig. 1. The total Hamiltonian of the mentioned system is given by (setting � = 1)

where J1 , J2 , and J3 are the coupling constants of the central qubit with the outer qubits 2, 3, and 4, respectively. 
Besides, B indicates the magnitude of the external magnetic field, σ z

i (i = 1, 2, 3, 4) is the Pauli operator in the 
z-direction for ith qubit, and σ+

i  as well as σ−
i  are the ladder operators.

Let us assume that a typical system reaches thermodynamical equilibrium. So, its density operator can be 
described by the thermal state as

(3)Ub(ρ
AB) ≡ − log2 c + S(A|B)+max{0, κ}.

(4)H =
3

∑

i=1

Ji
(

σ+
1 σ−

i+1 + σ−
1 σ+

i+1

)

+ B

4
∑

i=1

σ z
i ,

(5)ρT = 1

Z
exp(−H/κBT) =

1

Z

∑

i

exp(−Ei/κBT)|ψi��ψi|,

Figure 1.  A schematic diagram of a four-qubit spin-star system. The qubits labelled 2–4 are coupled to the 
central one with J1 , J2 , and J3 which are the coupling constants, respectively. The external magnetic field B is 
perpendicular to the plane where the four qubits lie.
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where Z = tr[exp(−H/κBT)] is the system partition function with κB as the Boltzmann constant, considered 
κB = 1 by us, as it is used in the natural unit system. Moreover, Ei and |ψi� are the eigenvalues and the eigenstates 
of the total Hamiltonian, respectively.

Now, we consider an inhomogeneous Hamiltonian for which J1 = J3 = J and J2 = xJ , where x is a suitable 
dimensionless inhomogeneity parameter. It is clear that the homogeneous Hamiltonian is obtained for x = 1 . 
Having known the Hamiltonian (4) and assuming inhomogeneity, the results of the diagonalization of H are 
reported in “Methods”. Then, by using Eq. (5) and through taking partial traces over the outer two qubits for a 
four-qubit thermal state, the reduced density matrices in the standard basis {|00� , |01� , |10�, |11�} with A = 1 and 
B = 2, 3, 4 are given in “Methods”. It is quite obvious that due to the inhomogeneity, ρ12

T = ρ14
T �= ρ13

T  , so let’s 
call ρT ,1 = ρ12

T = ρ14
T  as case 1 and ρT ,2 = ρ13

T  as case 2, henceforth.

Results and discussion
Here, we would like to investigate the thermal evolution of the entropic uncertainty bound by considering two 
thermal quantum states ( ρT ,1 and ρT ,2 ). In each of the related subsections, we will explicitly present and discuss 
the analytical results.

Model with inhomogeneity of case 1. Based upon the results of the previous section, we can now ana-
lyze the thermal evolution of the entropic uncertainty bound for the quantum state ρT ,1 in this section. In this 
scenario, Bob prepares a correlated two-qubit state ρT ,1 and then he sends one qubit to Alice and keeps the 
other one as a quantum memory in his hand. Herein, without loss of the generality, we consider the situation 
where Alice measures one of the two observables Q = σ x or R = σ z where σ x and σ z are the Pauli opera-
tors and then, we will obtain the complementarity parameter as c = 1/2 . The thermal reduced density matrix 
ρ12
T = ρ14

T = tr34(ρT ) = tr23(ρT ) is obtained as

Note that, the density matrix components are reported in “Methods”. Obviously now, by substituting the 
elements of the thermal reduced density matrix (6) into Eq. (3), one can obtain the analytical expression of the 
entropic uncertainty bound as what follows

where

 and

 where τi ’s are the eigenvalues of ρT ,1 and k =
√

4|w|2 + [1− 2(q+ u+)]2 . Above, S(ρB
T ,1) = H2(v + u−) is the 

von Neumann entropy of quantum memory and H2(ε) = −ǫ log2 ε − (1− ε) log2(1− ε) for any ε ∈ [0, 1] is 
the binary Shannon entropy function.

