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Circular functional analysis of OCT 
data for precise identification 
of structural phenotypes in the eye
Md. Hasnat Ali1,2*, Brian Wainwright3, Alexander Petersen 3,4, Ganesh B. Jonnadula 1,  
Meghana Desai5, Harsha L. Rao 6,7, M. B. Srinivas2, S. Rao Jammalamadaka3, 
Sirisha Senthil1 & Saumyadipta Pyne3,5,8*

Progressive optic neuropathies such as glaucoma are major causes of blindness globally. Multiple 
sources of subjectivity and analytical challenges are often encountered by clinicians in the process 
of early diagnosis and clinical management of these diseases. In glaucoma, the structural damage 
is often characterized by neuroretinal rim (NRR) thinning of the optic nerve head, and other clinical 
parameters. Baseline structural heterogeneity in the eyes can play a key role in the progression of 
optic neuropathies, and present challenges to clinical decision-making. We generated a dataset 
of Optical Coherence Tomography (OCT) based high-resolution circular measurements on NRR 
phenotypes, along with other clinical covariates, of 3973 healthy eyes as part of an established clinical 
cohort of Asian Indian participants. We introduced CIFU, a new computational pipeline for CIrcular 
FUnctional data modeling and analysis. We demonstrated CIFU by unsupervised circular functional 
clustering of the OCT NRR data, followed by meta-clustering to characterize the clusters using 
clinical covariates, and presented a circular visualization of the results. Upon stratification by age, we 
identified a healthy NRR phenotype cluster in the age group 40–49 years with predictive potential for 
glaucoma. Our dataset also addresses the disparity of representation of this particular population in 
normative OCT databases.

Progressive optic neuropathies such as glaucoma can cause irreversible blindness, especially when left untreated 
or diagnosed late. Indeed, early detection and management hold the key to slowing the progressive loss of vision 
and preventing blindness due to many chronic and age-related degenerative eye diseases. Glaucoma, for instance, 
is the second-leading cause of blindness  worldwide1. In 2020, an estimated 80 million individuals worldwide had 
glaucoma and this number is expected to increase to over 111 million by  20402.

There are multiple sources of subjectivity and analytical challenges that are often encountered by the clinicians 
in the process of early diagnosis and clinical management of degenerative eye diseases. In glaucoma, the func-
tional damage is established most commonly by the occurrence of visual field (VF) loss whereas the structural 
damage is often characterized by neuroretinal rim (NRR) thinning of the optic nerve head (ONH), and loss 
of retinal nerve fibers, which are the axons of retinal ganglion cells (RGC). Such thinning could be measured 
in terms of reduction in either NRR area or NRR thickness. On the functional side, while standard automated 
perimetry (SAP) has been the gold standard for detection of VF loss, often 30% of RGC loss may have already 
occurred before VF defects could be detected by  SAP3.

On the structural side, biological heterogeneity of ONH phenotypes, with or without any neuropathy, can 
present challenges to clinical decision-making. For instance, the NRR area has been found to normally decline 
at the rate of 0.28%-0.39% per  year4. There is no single, specific management guidance for patients with diverse 
morphology of  ONH5. For instance, to assess the progression of glaucoma, one of the parameters assessed is the 
optic cup to optic disc ratio (CDR) which is calculated by comparing the diameter of the “cup” portion of the 
optic disc with the total diameter of the latter. Yet, while a large CDR may indicate glaucoma or other pathology, 
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deep yet stable (over age) cupping, i.e., a normal physiologically large optic disc cup, can occur due to genetic 
factors in the absence of any disease or associated clinical covariates (e.g., high intraocular pressure)6. It is of 
great importance that sources of natural variation are rigorously understood thereby controlling for subjectivity 
in diagnosis.

In the clinic, non-invasive, high-resolution eye imaging platforms such as spectral-domain optical coherence 
tomography (SD-OCT) provide excellent glaucoma diagnostic performance, especially during early stages of the 
 disease7,8. The quantitative and reproducible OCT data provide objective measurements of ONH parameters, 
NRR area, retinal nerve fiber layer (RNFL), macular thickness, etc., which inform clinicians about structural 
damage. For instance, Zeiss Cirrus HD-OCT platform uses the clinically invisible but OCT detectable Bruch’s 
membrane opening (BMO) as the landmark to measure the amount of NRR tissue in the optic nerve. It has been 
reported that NRR thickness calculation by Cirrus HD-OCT has high reproducibility and glaucoma diagnostic 
ability, and a low rate of incorrect optic disc margin  detection9–11. The platform generates a comparative report 
of a patient’s data based on its normative database.

The OCT platform performs circular scans of the eye which, as in many biomedical technologies, are examples 
of measurements that are recorded or indexed at different directions, say, at given angular positions around a cen-
tral point. Unlike the analyses of “linear” data points that reside on the real line or Euclidean spaces, directional 
data requires special and altogether different treatment. For instance, a direction in two-dimensional plane can 
be represented as a point on the circumference of a unit circle, or simply as an angle, but neither representation 
is unique, as both depend on the selection of some appropriate “zero-direction” from which to start measuring, 
as well as the sense of rotation, viz., clockwise or anti-clockwise. The unique properties of circular data—for 
instance, if one wishes to compare two such scans with a distance measure—are appropriately addressed by the 
field of circular  statistics12.

