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Assessment of histological 
characteristics, imaging markers, 
and rt‑PA susceptibility of ex vivo 
venous thrombi
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Venous thromboembolism is a significant source of morbidity and mortality worldwide. Catheter-
directed thrombolytics is the primary treatment used to relieve critical obstructions, though its 
efficacy varies based on the thrombus composition. Non-responsive portions of the specimen often 
remain in situ, which prohibits mechanistic investigation of lytic resistance or the development 
of diagnostic indicators for treatment outcomes. In this study, thrombus samples extracted from 
venous thromboembolism patients were analyzed ex vivo to determine their histological properties, 
susceptibility to lytic therapy, and imaging characteristics. A wide range of thrombus morphologies 
were observed, with a dependence on age and etymology of the specimen. Fibrinolytic inhibitors 
including PAI-1, alpha 2-antiplasmin, and TAFI were present in samples, which may contribute to 
the response venous thrombi to catheter-directed thrombolytics. Finally, a weak but significant 
correlation was observed between the response of the sample to lytic drug and its magnetic 
microstructure assessed with a quantitative MRI sequence. These findings highlight the myriad of 
changes in venous thrombi that may promote lytic resistance, and imaging metrics that correlate with 
treatment outcomes.

Venous thromboembolism (VTE) is a major health problem that affects 600,000 Americans annually1, and up 
to 10 M worldwide2. There is a significant financial burden, with healthcare costs exceeding seven billion dol-
lars each year in the United States associated with VTE3. The two primary clinical manifestations of VTE are 
pulmonary embolism (PE) and deep vein thrombosis (DVT). Pulmonary embolism is the most serious mani-
festation of VTE, and carries a 25% mortality rate and a 30-day survival rate of 59%4. It is estimated that 80% 
of PE cases originate from deep vein thrombi, primarily in the iliofemoral vasculature5. Beside the potential for 
embolization, there is prevalent morbidity associated with DVT including chronic painful leg swelling and/or 
venous ulcerations6. Phlegmasia cerulea dolens is another disease state secondary to DVT that may result in 
compromised circulation7,8. Rapid restoration of flow is required for phlegmasia cerulea dolens patients to pre-
vent amputation of the afflicted limb (15%) or death (25%)9,10. While not as widely studied as arterial thrombosis, 
these data illustrate VTE requires effective treatments and screening methods.

Anticoagulation therapy alleviates the symptoms of VTE and prevents thrombus growth11. Heparin is admin-
istered in the acute settings as an antithrombotic, followed by direct oral anticoagulants to inhibit factor Xa 
or thrombin12,13. More aggressive approaches are often necessary to prevent the most egregious outcomes of 
DVT and PE. The standard of care for large vessel recanalization is catheter-directed thrombolytics, which 
is administered over the course of hours to days14. Recombinant tissue plasminogen activator (rt-PA) is the 
principle thrombolytic drug used in the western world15. This approach disintegrates fibrin components within 
the thrombus, and is effective for acute disease16–19. Chronic thrombosis, defined as a single thrombus that 
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persists for more than seven days, is a prevalent feature of VTE20,21 and is resistant to rt-PA22. Better long-term 
patient outcomes are observed for when the vessel is fully recanalized23, and lytic can be administered up to 
four days in an attempt to disintegrate residual thrombus14. The extended treatment time increases the risk of 
serious bleeding complications associated with rt-PA24 and healthcare costs. Alternative interventions such as 
mechanical extraction25,26 or histotripsy-aided thrombolysis27 can be effective for thrombi non-responsive to 
lytics. The development of methods to identify lytic-resistant, chronic thrombi a priori will expedite the use of 
these alternative treatment schemes or new approaches for chronic VTE strategies.

The precise histologic properties of chronic VTE remains elusive. Animal models do not fully replicate the 
clotting cascade of humans28–31, and traditional treatment methods leave the sample in situ32. The advent of 
venous-specific thrombectomy devices enables access to VTE samples for characterization33–35. A goal of this 
study was to conduct histological analysis on VTE specimen ex vivo. Histology provides semi-quantitative 
assessment of tissue structure, and remains the foundation for pathological analysis36. Whole sample imaging 
markers of iron (marker of erythrocytes) via quantitative MRI susceptibility mapping and stiffness (marker of 
extracellular thrombus structure) via ultrasound shear-wave elastography were collected. Finally, an in vitro 
assay was conducted to determine the lytic susceptibility of the specimen. Primary findings indicate that collagen 
increased and erythrocytes decreased with thrombus age, and the presence of the fibrinolysis inhibitors plas-
minogen activator inhibitor 1, alpha 2-antiplasmin, and thrombin-activatable fibrinolysis inhibitor in samples. 
Further, the lytic susceptibility of thrombus correlated with its magnetic susceptibility assessed via MRI. The 
observed changes in clot structure reflect the complex mechanisms by which VTE microstructure may develop 
lytic resistance, and these mechanisms can be gauged using imaging metrics.