Up to now, we have analytically derived the entropic uncertainty bound for a quantum state ρT ,1 . However, 
our results show that to possess an exact solution for that, depends on the different parameters of the system 
under study. Hence, let us analyze the entropic uncertainty bound as functions of the temperature and the system 
parameters.

Figure 2 shows the thermal evolution of the entropic uncertainty bound (7) as a function of the inhomogeneity 
parameter (x) for specific values of the temperature (T), external magnetic field (B), and the coupling constant 
(J) between the central spin and the peripheral ones. Following, Fig. 2a shows that the entropic uncertainty 
bound of ρT ,1 grows with increasing the temperature, and hence, Bob’s uncertainty about Alice’s measurement 
outcome increases. Of course, this is not surprising, as the increasing temperature can reduce quantum cor-
relations, leading to an increase in measurement uncertainty of incompatible observables. It is quite clear that 
the physical reason for increasing the uncertainty with respect to temperature, is the high degree of mixedness. 
Compared to temperature, here the role of the external magnetic field is quite constructive to predict the results 
of Alice’s measurement by Bob, as seen from Fig. 2b. The role of the coupling constant, as shown in Fig. 2c, is quite 
complicated. This means that the entropic uncertainty bound for x < 1 increases with increasing the coupling 
constant, but for x > 1 the event is different. In fact, when x is much greater than 1, J2 = xJ is much greater than 
J1 = J3 = J , and so, roughly speaking, qubits 2 and 4 can be considered almost decoupled, and then separable. 
For this reason, the increase in the inhomogeneity parameter notably leads to reducing Bob’s ability to predict 
Alice’s measurement outcome, as can be seen from all plots. It is worth noting that for x = 1 , the system under 
study is a homogeneous model.

For more clarification, we have drawn contour diagrams of the entropic uncertainty bound as functions of 
the inhomogeneity parameter x and different values of the temperature, external magnetic field, and the coupling 
constant in Fig. 3. As depicted in Fig. 3a, the entropic uncertainty bound increases dramatically with the growth 

(6)ρT ,1 = ρ12
T = ρ14

T =







v 0 0 0
0 u+ w 0
0 w u− 0
0 0 0 q






.

(7)Ub(ρT ,1) = �T ,1 +max{0,�T ,1},

(8)�T ,1 = 1−H2(v + u−)−
∑

i

τi log2 τi ,

(9)�T ,1 = −H2(v + u−)+H2

(

1+ k

2

)

−
∑

i

ρT ,1(ii) log2 ρT ,1(ii) +
∑

i

τi log2 τi ,
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in the inhomogeneity parameter x and temperature value, with B = 1 and J = 1 , which is obviously in accord-
ance with what mentioned above. In Fig. 3b, the entropic uncertainty bound as functions of x and B has been 
plotted. It directly shows that the smaller x and the greater B can both induce Bob’s uncertainty about Alice’s 
measurement result to become less, which is desired in practical quantum information processing. Let us now 
turn to focus on the influence of the inhomogeneity parameter x and the strength of the coupling parameter on 
the entropic uncertainty bound, as shown in Fig. 3c. At a fixed temperature and B = 1, in the 0 < J < 1/2 area, 
the entropic uncertainty bound is somewhat insensitive to the inhomogeneity parameter variations. However, 
in the 1/2 ≤ J ≤ 3 area, the inhomogeneity parameter appears to be a dominant factor.

Model with inhomogeneity of case 2. According to the previous analysis, we can obtain the analytical 
expression of the entropic uncertainty bound for the quantum state ρT ,2 . The thermal reduced density matrix 
ρ13
T = tr24(ρT ) is taken as follows

where the non-zero elements are given again in “Methods”. By substituting the elements of the thermal reduced 
density matrix (10) into Eq. (3), it is again easy to see that

(10)ρT ,2 = ρ13
T =







ϑ 0 0 0
0 µ+ ν 0
0 ν µ− 0
0 0 0 ξ






,

Figure 2.  The entropic uncertainty bound Ub(ρT ,1) as a function of the inhomogeneity parameter x for fixed 
values of the temperature T, external magnetic field B, and the coupling constant J. Graph (a) B = 1; J = 1 , 
graph (b) T = 0.5 ; J = 1 , and graph (c) T = 0.5 ; B = 1.