Traditional OCT analysis may involve division of the circle around ONH into 4 fixed quadrants, or 12 clock-
hours, to record measurements at these sectors. In this study, we extended such data collection to divide the 
same circle (of total 360 degrees) into much finer segments of 2 degrees each. Thus, we generated 180 circular 
data points measuring NRR thickness for each clinical sample (human eye). These rich and evenly spaced high-
resolution circular data allow for natural application of functional data analysis (FDA) where the data are not 
viewed as points but as curves or mathematical functions. Not to be confused with alternate usage of the term 
“function” (such as in vision), FDA is increasingly popular in biomedical informatics due to the emergence of 
new monitoring technologies that can record data as  curves13–15. The high-resolution OCT data for each sample 
can be modeled as a circular function or curve, with angle and magnitude being the independent and depend-
ent variables, respectively. The circular nature of the OCT NRR data is captured rigorously by the use of Fourier 
basis functions for their representation as functional or curve  data16. In this study, we describe a novel method 
for functional clustering of OCT NRR curves, and apply it for unsupervised identification of NRR phenotypes 
in healthy Asian Indian eyes. We also address the disparity of representation of Asian Indian eye phenotypes in 
normative OCT databases.

Progressive and degenerative eye diseases benefit from pre-existing knowledge and cumulative collection 
and description of normal phenotypes such as NRR may help to identify early and characterize precisely the new 
phenotypes that emerge over time. While some normative OCT databases do exist, they are generally limited in 
their size and diversity. Thus, the breakup of their ethnic representation may not reflect the actual epidemiologic 
distribution of the disease. For instance, only 1% of the popular Cirrus HD-OCT platform’s normative database is 
of Asian Indian  origin17, although India contributes to more than 12% of the global cases of both primary open-
angle and primary angle-closure  glaucomas18. Towards this, we generated a new and large high-resolution OCT 
dataset on NRR phenotypes, along with other clinical covariates, of 3973 healthy eyes as part of a well-established 
clinical cohort (LVPEI-GLEAMS) at the L.V. Prasad Eye Institute, Hyderabad, India.

The main objectives of the present study are to: (1) generate OCT NRR data in the form of 180 circular meas-
urements of NRR thickness in a given eye, (2) introduce CIFU, a computational pipeline for CIrcular FUnctional 
data modeling and analysis that is demonstrated using the OCT NRR dataset, and (3) address the disparity of 
representation of the Asian Indian population in normative OCT databases. In the next section, we describe the 
clinical cohort and the protocol for data generation as well as the algorithm of CIFU for unsupervised circular 
functional clustering of the NRR thickness data, followed by meta-clustering to characterize the clustering output 
using clinical covariates of glaucoma. In the following section, the results of CIFU analysis are described with 
help of circular visualization. In particular, upon stratification of the samples by age, we identified a healthy NRR 
phenotype cluster in the age group 40–49 years, and having the highest mean values of cup volume and average 
CDR among all clusters, with predictive potential for glaucoma. We end with discussion of the CIFU approach 
and its potential applications to future work.

Data and methods
Data. All participants were selected from a population-based study conducted by the L.V. Prasad Eye Insti-
tute (LVPEI), Hyderabad, India. It is denoted by LVPEI Glaucoma Epidemiology and Molecular Genetic  Study19 
(LVPEI-GLEAMS). The LVPEI-GLEAMS data protocol was approved by the LVPEI Institutional Ethics Com-
mittee (LEC 08131). The data on a total of 3973 healthy eyes of which 1981 right eyes (OD) and 1992 left eyes 
(OS) were collected from 2222 participants from the southern Indian state of Andhra Pradesh, India. Written 
informed consent was obtained from all participants to participate in the study, and the ethics and review com-
mittee of the LVPEI reviewed and approved the methodology and the study was conducted in strict adherence 
to the tenets of the Declaration of Helsinki. The inclusion criteria used were age ≥ 40  years, male or female, 
best-corrected visual acuity of 20/40 or better, spherical equivalent of ± 6 Diopters, good quality stereo optic disc 
photographs, and no media opacities. The exclusion criteria used were intraocular surgery within the previous 
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6 months, and any retinal (including macular) or other neurologic diseases that could confound the structural 
measurements with SD-OCT.

The performance of the OCT layer segmentation algorithms can be affected by poor image quality, leading 
to erroneous demarcation of the retinal layers and inaccurate measurements. We excluded any OCT scan image 
sample from our study with poor image quality, signal strength < 6, motion artifacts, blinking artifacts, misi-
dentification of inner and outer retinal layers, and off-center artifacts. Several independent studies, including by 
some of the authors of the present study, have shown that signal strength reduction is associated with decreased 
accuracy of nerve fiber layer thickness measurement by OCT, which may be erroneously interpreted as presence 
of glaucomatous damage on a cross-sectional evaluation or when multiple scans are  compared20–22. For the Cir-
rus SD-OCT platform used in the present study, we followed the manufacturer’s definition of scans of adequate 
quality to be those of signal strength 6 or above (within a range from 0 to 10)17.