Results
Approach.  Analysis was performed on 26 venous thrombi aspirated acutely (12 deep vein thrombi and 14 
pulmonary emboli). Details for the patient demographics are presented in Supplemental Table 1. Each sample 
was sectioned into up to five segments. Three segments ~ 0.5 cm in length were subjected to pathological analysis 
(histology, immunohistochemistry, and immunofluorescence), one segment ~ 2 cm in length was subjected to 
imaging analysis (MRI and ultrasound), and one segment ~ 1 cm in length was used to test rt-PA susceptibility. 
Not all samples were large enough to conduct each set of analyses (Histology: 26 samples, Lytic susceptibility: 
9 samples, Imaging analysis: 9 for MRI and 12 for ultrasound). For histological studies, specimen segments 
were stained to highlight erythrocytes, fibrin, collagen, and platelets for a total of 234 total images analyzed. 
Multiplexed immunofluorescence was used to assess the co-location of the thrombus components identified 
with histology and immunohistochemistry. For MRI and ultrasound imaging analysis, the specimen segments 
were embedded in agarose gel. Ultrasound shear wave elastography was used to assess the elastic modulus of the 
sample, and the MRI sequence quantitative susceptibility mapping to gauge the fraction of erythrocytes in the 
sample. Finally, an in vitro assay was conducted to determine lytic susceptibility by exposing the specimen seg-
ment to plasma and rt-PA. Further information on processing samples for each type of analysis is summarized 
in the methods section.

Histological assessment of thrombus.  The fraction of fibrin, collagen, erythrocytes, and platelets 
observed in samples is shown in Fig. 1. A wide range in composition was noted, with fibrin and erythrocytes 
as the primary thrombus components (52 ± 26% and 35 ± 23% of thrombus area, respectively). Collagen consti-
tuted less than 2% of the thrombus area on average, though a maximum of ~ 60% was observed in one sample 
(Fig. 2). When present, collagen was observed in discrete clusters those prevalence increased towards the edge 
of the thrombus (i.e. towards the thrombus/vessel wall interface). Platelets were observed as a prevalent feature 
as well in samples, and their density also increased towards the edges of the sample. Erythrocytes tended to be 
located near the center of the thrombus and were less likely to be observed along the edges. Fibrin was uniform 
across the samples.

Analysis was also conducted to categorize the samples based on anatomic location of extraction (Fig. 1). 
Mean values for the area of collagen, fibrin, erythrocytes, and platelets were not significantly different between 
PE and DVT samples. However, the sample-to-sample variability in fibrin and erythrocytes was reduced in DVT 
samples in comparison to PE.

Trends between collagen, fibrin, erythrocytes, and platelets are shown in Fig. 3 to gauge the interdependence 
of thrombus components using Pearson’s correlation coefficient, R (N = 26 samples). The strongest correlation 
was a negative relationship between fibrin and erythrocytes (R = − 0.91; p < 0.01). A medium-strength positive 
correlation was observed between fibrin and platelets (R = 0.66; p < 0.01). Significant correlations were also noted 
between erythrocytes and platelets (negative) (R = − 0.51; p = 0.01), erythrocytes and collagen (positive) (R = 0.47; 
p = 0.02), and fibrin and collagen (positive) (R = 0.44; p = 0.02). There was no correlation observed between col-
lagen and platelets (R = 0.20; p = 0.3).