Figure 3.  The entropic uncertainty bound Ub(ρT ,1) as a function of the inhomogeneity parameter x and 
different values of the temperature T, external magnetic field B, and the coupling constant J. Graph (a) B = 1; 
J = 1 , graph (b) T = 0.5 ; J = 1 , and graph (c) T = 0.5 ; B = 1.
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where

 and

 where χi ’s are the eigenvalues of ρT ,2 and ς =
√

4|ν|2 + [1− 2(ξ + µ+)]2 . Here, S(ρB
T ,2) = H2(ϑ + µ−) denotes 

the von Neumann entropy of quantum memory.
In Fig. 4, we first examine the effect of temperature on the entropic uncertainty of interest and draw the 

thermal evolution of the entropic uncertainty bound Ub(ρT ,2) as functions of inhomogeneity parameter x and 
fixed values of T in Fig. 4a. As the previous case, one can observe that the entropic uncertainty bound increases 
by growing the temperature. On the other hand, in analyzing the effects of the inhomogeneity parameter x 
on the entropic uncertainty, we observe that the entropic uncertainty grows when the value of x enhances at 
lower temperatures, and after passing a peak, it becomes smaller and quickly achieves a steady value for the 
larger amounts of x. As plotted in Fig. 4b, for B=1 and B=2, it is obvious that the entropic uncertainty bound is 
firstly increased and then reduces as x raises. However, in the absence of an external magnetic field (B=0), the 
uncertainty bound monotonously decreases when x grows. In order to further probe the relationship between 
the uncertainty bound and the inhomogeneity x as well as the coupling coefficient J, we have drawn the uncer-
tainty bound as a function of x for three values of J, as displayed in Fig. 4c. At fixed temperature and B=1, in the 
0 < x < 1 area, while x is much smaller than 1, J2 = xJ is much smaller than J1 = J3 = J , and hence the qubit 3 
can be considered almost decoupled, and then the uncertainty bound is maximal for x = 0 . Nevertheless, for x 
greater than 1, the coupling between the central qubit and the qubit 3 becomes more robust than the other two, 
and hence the measurement uncertainty is significantly suppressed.

To further study the relationship between the uncertainty bound and the inhomogeneity x as well as the other 
parameters of the thermal system, we have drawn the contour diagrams of the uncertainty bound as functions 
of T, B, and J in plots (a) to (c) respectively, as shown in Fig. 5. One can readily observe that the uncertainty 
bound decreases with the reducing T, but the role of the external magnetic field B and the coupling coefficient 
J seem to be somewhat complex. Hence, we can see that these achieved results are well in agreement with the 
report we made earlier in Fig. 4. In short, regardless of the temperature values and the values of B and J, the 
greater inhomogeneity parameter x can induce a smaller uncertainty bound, and vice versa. This result apparently 
implies that the maximum symmetry in the four-qubit spin-star system does not correspond to the minimum 
uncertainties between all its parts, i.e., the uncertainties between qubits 1–2, 1–3, and 1–4.

Comparison of case 1 with case 2. After reviewing the analytical and numerical results, let us now com-
pare the thermal evolution of the entropic uncertainty bound in two cases. From the outlook of quantitative 
description of the entropic uncertainty bound, we need to state that in the thermal state ρT ,1 , regardless of the 
temperature, B, and J, the uncertainty bound increases and reach a maximum fixed value (saturated value) when 
the inhomogeneity x grows ( Ub(ρT ,1) ≃ 2 ). Therefore, in this case, Bob’s information about the result of Alice’s 
measurement is reduced rapidly. However, in the case of the thermal state ρT ,2 , the uncertainty bound comes 