Healthy eyes were defined by the absence of anterior and posterior pathology. Each digital optic disc pho-
tograph was evaluated by three glaucoma specialists independently. The specialists were masked to the other 
clinical findings and the other imaging outcomes of the subjects. Eyes were excluded from the study in case of 
any disagreements among the specialists. All participants underwent a comprehensive ophthalmic examina-
tion which included detailed medical and systemic history. The means of clinical determination included best-
corrected visual acuity measurement, slit-lamp photographs (Topcon, Bauer Drive, Oakland, NJ), Goldmann 
applanation tonometry (Hagg-Streit AT 900, Hagg-Streit AG, Switzerland), gonioscopy with a Sussman four 
mirror gonioscope (Volk Optical Inc, Mentor, Ohio, USA), dilated fundus examination, central corneal thick-
ness (CCT) assessment, Humphrey visual fields (HVF) with 24-2 Swedish Interactive threshold algorithm (Carl 
Zeiss Meditec Inc. Dublin, CA). Visual fields (VF) were considered if false positive, false negative, and fixation 
losses were less than 20%, and all the stereophotographs of the optic disc had good quality.

In addition, digital optic disc photography and SD-OCT imaging with Cirrus HD-OCT (software version 
9.0.0.281; Carl Zeiss Meditec, Dublin, CA, USA) were used. This is a computerized instrument that acquires and 
analyzes cross-sectional and three-dimensional tomograms of the eye using SD-OCT technology. The instru-
ment’s algorithm automatically identifies the optic disc margin as the termination of Bruch’s membrane (BM). 
BM opening (BMO) is used as the landmark to measure the amount of NRR tissue in the optic nerve. Optic 
Disc Cube 200 × 200 protocol was used to scan the ONH and peripapillary area through a 6 mm square grid, 
which consists of 200 horizontal linear B-scans and each composed of 200 A-scans. First, the Cirrus HD-OCT 
algorithm identifies the center of ONH and then automatically places a calculation circle of 3.46 mm diameter 
evenly around it. The circular scan starts at an extreme temporal point and moves around the ring in the supe-
rior direction, then nasal, then inferior, then back to temporal (TSNIT). The circular measurements are made 
clockwise for the right eye and counter-clockwise for the left eye. NRR thickness is measured by the amount 
of neuro-retinal tissue in the optic nerve around the entire edge of the optic disc. Zeiss Cirrus HD-OCT used 
Bruch’s membrane opening–minimum rim width (BMO-MRW) to measure the rim area. The BMO-MRW is the 
shortest distance from BMO to the retinal internal limiting membrane. The advanced export functionality was 
used to record the NRR thickness values at 180 points in TSNIT order spaced evenly by 2 degrees (from 2° to 
360°) around the circle. We refer to this as our NRR OCT high-resolution circular data. The data were stratified 
into 3 age groups: (1) 40–49 years, (2) 50–59 years, and (3) 60 years and older.

Methods. We describe CIFU pipeline for circular functional modeling and clustering of OCT NRR data, fol-
lowed by metaclustering-based clinical characterization of the clusters identified by CIFU. The steps of the CIFU 
pipeline are graphically illustrated in Fig. 1.

Circular functional modeling and clustering. First, we introduce a method for clustering OCT NRR 
data into K homogeneous groups of samples, i.e., eyes. As an unsupervised approach, the clustering is based only 
on NRR data as input, and not any clinical variables of the samples. While the actual OCT measurements are 
taken on a discrete grid of angles around the center of ONH, in principle, these finely indexed measurements are 
assumed to vary continuously around a circular scale ranging from 0 to 360 degrees, and wrapped around. Thus, 
for statistical modeling, we will refer to the OCT data as a collection of n circular curves X1(t),X2(t) . . . ,Xn(t), 
where Xi(t) represents the NRR thickness in the ith sample ( i = 1, 2, . . . n ) measured at angle t ∈ [0, 360] and 
around a common center. The angular indices tl , where l = 1, . . . 180 , at which the curves are actually measured 
are aligned for all samples, and spaced 2 degrees apart. Specifically, the l-th measurement angle is tl = 2(l − 1).

Our modeling begins with the use of p basis functions for capturing the functional nature of data. If ψ1 ,  
ψ2,..., ψp are the basis functions with the associated basis expansion coefficients γij , where i = 1, 2, . . . n and 
j = 1, 2, . . . p , then the functional approximation for the ith curve at point t  , Xi(t) , is given by

Different sources of artifacts could be present in OCT  data23. As mentioned above, we exclude samples with 
such artifacts, yet OCT NRR curves with highly unusual shapes might appear rarely. While precise characteriza-
tion of an outlier curve may be  difficult24, we used an intuitive criterion for detecting outlier NRR curves using 
Eq. (2) below, in which the factor 3.5 is based on our exploratory analysis. A given curve Xi is considered an 
outlier if there exists a point tl for which Xi(tl) exceeds the following threshold (in terms of mean and sd defined 
below)

(1)Xi(t) ≈

p
∑

j=1

γijψj(t) = X
p
i (t)
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After the outlier curves were removed, to allow for comparison of the curves based on their shapes rather than 
the magnitude, we normalize each curve Xi(t) by dividing it by 

∫ 360

0
Xi(t)dt , where the integral is approximated 

numerically. Note, the normalization step is optional in the CIFU pipeline.
As the NRR thickness values are measured radially around a circle (Fig. 2), they are nonnegative and have 

the natural periodicity of 360 degrees, so that the value corresponding to 5 degrees is the same as that at 365 
degrees. After performing the normalization described above, they also contain a unit area on [ 0, 360), and thus 
possess the properties of a probability density around the circle. Such “circular densities” can be expressed in 
terms of an infinite series of Fourier  coefficients12 and then approximated by the first p terms, for a sufficiently 
large p , of the expression in Eq. (1). The idea is similar to approximating a continuous function by a polynomial 
of high enough degree, except that the Fourier basis also retains the periodicity that is critical to interpretation 
of the normalized OCT NRR curves.