Change in histological properties with thrombus age.  Prior studies indicated significant structural 
remodeling of VTE after seven days38,39. Figure 4 depicts the histological composition of VTE less than and 
greater than seven days old. The thrombus age was designated based on the time between the onset of patient 
symptoms and the mechanical thrombectomy procedure. Wilcoxon ranked sum tests indicated that thrombi 
one or more weeks old were composed of more collagen (p = 0.03) and fewer erythrocytes (p = 0.02) compared to 
acute specimen. No changes were observed in the fraction of fibrin (p = 0.19) or platelets (p = 1.00) with throm-
bus age.
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Figure 1.   The fractional area of collagen, fibrin, platelets, and erythrocytes (RBC) present in (top) all analyzed 
VTE specimen (26 samples), (bottom left) pulmonary emboli (14 samples), and (bottom right) deep vein 
thrombi (12 samples). Components were assessed using histochemical staining. Colorimetric analysis was 
conducted in ImageScope (Leica, Biosystems, Germany) to identify pixels associated with each components. 
Horizontal red lines indicate median values. The top and bottom portions of the blue box represent the 
25th and 75th percentiles, respectively, and whiskers extent to the data points not considered outliers. Red 
crosses indicate outliers, which correspond to datapoints greater than q75 + 1.5×

(

q75 − q25
)

 or less than 
q25 − 1.5×

(

q75 − q25
)

 , where q25 corresponds to the 25 th percentile of the sample data, and q75 corresponds 
75th percentile of the sample data37.
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High % collagen
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Figure 2.   Observed patient-to-patient variability in collagen observed in ex vivo thrombus samples. Deep vein 
thrombi (DVT) are shown in the left column, pulmonary emboli (PE) are shown in the right column. Collagen 
appears blue in the Masson’s trichrome stain and compromises 60% (top left) and less than 1% (bottom left) for 
DVT, and 14% (top right) and less than 1% (bottom right) for PE by area. Colorimetric analysis was conducted 
in ImageScope (Leica Biosystems, Germany) to identify pixels associated with collagen. Color thresholds were 
evaluated and accepted by a board-approved pathologist. The scale bars indicate 1 mm.
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Figure 3.   Trends in thrombus composition for fibrin, collagen, red blood cells (RBCs), and platelets for all 
samples (N = 26 total). The Pearson’s correlation coefficient (R) and p-values are reported for each respective 
pair.
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Figure 4.   Histological analysis for acute (less than 7 days old, N = 12) and chronic (greater than or equal to 
7 days old, N = 14) thrombi. None of the 26 samples were excluded from analysis. Red crosses indicate outliers 
and horizontal red lines indicate median values. The top and bottom portions of the blue box represent the 
25th and 75th percentiles, respectively, and whiskers extent to the data points not considered outliers. Outliers 
correspond to datapoints greater than q75 + 1.5×

(

q75 − q25
)

 or less than q25 − 1.5×
(

q75 − q25
)

 , where q25 
corresponds to the 25th percentile of the sample data, and q75 corresponds 75th percentile of the sample data 37.
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Immunofluorescent analysis of thrombus.  Figure 5 depicts representative immunofluorescence stain-
ing and imaging to determine the relative position of thrombus components. The extracellular components col-
lagen (types i, ii, iii) and fibrin were observed in close proximity and in regions devoid of erythrocytes. Nucleated 
cells were observed interspersed within packs of erythrocytes (Supplemental Fig. 1). Possible vascular structure 
was indicated by regions intersected by vascular endothelial growth factor receptor 1 (VEGFR-1), fibrin, and 
platelets, and bordered by nucleated cells (Supplemental Fig. 2). Another marker of neovascularization, clus-
ter of differentiation 31 (CD31) was observed within/adjacent to DAPI (nucleated cells). True vascularization, 
nominally indicated by tubular structures for CD31 positive cells40, was not observed though appeared to be 
in the process of organizing for future recanalization. Plasminogen activator inhibitor-1 (PAI-1) inhibits the 
fibrinolytic action of rt-PA41, and was observed in samples. The inhibitor was co-located or in close proximity to 
CD31 positive nucleated cells (Fig. 6), fibrin, platelets, and collagen (Fig. 5). Other inhibitors of the fibrinolytic 
process, including the alpha 2-antiplasmin42 and TAFI43 were also observed in regions rich with nucleated cells 
(Supplemental Fig. 3).

Thrombus stiffness.  The elastic moduli of ex vivo samples embedded in agarose varied from 53 to 122 kPa 
(N = 12 samples, see Supplemental Fig. 4). The elastic modulus of analyzed sample was assessed ex vivo using 
ultrasound shear wave elastography44 in three regions-of-interest to account for sample heterogeneity (see Sup-
plemental Fig. 3). Spearman nonparametric correlations were conducted between the elastic modulus and each 
histological marker (e.g. concentration of red blood cells, fibrin, collagen, or platelets, N = 12)45. No significant 
correlations were observed between the elastic modulus of the sample and the concentration of thrombus ele-
ments. Note that histology was conducted on up to three separate sections for each sample to account for sam-
ple heterogeneity. Additionally, no correlation was observed between the elastic modulus of the sample and its 
susceptibility to rt-PA.