(11)Ub(ρT ,2) = �T ,2 +max{0,�T ,2},

(12)�T ,2 = 1−H2(ϑ + µ−)−
∑

i

χi log2 χi ,

(13)�T ,2 = −H2(ϑ + µ−)+H2(
1+ ς

2
)−

∑

i

ρT ,2(ii) log2 ρT ,2(ii) +
∑

i

χi log2 χi ,

Figure 4.  The entropic uncertainty bound Ub(ρT ,2) as a function of the inhomogeneity parameter x for fixed 
values of the temperature T, external magnetic field B, and the coupling constant J. Graph (a) B = 1; J = 1 , 
graph (b) T = 0.5 ; J = 1 , and graph (c) T = 0.5 ; B = 1.
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near to zero when the inhomogeneity x increases. The physical reason is that as long as the inhomogeneity x 
grows, the coupling between the central qubit and the qubit 3 becomes stronger than the other two, and therefore 
Ub(ρT ,2) → 0 while Ub(ρT ,1) → 2 . It is worth noting that in this situation ( ρT ,2 ), Bob’s uncertainty about Alice’s 
measurement outcome remarkably decreases. Hence, we find that the uncertainty bound can be controlled by 
manipulating the inhomogeneity parameter and then Bob can accurately guess Alice’s measurement outcome.

Physical interpretation and possible applications. In this work, we have examined the features of 
thermal entropic uncertainties in the presence of inhomogeneity since in real conditions the construction of a 
system with ideally homogeneous interactions could be much challenging. Accordingly, we have shown that the 
measurement uncertainty of incompatible observables is controllable by regulating the inhomogeneity param-
eter. This implies the idea that the thermal uncertainties mediated by the central spin can be remarkably con-
trolled by a certain absence of homogeneity that could describe a more realistic situation, even if the degree of 
inhomogeneity is high. Hence, our result may be advantageous for practical quantum information processing, 
and it is physically realizable in different arrays of interacting particles designed for quantum  computing103. 
Notably, controlling the entropic uncertainty has some versatile applications in practical quantum tasks includ-
ing, quantum  cryptography104, entanglement  witness105, quantum key  distribution106, quantum  metrology107, 
quantum  teleportation108, quantum  steering109, and so  on110. Specifically, measurement of uncertainty in a spin-
star system can be experimentally realized by molecular nanomagnets, NMR molecules, superconducting spins, 
and coupled  microcavities111.

Conclusions and remarks
To conclude, we have studied the entropic uncertainty bound in a spin-star system with three peripheral qubits, 
all affected by an external magnetic field. The interaction with the central qubit is responsible for establishing 
tripartite correlations between the outer ones, and such correlations remain even if the system is at thermal 
equilibrium. We have considered an inhomogeneous model, where one of the peripheral qubits is coupled to the 
central one with a different strength. In the following, we analytically derived the entropic uncertainty bound 
for the quantum states ρT ,1 and ρT ,2 and then we investigated the thermal evolution of the entropic uncertainty 
bound in measuring two incompatible observables under the effect of the temperature T, the magnetic field B, 
the coupling coefficient strength J, and the inhomogeneity parameter x. A remarkable point is, we found that 
the entropic uncertainty bound can be improved by changing the inhomogeneity as an efficient control param-
eter. Therefore, we think that a higher degree of symmetry in the system does not guarantee fewer uncertainties 
between all its parts. This issue could be highly instructive and available to quantum precision measurement by 
adjusting proper measurement parameters and conditions.