Our objective is to cluster each of the curves described above into a pre-specified number ( K  ) of clus-
ters. Then, we used a discriminative functional mixture (DFM) model given by Bouveyron et al.23 in which 
γi =

(

γi1, . . . , γip
)t of curve Xi follows a finite mixture model of K Gaussian components with density function

where πk ≥ 0 is the mixing proportion of the kth component (i.e., the cluster k ) such that 
∑K

k=1πk = 1 , and ∅ 
is the standard Gaussian density function. Here, U  is a p× d orthogonal matrix mapping the basis coefficients 
γ into the discriminative subspace (of dimension d < p ) through a linear transformation. Similarly, µk and �k 
are the mean vector and covariance matrix (for cluster k ) of γ mapped into the discriminative subspace, and the 
noise of the above transformation is normally distributed with mean zero and covariance �.

The DFM model was fit with an Expectation–Maximization (EM) algorithm implemented in the R package 
 funFEM24. EM is a popular iterative method used for optimal fitting of a model and estimation of the model 
 parameters25. Following the idea of constraining variance parameters in Fraley and  Raftery26, the funFEM pack-
age allows 12 different choices of DFM models. As an initial step, using different restrictions on the noise covari-
ance matrix � , a preliminary model search was run with NRR data, with outlier curves included, over all 12 mod-
els and a flexible set of (61) basis functions. Based on the results of the initial run, and after removing the outlier 
curves as described below, the clustering algorithm was run using a smaller selective set of (21) basis functions.

(2)Xout = max
l

X(tl)+ 3.5×max
l

sd(X(tl))

(3)f (γ ) =

K
∑

k=1

πk∅

(

γ ;Uµk ,U
t
∑

k
U +�

)

,

Figure 1.  CIFU pipeline gives an illustration of each step including the collection of OCT NRR data and 
clinical data, representation as and clustering of NRR functional data, and metaclustering of clusters using 
clinical variables.
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To avoid model overfitting, we determined the smallest number of basis functions ( p ) that recover the input 
curves sufficiently well, as determined by the fraction of variation explained ( FVE ) as described below. Let the 
sample mean and standard deviation of n given curves be respectively

Then the total variation (TV) is given by

and the fraction of variation explained (FVE) by

(4)X(tl) =
1

n

n
∑

i=1

Xi(tl), sd(X(tl)) = {
1

n− 1

n
∑

i=1

(Xi(tl)− X(tl))
2
}
1
2 , l = 1, 2, . . . 180.

(5)TV =
1

n− 1

n
∑

i=1

∫

(

Xi(t)− X(t)
)2
dt

(6)FVE =

TV − 1
n−1

∑n
i=1

∫

(

X
p
i (t)− Xi(t)

)2

dt

TV

Figure 2.  For 3 real samples, selected from each age group (1 to 3 from left to right), the NRR thickness data 
measured for 180 evenly-spaced points around the circle is shown in the top panel. The corresponding circular 
functional approximations are shown as pre- and post-normalized NRR curves in the middle and the bottom 
panels respectively. The direction of the NRR curves is given by TSNIT (clockwise).
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where the integrals are again approximated numerically using the discrete observations Xi(tl).
We used FVE as the criterion for selecting an optimal number of basis functions ( p ) by identifying the small-

est value of p for which FVE exceeds 0.99, i.e., 99% (Supplementary Fig. S1).
Finally, the number of clusters identified by the DFM models for each age group was determined by 3 popular 

model selection criteria: AIC (Akaike Information Criterion)27, BIC (Bayesian Information Criterion)28, and ICL 
(Integrated Complete Likelihood)29.

For intuitive visualization of the clustering results, we plotted the curves of every cluster in a distinct color 
using a circular scale. The mean curve of each cluster, as computed by (4), is included as a bold black curve, 
which serves as a cluster-specific template.

The R modules of CIFU for fitting the basis functions to OCT data, clustering and visualizing them as circular 
curves are available from the authors upon request. For each age-group, the de-identified and normalized OCT 
NRR data for each eye, along with the CIFU-assigned cluster Id, are given in the Supplementary Table S1. For 
each CIFU-identified cluster, its size, the estimated basis coefficients of its mean circular curve, and its total vari-
ation given by the trace of the sample covariance matrix are given in the Supplementary Table S2.

Comparative clustering analysis. We performed comparative analysis of our circular functional clus-
tering method against three popular non-functional data clustering methods, namely, k-means30, Partitioning 
Around Medoids  (PAM30) which is similar to kmeans but uses higher dimensional medoids in place of means, 
and Gaussian mixture model (as implemented in  Mclust26). Each of these methods were run with the same OCT 
NRR data points, i.e., not as NRR curves, of each age group. Each method was run with a possible choice of fitting 
K = 2 through 10 clusters for each age group. Thus, we ran the 3 alternative clustering methods for 3 age groups 
for 9 possible values of K . The optimal number of clusters identified by each method was determined with the 
Average Silhouette Width (ASW), while Dunn Index was calculated as a measure of inter-cluster variation. We 
used the R packages ‘optCluster’31 and ‘factoextra’32 for clustering, validation and visualization.