Thrombus magnetic susceptibility.  The findings in this study and others indicate higher erythrocyte 
content for acute thrombi relative to chronic disease. Hemoglobin within erythrocytes leads to changes in the 
local magnetic susceptibility, which can be tracked with a quantitative susceptibility-weighted MRI sequence. 
The ex vivo specimen collected in this study had heterogenous appearance on susceptibility MRI (Supplemental 
Fig. 5), potentially due to concentrated zones of high and low iron content. Positive-pixel QSM values indicative 
of erythrocytic content were tabulated for each sample and correlated with its response to lytic46. A significant 
slope was observed between the magnetic susceptibility of the sample and its disintegration under the action of 
rt-PA (Fig. 7, Spearman’s rho = 0.9, p < 0.01).

Figure 5.   Representative multiplexed immunofluorescent images collected from VTE sample. (A) DAPI 
(nucleated cells) in blue, (B) erythrocytes (pink), (C) CD61 (platelets, red), (D) collagen, types i, ii, and iii 
(orange), (E) fibrin (green), (F) PAI-1 (cyan), and (G) VEGR-1 (yellow). The scale bar in the lower left corner 
corresponds to a 20 µm distance (40 × magnification). Antibody information can be found in Supplemental 
Table 2. A total of eight different antibodies were used for analysis, with five shown here. Autofluorescence was 
used to visualize erythrocytes. No cross reactivity was observed for antibodies as assessed with human tonsil 
control samples.
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Figure 6.   (Top) Representative multiplexed thrombus image indicating nucleated cells assessed with DAPI 
(blue), PAI-1 (yellow) and CD31 (red). Orange arrows indicate representative locations for cells associated 
with revascularization (co-expression of DAPI and CD31). Magenta arrows indicate representative areas 
for co-expression of PAI-1 and CD31. The white bar is a 10 µm distance (40 × magnification). Multiplex 
IHC staining was performed on 5 micron FFPE tissue sections using the Opal 7-Color Manual IHC Kit 
(NEL861001KT; Akoya Biosciences) following the manufacturer instructions. All slides were counterstained 
with Spectral DAPI (1:10, Akoya Biosciences) nuclear stain and mounted with Slowfade Diamond Antifade 
mountant (Thermo Fisher Scientific). The slides were then scanned using the Vectra Polaris whole slides scanner 
(Akoya Biosciences), the regions of interest were selected using the Phenochart software (Akoya Biosciences) 
and analyzed using Inform software (Akoya Biosciences). Antibody information can be found in Supplemental 
Table 2. The individual channels for each components are shown in the lower three panels.

Figure 7.   Comparison of sample thrombolytic susceptibility (mass loss) and magnetic susceptibility (QSM 
analysis). Error bars represent the range of positive QSM values observed within the sample. Separate segments of 
each specimen were subjected to the clot mass loss assay and imaging analysis. One sample was highly heterogenous 
(red cross), and gross observation indicated strong variation between the portion of that specimen that was 
subjected to rt-PA and the portion subjected to QSM analysis. The dashed yellow line is a least-squares best fit to 
the data. A significant correlation was observed between the thrombolytic and magnetic susceptibility of the sample 
(Spearman’s rho = 0.90,  p < 0.01, N = 8 samples) The heterogenous sample (red cross) was excluded from analysis.
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Discussion
A primary goal for this study was to assess the histological properties of venous thromboembolism (VTE). To 
date, assessment of venous thrombi has been based on animal models or postmortem samples47,48. Analysis of 
ex vivo VTE specimen is limited as current approaches treat the thrombus in situ or destroy its structure during 
removal. The recent advent of venous-specific mechanical thrombectomy devices allowed for the removal of 
thrombi while still preserving the overall structure33,35,49.

Fibrin and erythrocytes were the primary thrombus components observed in these specimen, consistent with 
the observations of other studies35. Compared to a recent investigation of venous thrombus51, the prevalence of 
fibrin (~ 53% vs. 35%) and platelets (~ 30% compared to 4%) were increased and erythrocytes decreased (~ 35% 
vs. 63%). There may be multiple reasons for the discrepancy between these two studies. Here, the thrombus 
cross section was analyzed with immunohistochemistry, whereas only subsections of the thrombus were ana-
lyzed using scanning electron microscopy in the prior study. Samples here were obtained via venous-specific, 
minimally-invasive mechanical thrombectomy devices, which may not extract structures adherent to the vessel 
wall. Open thrombectomy was performed for retrieval of other samples. Regardless, the differences observed 
indicate a diverse range of VTE composition.