Methods
Eigenvalues and the eigenstates of the Hamiltonian. In this section, we give the eigenvalues Ei and 
the eigenstates |ψi� of the inhomogeneous Hamiltonian as functions of x > 0, J > 0, and B. The homogeneous 
model is achieved for x = 1 . The eigenvalues of the Hamiltonian are

where the eigenvalues E1 and E2 are twofold degenerate eigenvalues. The relevant eigenstates are

(14)
E1 = 2B, E2 = −2B, E±3 = ±Jx, E±4 = ± J

2

(

x +
√

x2 + 8
)

, E±5 = ± J

2

(

x −
√

x2 + 8
)

,

E±6 = 2B± J
√

x2 + 2, E±7 = −2B± J
√

x2 + 2, E8 = −4B, E9 = 4B,

Figure 5.  The entropic uncertainty bound Ub(ρT ,2) as a function of the inhomogeneity parameter x and 
different values of the temperature T, external magnetic field B, and the coupling constant J. Graph (a) B = 1; 
J = 1 , graph (b) T = 0.5 ; J = 1 , and graph (c) T = 0.5 ; B = 1.
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with

Matrix elements of thermal reduced density matrices. Here, we give the matrix elements of the 
thermal reduced density matrices 

(

ρ12
T = ρ14

T �= ρ13
T

)

 for the inhomogeneous Hamiltonian as functions of 
x, J > 0 , and B. The matrix elements of thermal reduced density matrix ρT ,1 read

(15)|ψa
1 � =

1

M1

[

− 1

x
|0001� − |0010� +

(

1

x
+ x

)

|0100�
]

,

(16)|ψb
1 � =

1√
x2 + 1

(−x|0001� + |0010�),

(17)|ψa
2 � =

1

M1

[

− 1

x
|1011� − |1101� +

(

1

x
+ x

)

|1110�
]

,

(18)|ψb
2 � =

1√
x2 + 1

(−x|1011� + |1101�),

(19)|ψ±
3 � =1

2
[(|1100� ± |0110�)− (|1001� ± |0011�)],

(20)|ψ±
4 � = 1

M2

[

(|1001� ± |0011�)+ (|1100� ± |0110�)+
√
x2 + 8− x

2
(|1010� ± |0101�)

]

,

(21)|ψ±
5 � = 1

M2

[

(|1001� ± |0011�)+ (|1100� ± |0110�)−
√
x2 + 8+ x

2
(|1010� ± |0101�)

]

,

(22)|ψ±
6 � = 1

M3

[
√

x2 + 2|1000� ± (|0001� + x|0010� + |0100�)
]

,

(23)|ψ±
7 � = 1

M3

[

(|1011� + x|1101� + |1110�)±
√

x2 + 2|0111�
]

,

(24)|ψ8� =|0000�,

(25)|ψ9� =|1111�,

(26)M2
1 = 2

x2
+ 3+ x2, M2

2 = 8+ x
(

x −
√

x2 + 8
)

, M2
3 = 2

(

2+ x2
)

.

(27)
v = 1

2Z

(

cosh[4γ ] + cosh[xδ] + 2η−1e−2γ (η + 1+ (η − 1) cosh[δ√η])

+ cosh [xδ/2] cosh
[

δ
√
θ/2

]

− 2 sinh[4γ ] + xθ−
1
2 sinh [xδ/2] sinh

[

δ
√
θ/2

]

)

,

(28)

u± = 1

4Z ηθ

(

4 cosh[2γ ]
(

8+ 9x2 + x4 + (η + 1)θ cosh[δ√η]
)

+ 2ηθ
(

cosh[xδ] + 3 cosh [xδ/2] cosh
[

δ
√
θ/2

])

+ x3
√
θ(cosh [δα−/2]− cosh [δα+/2])+ 2x

√
θ(cosh [δα−/2]− cosh [δα+/2])

± 8
(

8+ 9x2 + x4
)

sinh[2γ ] sinh2 [ηδ/2]
)

,

(29)

q = 1

4Z ηθ

(

4ηθ(sinh[4γ ] + cosh[4γ ])+ 2ηθ
(

cosh[xδ] + cosh [xδ/2] cosh
[

δ
√
θ/2

])

+ x3
√
θ(cosh [δα+/2]− cosh [δα−/2])+ 2x
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besides, the matrix elements of thermal reduced density matrix ρT ,2 read

with

and
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