Metaclustering and clinical characterization of clusters. In the metaclustering step, the clusters 
identified by circular functional data were grouped based on their samples’ similarity in terms of a selected set of 
clinical variables that are known covariates of glaucoma. A feature selection step was performed simultaneously 
to detect the covariates that were the most distinctive across the metaclusters. The metaclustering workflow 
consists of the following steps:

1. In each age group, we performed agglomerative hierarchical clustering of the clusters given by their mean 
covariate data with complete linkage, while simultaneously doing feature selection to select a sparse set of 
covariates that are the most distinctive across the metaclusters.

2. We plotted the metaclusters (identified in Step 1) with age group-specific dendrograms. A flat cut of the 
dendrograms at a common height threshold was used to distinguish the metaclusters in each age group. The 
metaclusters that correspond across the age groups are shown as subtrees of matched colors.

3. We visualized using contour plots the corresponding metaclusters of each age group to compare the distribu-
tions of the selected covariates across the metaclusters as well as the age groups.

In step 1, a set of 9 covariates were used based on their clinical relevance. The R package ‘sparcl’33 was used 
for agglomerative and sparse hierarchical metaclustering in step 2; the feature selection in this package is done 
by varying the values of its ‘wbound’ parameter from 2 to 5.

Results
The CIFU pipeline was run with OCT NRR thickness data and clinical assessment data of a normal cohort 
consisting of 3973 healthy eyes. The steps of the pipeline began with stratification of the OCT and clinical data 
by age into 3 age groups with (1) 1841, (2) 1351, and (3) 781 samples respectively. The list of clinical variables is 
summarized in Table 1. An identical sequence of steps of analysis was followed by CIFU within each age group.

The 180-point data for each sample (eye) were modeled using p = 11 Fourier basis functions. We chose p = 11 
since it was the smallest value of p for which FVE , as given in Eq. (6), exceeded 99% (Supplementary Fig. S1). 
The curves were normalized and aligned to a common starting angle of 0 degrees to allow for comparison of 
their shapes around the center of ONH. Using Eq. (2), the outlier OCT curves were removed: 6 samples from age 
group 1, 1 from age group 2, and 5 from age group 3. Then, within each age group, the curves were clustered by a 
discriminative functional mixture (DFM) model as described in Eq. (3). The optimal number of clusters ( K ) for 
each age group was determined by 3 different well-known criteria: AIC, BIC, and ICL (described in “Methods”). 
These criteria showed overall strong agreement attesting to optimal model selection as seen in Supplementary 
Fig. S2. Based on the value of K beyond which no significant gain was noted in these criteria, we determined the 
number of clusters, for age group 1, 2, and 3 as 7, 8, and 6 respectively. The statistics of each cluster are given in 
Supplementary Table S2.

The results of our circular functional clustering are shown in Fig. 3a–c as a panel of K clusters for each age 
group. Each cluster C within a panel consists of the circular curves for the samples that belong to C (all shown 
in a common color specific to C ) based on the similarity of their functional representation. To gain an intuitive 
understanding of the 180-point OCT data on NRR phenotypes, we used a visualization of curves as represented 
on a common circular scale. Unsupervised clustering of the circular functions revealed various NRR patterns 
in the identified clusters, some of which were distinctive whereas others have subtle differences. Notably, the 
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visualization reveals the unique mean shape (or NRR “template”) of each cluster as shown by a bold black circular 
curve in each plot of Fig. 3.

The circular curve visualization allows several interesting observations. We note the consistent dip at the 
temporal (T) region near 0 degrees, which is a characteristic feature shared by the templates of all clusters. This 
is supported by the well-known ISNT  rule34 according to which, from the center of ONH, the rim is the thinnest 
at the temporal (T) region. Interestingly, we also observed various shapes and features in the cluster templates 
(such as distinctive protrusions, notches, tilts, etc.) that appear as well as vary continuously in different (non-T) 
regions around the circle. The clustering solution allows us to record the intra-cluster variation which could be 
used to quantitatively compare the dynamics (say, the rates of focal change) of corresponding clusters across age 
groups. In this regard, we note that the popular methods of traditional clustering of the same OCT NRR data 
failed to capture the distinctive shapes and other spatial features of the NRR curves. These methods yielded only 2 
clusters of NRR data points (not curves) each in every age group (Supplementary Fig. S3). Further, the traditional 
clusters (Supplementary Fig. S4) had low inter-cluster structural variation as measured by their small values of 
Dunn Index for age group (1) kmeans: 0.063, PAM: 0.055, Mclust: 0.043; (2) kmeans: 0.049, PAM: 0.044, Mclust: 
0.034; and (3) kmeans: 0.054, PAM: 0.056, Mclust: 0.042.