Interestingly, platelets were prevalent within the VTE samples examined here. The standard convention is 
that venous thrombi are platelet poor, and primarily comprised of erythrocytes entangled in fibrin (i.e. a “red” 
thrombus)51. In contrast, fibrin is through to form as a result of platelet aggregation in arterial thrombi, result-
ing in minimal erythrocyte content (i.e. “white” thrombus). Platelets contribute to retraction of the thrombus52, 
which is associated with reduced rt-PA susceptibility53. Even treatments that do not require intervention may 
be altered by the prevalence of platelets, indicating that antiplatelet medications typically reserved for arterial 
thrombi may be appropriate for a subset of VTE54. Regardless, these findings indicate there may be less of a 
distinction between arterial and venous thrombi.

Thrombus age was an important factor in the histological properties of the thrombus, including a reduction in 
erythrocytes for chronic disease. Prior findings indicate erythrocytes are damaged and removed as the thrombus 
ages55, consistent with the findings here. The shape of erythrocytes vary based on their environment56, with the 
polyhedrocytes shape being the most prevalent shape found in venous thrombi. Further studies are needed to 
assess the precise form of erythrocytes for the samples collected here.

The extracellular structure of chronic samples was also changed via increases in collagen deposition. The 
infiltration of fibroblasts into the thrombus is the primary cause of collagen deposition. The process occurs over 
the course of several days57,58, consistent with the lack of observed collagen for acute samples. A hypothesized 
mechanism of lytic resistance for chronic thrombi is a change in extracellular structure59,60. Because of its fibrin-
specific proteolysis by plasmin61, rt-PA is not effective for collagenous structures. Fibrin was more prevalent 
than collagen even in chronic samples (on average ~ 60% of thrombus area for fibrin vs. 5% for collagen, Fig. 4), 
in agreement with another recent analysis of VTE35. The method of specimen extraction may contribute to the 
degree of collagen observed in samples. Fibroblasts are recruited to the thrombus through vessel-wall derived 
factors, and collagen elements adherent to the vascular wall may not have been retrieved. Nevertheless, these find-
ings suggest fibrin is a primary component of chronic thrombus, and collagen deposition constitutes a secondary 
effect to the resistance of chronic thrombi. Lytic may therefore still be an effective method for recanalization 
provided it can be distributed throughout the chronic thrombus extent.

Indicators of neovascularization were observed in some but not all samples. The presence of new vasculature 
is attributed to remodeling of the venous wall38, and is located near the thrombus/vessel interface. Multiple 
inhibitors to fibrinolysis were observed. Plasminogen activator inhibitor 1 (PAI-1) was observed in samples, a 
protease inhibitor that acts to quench rt-PA activity and halt fibrinolysis, and may be a key factor in VTE lytic 
resistance. A subset of nucleated cells within the samples were co-located with PAI-1, though the precise cell 
type was undetermined. Prior studies indicate that PAI-1 is co-located with neovascularization62–65. Markers 
of neovascularization including VEGFR-1 and CD31 were observed in a subset of samples, though definitive 
vascular structure could not be confirmed. Leukocytes in the form of macrophages also produce PAI-165, though 
further work is needed to quantify the precise progenitor for these samples. After generation, PAI-1 is retained 
within platelets prior to activation. The VTE samples examined here had significant platelet content, which may 
contribute to prevalence of PAI-1 and lytic resistance of samples. It should be noted PAI-1 was observed to be 
co-located with platelets (see Fig. 5). Inhibitors for PAI-1 are readily available to reestablish fibrinolysis66. Here, 
PAI-1 was investigated as the most important inhibitor at the plasminogen activation level67, though other lytic 
inhibitors also play a role in thrombolysis (e.g. alpha 2-antiplasminogen and TAFI)68,69. Indeed, the markers 
alpha 2-antiplasmin, which forms a high molecular weight complex with plasmin, and TAFI, which acts as a 
carboxypeptidase to cleave C-terminal lysine residues from partially digested fibrin, were also present in sam-
ples (Supplemental Fig. 3)69. Alpha 2-antiplasmin also originates from platelets70, and TAFI targets activated 
platelets43. Co-expression of platelets with alpha 2-antiplasmin or TAFI was not investigated here, but will be a 
focus for future studies, along with other inhibitors to the fibrinolytic cascade.