In order to establish a correspondence among the clusters in different age groups as well as to characterize 
the samples that belong to each cluster, we conducted a metaclustering analysis. In this step, we clustered the 
clusters based on a set of 9 clinical variables (Table 2) of the samples in each cluster. These are known covariates 
of glaucoma, and no NRR data from the previous clustering step was used. The results of sparse hierarchical 
metaclustering are shown in Fig. 4. The dendrograms reveal the similarities among the clusters in terms of their 
mean sample covariates as well as the counts of metaclusters identified at different levels of each dendrogram. 
Based on flat cuts of all the dendrograms (at a common height threshold of 0.1), we identified 3 metaclusters 
{ M1

1 ,M
1
2 ,M

1
3 } for age group 1; 2 metaclusters { M2

1 ,M
2
2 } for age group 2; and 2 metaclusters { M3

1 ,M
3
2 } for age 

group 3. Notably, all the dendrograms show the metacluster M ·
2 (pink subtree) to be more heterogeneous in 

every age group than the metacluster M ·
1 (blue subtree). Among the youngest participants, i.e., in age group 1, 

the metacluster M1
3 (consisting of the original cluster 4) is distinct from the metacluster M1

2.
A feature selection step, performed along with metaclustering, identified the optic disc cup volume and the 

average cup-to-disk ratio (CDR) of an eye as the most significant features in terms of the contributions of the 
different covariates to the metaclustering. These distinctive covariates allow us to register the correspondence 
of the metaclusters across the different age groups in Fig. 5, which shows the contour plots of the metaclusters 
in their matched colors. The 3 metaclusters M ·

1 shown in blue have the smallest mean values of cup volume and 
CDR, the 3 metaclusters M ·

2 shown in pink have comparatively higher mean values of these covariates, and the 
single unmatched metacluster M1

3 shown in red (Fig. 5c) has the highest mean values of all metaclusters (Table 2).
It is interesting to consider the unmatched metacluster M1

3 which not only has the highest mean values of the 
covariates (cup volume and average CDR) but is, in fact, comprised of a single, distinct cluster based on the OCT 
NRR phenotype data (cluster 4 in Fig. 3a). Here we note that notwithstanding a large value of CDR (especially 
> 0.5 ), cupping by itself is not indicative of glaucoma. In fact, it is known that deep but stable cupping can occur 

Table 1.  The clinical variables of the study participants in the three age groups. The units are given in 
parentheses. The asterisk (*) denotes that a variable is described as mean ± sd. N number of samples, OD 
oculus dexter, OS oculus sinister, BCVA LogMAR best corrected visual acuity logarithm of the minimum angle 
of resolution, IOP intraocular pressure, CCT  central corneal thickness, CDR cup-to-disc ratio, sd standard 
deviation.

Clinical variables Age Group1 Age Group2 Age Group3

Number of eyes, N (OD/OS) 1841(917/924) 1351(677/674) 781(387/394)

Age (years)* 43.95 ± 2.83 53.18 ± 2.76 64.63 ± 5.39

Gender, N (female/male) 1256/585 755/596 372/409

BCVA LogMAR* 0.01 ± 0.04 0.03 ± 0.08 0.09 ± 0.11

Spherical equivalent (diopter)* 0.02 ± 0.75 0.16 ± 1.05 -0.17 ± 1.3

IOP (mmHg)* 12.58 ± 2.34 12.49 ± 2.41 12.13 ± 2.38

CCT (µm)* 525.7 ± 32.22 524.28 ± 31.96 517.14 ± 31.62

Axial length (mm)* 22.59 ± 0.74 22.63 ± 0.71 22.6 ± 0.8

Family history of Glaucoma, n, (no/yes) 1835/6 1345/6 781/0

Diabetes mellitus, n, (no/yes) 1720/121 1163/188 666/115

Hypertension, n, (no/yes) 1696/145 1083/268 575/206

RIM area  (mm2)* 1.36 ± 0.22 1.34 ± 0.23 1.33 ± 0.25

Disc area  (mm2)* 1.96 ± 0.35 1.97 ± 0.35 2.01 ± 0.37

Average CDR* 0.52 ± 0.15 0.53 ± 0.14 0.55 ± 0.14

Average thickness (µm)* 94.36 ± 9.25 92.3 ± 9.57 90.73 ± 9.9

Vertical CDR* 0.49 ± 0.15 0.5 ± 0.13 0.52 ± 0.13

Cup volume  (mm3)* 0.18 ± 0.16 0.18 ± 0.15 0.2 ± 0.18

Disc diameter (mm)* 1.49 ± 0.15 1.51 ± 0.15 1.53 ± 0.16
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Figure 3.  The clusters of the OCT NRR functional data are shown. For each of the age groups (a) 1, (b) 2, and 
(c) 3, the normalized NRR curves that belong to the same cluster are shown together using a common color. In 
age groups 1, 2, and 3, CIFU identified 7, 8, and 6 clusters respectively. For each cluster, its mean NRR curve is 
shown in black. The direction of the NRR curves is given by TSNIT (clockwise).
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due to hereditary reasons without glaucoma (see “Discussion”). Rather, it is a change in these ONH parameters 
with age of the participants that is a clinical indicator of glaucoma. Since the samples included in the present study 
contain only healthy eyes as determined clinically by agreement of multiple glaucoma specialists, the presence 
of this unmatched cluster only in the youngest age group serves as a signature of healthy NRR phenotype with 
predictive potential for glaucoma. That is, the corresponding metacluster with such high values of these covari-
ates among the older age groups would have the likelihood of progressing to glaucoma, and thus, is unlikely to 
be represented in a cohort that consists of  healthy eyes only, as we have in the present study.