Etiology was also noted to affect the thrombus structure. Less variability in fibrin and erythrocytes was noted 
in DVT compared to PE (Fig. 1). The concentration of erythrocytes was noted as a marker of thrombus age 
(Fig. 4). Over 80% of pulmonary emboli originate as deep vein thrombi5. Embolized chronic DVT may serve 
as a nidus for acute clots, thereby creating a more heterogeneous specimen for PE and therefore the observed 
increased range of erythrocytes compared to DVT samples.

A secondary goal of this study was to determine the relationship between quantitative imaging metrics (i.e. 
QSM or ultrasound shear wave elastography) and thrombolytic efficacy. Current imaging metrics for VTE rely on 
characteristics related to perfusion or stiffness, but lack information on the thrombus microenvironment respon-
sible for its response to lytic therapy. Magnetic resonance imaging is well-suited to measuring the microstructure 
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of thrombi71, including erythrocyte content. A significant trend was noted between magnetic susceptibility and 
thrombolysis (Fig. 7). Deoxygenated hemoglobin within erythrocytes has a high magnetic susceptibility72, and 
is the primary source of contrast for QSM in these samples73. The correlation between QSM and thrombolysis 
indicates lytic susceptibility increases with the concentration of erythrocytes within the thrombus. This agrees 
with the known relationship between thrombus age and lytic susceptibility and with our observation that older 
thrombi contain fewer erythrocytes compared to acute thrombi. It should be noted the observed correlation 
was using a sample size of eight (one sample had grossly heterogenous segments used to assess magnetic and 
thrombolytic susceptibility, and was excluded from the analysis in Fig. 7). Of the analyzed specimen, one had very 
strong magnetic and thrombolytic susceptibility which may have skewed the correlation. In the absence of this 
sample, no correlation was observed between the thrombus mass loss and QSM values (Spearman’s rho = 0.71, 
p = 0.09, N = 7). Nevertheless, these findings motivate continued analysis to determine the precise nature of this 
relationship between QSM pixel values and rt-PA efficacy.

Prior studies have indicated that increased stiffness is a hallmark of chronic thrombi74,75, though no trends 
were observed between thrombus elastic modulus and histological markers or thrombolysis. The indifference of 
thrombus properties with its stiffness may be a reflection of the sample age. A prior study demonstrated there is 
no correlation between ultrasound imaging metrics (e.g. elastic modulus) and thrombus composition for samples 
older than ~ 10 days74,76. Sample ages examined here ranged from 1 to 30 days, with an average and standard 
deviation of 12.2 ± 9.8 days. The average elastic modulus may also not be a good metric because of sample 
inhomogeneity, though similar degrees of inhomogeneity is observed for clinical scans of DVT77,78. Ultrasound 
images are inherently two-dimensional, and volumetric assessment of the sample stiffness may provide a more 
applicable comparison to bulk measurements such as mass loss. Because of its inability to penetrate the lung, 
ultrasound may not be a viable modality to gauge PE in vivo. Regardless, these data motivate the collection of 
larger sample sizes to further flush out these trends.

There are a number of limitations to this study that limit generalizability of the finding. Samples were acquired 
in this study over the course of 24 months (~ one sample per month). The findings and trends noted here war-
rant additional investigation with larger sample sizes. Samples may be altered by the mechanical extraction 
procedure. Thrombolytic susceptibility of samples was tested using a systemic lytic administration scheme, 
whereas catheter-infusion of the lytic within the thrombus is a primary treatment scheme for VTE. Biological 
factors beyond composition such as blood flow may affect the lytic profile in situ compared to ex vivo79. Due 
to the retrospective nature of this study, sample ages were estimated based on the onset of symptoms and may 
not reflect the true thrombus age given dependence on reliability patient reporting. To limit the time required 
for data collection and mitigate sample degradation, separate sections of the thrombus were used for histology, 
imaging, and assessment of lytic susceptibility. Gross inspections were conducted for samples subjected to each 
type of analysis, though specimen were heterogenous. Due to the limited size of some of the thrombus samples, 
not all thrombi could be analyzed with our full testing panel (i.e. histological analysis, thrombolysis, QSM, and 
elastography). Histological analysis was conducted to determine the presence of fibrin and erythrocytes. The 
precise phenotype of these elements was not assessed, which can affect relevant properties of the thrombus 
(e.g. lytic susceptibility50,80). Histology and immunofluorescence provide semi-quantitative information on the 
thrombus structure. Future studies will incorporate quantitative metrics of the thrombus proteins via ELISA or 
Western blot analysis81. The human tonsil used to gauge cross reactivity for the immunofluorescence antibodies is 
a known control for tumor tissue82, though the potential for antibody cross reactivity for thrombus is unknown. 
Observations indicated good localization of signals from antibodies, though potential regions of non-specific 
binding were observed. Nevertheless, the observed trends between QSM pixel values and lytic response indicates 
a potential means to prescreen patients for thrombolytic therapy and thus decrease treatment risk.