Discussion
Unsupervised learning of the heterogeneity of normative ONH phenotypes in a given population can provide a 
more comprehensive understanding of the diversity of baselines that exist for degenerative neuropathies. Such 
knowledge is particularly useful in glaucomas for which different ONH parameters play a combined role in early 
detection. For example, in a non-glaucoma multiethnic cohort of Asian individuals, the inter-eye RNFL profile 
was found by OCT to be less symmetric in Malays and Indians than that in Chinese  eyes35. Not only are the 
structural characteristics of individual eyes known to vary racially, even their rates of change over time could be 
different across population groups. For instance, the rate of change of BMO-MRW was recorded as –1.82 μm/
year and –2.20 μm/year in glaucoma suspect eyes of European and African descents  respectively36. In another 
multi-centered normal population study, both age-related decline and between-subject variability in BMO-MRW 
were  observed37. Indeed, even the manufacturers of OCT technology noted racial differences in optic disc area, 
CDR, cup volume, and RNFL thickness when measured using their  platform38.

The presence of phenotypic heterogeneity makes it less justified to apply common, universal thresholds 
for clinical determination of glaucomatous damage in different population groups using OCT measurements, 
particularly in the early stages of the disease when the baselines could have stronger initial effects. To account 
for the effects of normal variation in ONH parameters, large and racially representative normative databases of 
healthy eye OCT phenotypes should be created. However, often such collections of healthy samples tend to be 
small or moderately sized, e.g., the normative database of Cirrus HD-OCT platform included just 284  subjects38. 
In that cohort, Caucasians represented 43%, Chinese 24%, African Americans 18%, Hispanics 12%, and others 
6%. The representation of Asian Indians, in contrast, was about 1% of the Cirrus HD-OCT cohort, which does 
not adequately reflect the 2020 projections about India to become the second in global glaucoma numbers, 
surpassing  Europe39. Thus, more than 16 million Indians could be affected by glaucomas, and nearly 1.2 million 
could be blinded from the disease. Some resources such as the HRT3 Normative Database, while including 104 
Indian individuals, did not improve the diagnostic sensitivity or specificity for glaucoma in that group for the 
potential reasons of limited sample size and intra-racial variation of ocular  topography40.

In this study, we leveraged the large population-based LVPEI-GLEAMS study to generate new and a relatively 
large OCT dataset based on nearly 4000 samples from normal Asian Indian participants. In fact, given that 
the recruitment of all the study participants was from a single geographic region (namely, the state of Andhra 
Pradesh), the scope of intra-racial variation to affect this dataset is limited. Moreover, the relatively large sample 
size of the data allowed us to identify a variety of clusters of NRR phenotypes, including the signature (cluster 4) 
with predictive potential for glaucoma consisting of 6.6% of all samples in the youngest age group (40–49 years). 
The absence of its corresponding cluster in the older healthy age groups despite their considerable sample sizes 
(total of 2132 samples of age 50 years and above) leads to a reasonable supposition of its potential pathological 
progression with increase in age, thereby resulting in lack of subsequent representation in a healthy cohort such 
as in the present study. Such phenotypic decline is consistent with the findings from a prospective longitudinal 

Table 2.  The clinical covariates used for metaclustering in the three age groups. The two most significant 
covariates due to feature selection are shown in bold. The values of each variable in a metacluster are described 
as mean ± sd. The units are given in parentheses. N the number of samples, IOP intraocular pressure, CCT  
central corneal thickness, CDR cup-to-disc ratio, sd standard deviation.

Metacluster 
{Clusters}

Age group 1 Age group 2 Age group 3

M1 {3,6} M2 {1,2,5,7} M3 {4} M1 {1,5,7} M2 {2,3,4,6,8} M1 {3} M2 {1,2,4,5,6}

Metacluster N 
(percent) 549 (29.8) 1170 (63.6) 122 (6.6) 547 (40.5) 804 (59.5) 212 (27.1) 569 (72.9)

IOP (mmHg) 12.68 ± 2.31 12.54 ± 2.33 12.54 ± 2.61 12.34 ± 2.31 12.6 ± 2.48 12.12 ± 2.48 12.13 ± 2.34

CCT (µm) 525.93 ± 31.08 526.24 ± 32.86 519.53 ± 30.68 523.06 ± 31.53 525.09 ± 32.23 518.71 ± 33.58 516.56 ± 30.87

Axial length (mm) 22.55 ± 0.75 22.59 ± 0.74 22.7 ± 0.67 22.63 ± 0.69 22.63 ± 0.72 22.8 ± 0.72 22.53 ± 0.82

RIM area  (mm2) 1.44 ± 0.23 1.32 ± 0.21 1.25 ± 0.19 1.42 ± 0.24 1.29 ± 0.21 1.42 ± 0.25 1.3 ± 0.24

DISC area  (mm2) 1.86 ± 0.29 1.99 ± 0.35 2.17 ± 0.4 1.89 ± 0.32 2.02 ± 0.36 1.88 ± 0.32 2.06 ± 0.38

DISC Diameter 
(mm) 1.47 ± 0.13 1.5 ± 0.15 1.59 ± 0.17 1.48 ± 0.14 1.52 ± 0.15 1.48 ± 0.14 1.55 ± 0.16

Vertical CDR 0.45 ± 0.13 0.49 ± 0.15 0.56 ± 0.14 0.47 ± 0.14 0.52 ± 0.13 0.48 ± 0.12 0.53 ± 0.14

Average CDR 0.44 ± 0.13 0.54 ± 0.15 0.62 ± 0.12 0.46 ± 0.14 0.57 ± 0.13 0.46 ± 0.12 0.58 ± 0.14

CUP Volume 
(mm3) 0.1 ± 0.1 0.2 ± 0.16 0.3 ± 0.19 0.12 ± 0.12 0.22 ± 0.16 0.11 ± 0.11 0.23 ± 0.19
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study that found the rate of age-related, glaucomatous global (or global percentage) rim area loss to be 3.7 (5.4) 
times faster as compared to healthy  eyes41.

Importantly, independent support for the identified signature relies on its clinical characterization in terms 
of covariates such as cup volume and CDR, which are useful parameters for diagnosis of glaucoma  suspects42. 
Despite its normal mean value of intraocular pressure (IOP) as is expected of healthy eyes, the signature cluster 
has the highest mean values of average CDR and cup volume of all metaclusters across all 3 age groups (Table 2). 
In a recently published longitudinal study that started from baseline values and was run over a 5-year period, 
the covariates which had statistically significant increase in glaucomatous progression included CDR and cup 
 volume43. We understand that it would perhaps be ideal to follow-up healthy individuals and measure the changes 
in their clinical covariates as they age in order to classify the ONH phenotypes via supervised learning. The 
approach of CIFU, in comparison, involves unsupervised learning of different high-resolution phenotypes in age-
stratified data and their characterization using key covariates, which is far less time-consuming and yet has the 
potential to produce a clinically insightful database for diverse populations with high phenotypic heterogeneity.

In addition to its sample size and racial representation, perhaps the most noteworthy feature of the present 
OCT dataset is its unique high-resolution measurements of NRR thickness around a circle. These 180 samples, 
collected at every 2 degrees, extend the typical use of such measurements recorded at either 4 quadrants or 12 
clock-hours, and even 48 angular  positions44, to higher-dimensional analysis. As clustering with curves show, 
the focal variations could be more nuanced than that suggested by a general rule, e.g., ISNT, and a capability 
to “zoom” into finer angular divisions can reveal further  patterns45. In low-resolution data, it may be difficult 
to detect focal changes within the confines of pre-determined inflexible sectors. Moreover, the templates of 
the clusters could also be compared using known tests in shape  analysis46. Be it circular data from OCT, or 

Figure 4.  Metaclustering of the clusters was performed using the clinical covariates of the samples in each 
cluster. The results are shown using dendrograms for age groups (a) 1, (b) 2, and (c) 3. The y-axis shows the 
distance between metaclusters. The leaves of a dendrogram denote the Id-s of the clusters identified by the 
previous clustering step. The metaclusters are obtained by a flat cut of each dendrogram at the common height 
of 0.1, and the labels and subtrees representing them are shown in different colors (blue, pink, and red).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23336  | https://doi.org/10.1038/s41598-021-02025-4

www.nature.com/scientificreports/

optic phenotypes in general, they seem suitable as candidate applications of circular statistics, and yet, we are 
unaware of any major previous studies in this regard. Further, the high-resolution also allowed the data to be 
closely approximated by continuous curves, and thus, specified by the corresponding functional representation. 
While clustering of circular point  data12,47,48 as well as clustering of  curves49–51 and (non-circular) functional 
 data13,14,23,52–54 have been addressed by past studies, the present clustering of curves in the form of circular func-
tions is possibly a novel application.

We understand that the present study has certain limitations. As we noted above, a prospective cohort study 
would be better suited to validate the predictive glaucomatous potential of the identified NRR phenotypic sig-
nature. We plan to address this in our future work. While high-resolution data could be accessed from the OCT 
scans, it is not commonly done by the clinical protocols. We hope that by adding user-friendly interfaces to CIFU, 
we may be able to promote such data acquisition and analysis, especially since the functional representation is 
independent of the number of observations per sample. Notably, there are several distinct advantages of our 

Figure 5.  Contour plots of the distributions of clinical covariates optic cup volume (y-axis) and average CDR 
(x-axis) of the samples belonging to metaclusters of age groups 1: (a) M1

1
 , (b) M1

2
 , (c) M1

3
 ; 2: (d) M2

1
 , (e) M2

2
 ; and 

3: (f) M3
1
 , (g) M3

2
 . The metaclusters that correspond across the 3 age groups are shown in matched colors (blue 

and pink) while the distinct metacluster (c) is shown in red.
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approach which could be built upon further in future studies. The estimated parameters of the fitted functional 
mixture model could be used to test the similarity of ONH phenotypes in normal versus disease conditions, thus 
allowing us to characterize any changes with precision and rigor.

After a database of phenotypic parameters is developed, known measures of shapes and distances between 
curves could be used for objective clinical classification of new OCT samples. Applied to longitudinal analyses, 
our high-resolution modeling could identify intermediate, or previously uncharacterized, stages of disease pro-
gression, especially by focusing on variations within fine angular sections. Focused analysis of angular sections 
of OCT NRR and RNFL data have revealed interesting differences between healthy and glaucoma subjects, and 
we plan to apply CIFU for mining locally distinctive features in higher  resolution55. Indeed, straightforward 
extensions are feasible for similar circular data such as RNFL phenotypes and other optic neuropathies as well as 
related eye imaging platforms, e.g., OCT-Angiography (OCTA). As we have demonstrated for other biomedical 
 platforms51,56–59, the new pipeline CIFU could be enhanced incrementally with different functionalities, say, to 
increase computational efficiency or capture the perspective of the clinical experts. The circular curve visualiza-
tion introduced in the present study may lead to a more user-friendly tool for clinical purposes as we plan to 
make it interactive, with advanced capabilities to jointly handle data and metadata, in our future work.
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