Methods
Thrombus collection.  As part of the standard of care, thrombi were collected from patients undergo-
ing mechanical thrombectomy procedures at the University of Chicago Medical Center and the University of 
Texas Health Science Center between December 2018 and December 2020. Demographics for patient data are 
shown in Supplemental Table 1. Thrombi were subjected to analysis following local internal review board (IRB) 
approval and informed consent (University of Chicago IRB #18–0179). Extracted samples were stored in saline 
solution and processed for analysis within 24 h of collection. A total of 26 thrombi were examined, of which 
12 were deep vein thrombi from iliocaval veins, and 14 were pulmonary emboli. Samples were sectioned, with 
representative subsections being subjected to histology, imaging, or lytic response. Not all samples were large 
enough to conduct each set of analyses (26 histology samples, 9 thrombolysis samples, 9 QSM samples, 12 elas-
tography samples).

Assessment of clot structure via histology.  Histology was used for qualitative analysis of the sample 
structure. Immediately after collection, thrombi were sectioned to ~ 3  mm thickness and submerged in 10% 
formalin for 24 h. After fixation, thrombus sections were submitted to the University of Chicago Human Tissue 
Resource Center for paraffin-embedding, sectioning (5 μm thickness), and histochemical staining. Three stains 
were used: Hematoxylin & Eosin (H&E, Tissue-Tek Prisma H&E Stain Kit #1, Sakura Finetek, USA), Masson’s 
Trichrome (Trichrome Staining Kit, Hoffmann-La Roche, Switzerland), and anti-CD-61 immunohistochem-
istry (CD61, Platelet Glycoprotein IIIa, Agilent, USA). Three sections were analyzed for each sample to gauge 
heterogeneity.

Stained specimen were scanned at 20 × magnification using a ScanScope XT scanner (Leica Biosystems, Ger-
many). Digitized slides were viewed using ImageScope software (Leica Biosystems, Germany), and were analyzed 
using the Positive Pixel Count algorithm (Leica Biosystems, Germany) to identify red blood cells and fibrin in 
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H&E stains, collagen in Masson’s Trichrome stains, and platelets in CD61 stains83. The number of pixels that fell 
within the designated color parameters (i.e. thrombus component) were quantified and binned into intensity 
ranges: negative, weak positive, positive, or strong positive. Color thresholds were evaluated and accepted by a 
board-approved pathologist, as depicted in Supplemental Fig. 5.

Four samples were also subjected to immunofluorescent analysis to quantitatively assess thrombus com-
ponents. Fluorescent antibodies were used to examine the co-location of fibrin (MABS2155, Millipore Sigma, 
USA), collagen (Maine medical center research institute, USA), platelets (CD-61, M075301-2, Agilent, USA), 
vascular endothelial growth factor (VEGFR-1, ab32152, abcam, USA), plasminogen-activator inhibitor-1 (PAI-
1, ab125687, abcam, USA), alpha 2-antiplasmin (Hp001885, Atlas Antibodies USA), and thrombin-activatable 
fibrinolysis inhibitor (TAFI, MBS2006309, MybioSource Inc, USA). Erythrocytes were examined utilizing their 
innate autofluorescence and did not require staining. Two samples were stained to gauge the co-expression 
of PAI-1 and the endothelial cell marker CD31 (ab28364, abcam, USA). All slides were counterstained with 
Spectral DAPI (1:10, Akoya Biosciences). Samples were stained using an Opal 7-color manual IHC kit (Akoya 
Biosciences, USA) and were scanned using a Vectra Polaris whole slides scanner (Akoya Biosciences, USA). 
Additional antibody information can be found in Supplemental Table 2.

Assessment of thrombolytic susceptibility.  Human fresh-frozen type O plasma was obtained from 
a blood bank (Vitalant, Chicago, IL), thawed and aliquoted in 30 mL increments, and stored at -80℃ before 
use84. Alteplase was obtained as a lyophilized powder (Activase, Genetech, San Francisco, CA, USA), mixed 
with sterile water to a concentration of 1 mg/mL, and stored at -80℃ before use. Ex vivo thrombi were sectioned 
into ~ 1 cm segments and were exposed to either plasma and rt-PA (2.68 μg/mL, consistent with pharmacom-
echanical VTE treatment85) or plasma alone (control). To account for the heat-dependent enzymatic activity of 
rt-PA, thrombus sections were placed in individual latex containers filled with 15 mL of human plasma with 
or without rt-PA and were submerged in a water tank heated to physiologic temperature (37 ℃). The percent 
change in mass of the sample was tabulated for each sample. Physical manipulation of the thrombi may affect the 
mass of the clot. To account for these factors, thrombus lytic susceptibility was reported as:

 where Mlytic is the percent mass loss for clots exposed to lytic and plasma, and Mcontrol is the percent mass loss 
for clots exposed to plasma alone.

Preparation of samples for imaging.  Samples were embedded in 1.5% w/v low gelling temperature 
agarose before imaging as follows. The agarose solution was heated in a microwave (700 W power) until clear, 
transferred to an ultrasonic water bath set to 40 ℃, and was degassed for 30 min. After degassing, the agarose 
solution was cooled to 37 ℃ and then was poured over the thrombus sample. Any bubbles in the agarose were 
moved outside of the field of view of the thrombus.

Quantitative susceptibility mapping.  Erythrocytes, a primary component of thrombi, can cause signif-
icant alterations of the magnetic susceptibility of a sample. Quantitative susceptibility mapping (QSM) is an MRI 
sequence that maps the sample magnetization. Paramagnetic tissues appear hyperintense in QSM images, and 
diamagnetic tissues appear hypointense73. A clinical 3 Tesla (3T) MR system (Ingenia dStream, Philips Health-
care, Best, The Netherlands) with a body transmit coil and a 16-channel head-and-neck receive coil was used to 
collect QSM images of the agarose embedded samples. A three-dimensional gradient echo recall sequence was 
employed to acquire multiple echoes. Utilizing the real and imaginary portions of the received signals, magnetic 
susceptibility was computed via the morphology enabled dipole inversion (MEDI) pipeline86,87. Thrombi were 
contoured manually  to exclude background QSM values. Positive QSM values (i.e. parts per billion, ppb > 0) 
were tabulated to gauge the concentration of erythrocytes in VTE samples46. This technique exploits the para-
magnetic nature of hemoglobin while excluding highly diamagnetic tissues.

Assessment of clot stiffness via ultrasound elastography.  Ultrasound elastography was used to 
assess the stiffness of the agarose-embedded ex vivo samples44. Ultrasound images were acquired with a linear 
array transducer (GE Ultrasound Transducer 9L, 9 MHz nominal frequency) and Logiq E9 scanner (GE Health-
care, Chicago, IL, USA). The scanner exam protocol “Small Parts” was utilized. Based on the approximate depth 
of the sample, a scan depth of 2 to 4 cm, and 9 MHz frequency setting provided good resolution of the sample. 
Standard B-mode images were used to visualize the cross section of the thrombus (e.g. orthogonal to its in situ 
vascular orientation), and a shear wave elastography images were used to map the elastic modulus. Three images 
(e.g. three measurements of elastic modulus) were recorded, and the average elastic modulus tabulated for each 
sample. For each section, regions-of-interest ~ 4 mm in diameter were selected to quantify the elastic modulus 
depending on the diameter of the thrombus (mean diameter 0.7 cm, range 0.3–1.4 cm). To avoid surface waves 
along the thrombus/agarose interface, regions-of-interest were not acquired near the edge of the sample.

Statistical analysis.  Statistical analysis was performed using the MATLAB Statistical Toolbox (The Math-
works, Natick, MA, USA). Correlations were quantified using the Spearman’s nonparameteric correlation coef-
ficient. Wilcoxon ranked-sum tests were used to compare the composition of thrombi across two age groups and 
to compare the composition of PE and DVT.

(1)Mresidual = Mlytic −Mcontrol
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Ethics declaration.  All experimental protocols were approved by the local internal review board and 
informed consent (University of Chicago IRB #18-0179). All methods were carried out in accordance with the 
relevant guidelines and regulations. Prior to collecting thrombus samples for analysis, informed consent was 
obtained. These thrombi were extracted from patients mechanically as part of the standard of care and inde-
pendent from this study.
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The data generated from this study are available from the authors upon reasonable request.
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