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Vibrational energies of some
diatomic molecules for a modified
and deformed potential

C. A. Onate*™, I. B. Okon?, M. C. Onyeaju?® & O. Ebomwonyi*

A molecular potential model is proposed and the solutions of the radial Schrodinger equation in the
presence of the proposed potential is obtained. The energy equation and its corresponding radial

wave function are calculated using the powerful parametric Nikiforov-Uvarov method. The energies of
cesium dimer for different quantum states were numerically obtained for both negative and positive
values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer
were calculated numerically using their respective spectroscopic parameters. The calculated values

for the three molecules are in excellent agreement with the observed values. Finally, we calculated
different expectation values and examined the effects of the deformed and adjustable parameters on
the expectation values.

In the recent time, exponential-type potential has been the subject of interest in the quantum mechanics which
greatly popularized the relativistic and non-relativistic wave equations such as the Schrodinger equation,
Klein-Gordon equation, Dirac equation and others!~°. The approximate solutions of these wave equations
have been obtained mostly for one-dimensional system with various exponential-type potentials using different
approximation methods developed by different authors. The frequently used methods are Nikiforov-Uvarov
method'®", asymptotic iteration method'®, supersymmetric approach!®?, factorization method?', exact and
proper quantization rule?>*. Recently, Ikot et al.*** have used a new approach called NU Functional analysis
method. The different methods have different approach for the solutions of the wave equations but give results
that are approximately the same. For instance, the solutions of the radial Schrodinger equation under the Deng-
Fan potential model has been studied by Dong and Gu*® using factorization method. Zhang et al.*” and Onate
et al.”® respectively, also studied the potential via supersymmetry quantum mechanics and parametric Niki-
forov-Uvarov method. The results of these authors agreed with one another.

The solutions of the wave equations studied for different potentials, have been applied to the study of several
systems such as Theoretic quantities®~*? and Thermal properties (mean energy, heat capacity, free energy and
entropy)®*~. In ref.”, the result was used to study the rotation transition frequency for HE. In ref.?s, the wave
function was used to study some theoretic quantities such Shannon entropy and Rényi entropy. In ref.”, the
problem of so(2, 2) was studied under the Poschl-Teller potential. Several authors have also studied the energy
eigenvalues for many diatomic molecules on molecular dynamics and spectroscopy in the field of chemistry
and molecular physics***!. This provides explanations about the dynamics and physical properties of some
molecules. The potential energy function involved are used to study the bonding between atoms, hence the
predictions to the behaviour of some class of molecules*’. Some of these potentials can be used to describe
some experimental values. Generally, a good empirical internuclear potential function should reproduce the
experimental potential energy curves as determined by the RKR method. Considering this, the present study
wants to examine an approximate solutions of the Schrodinger equation with a new modified and deformed
exponential-type molecular potential model confined on a cesium dimer, sodium dimer and lithium dimer. The
study also aims to investigate the potential with two different values for each of the deformed parameter and
adjustable parameter under the same cesium dimer. This potential has not been reported for any study yet to
the best of our understanding.

The cesium dimer is an important molecule that has many applications, e.g. vibrational cooling of molecules,
population dynamics, and even coherent control**=*’. The cesium molecule is an attractive system for examining a
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possible variation of the electron-to-proton mass ratio and of the fine-structure constant®, It is noted that 3 >
state of cesium dimer has a strong Fermi contact interaction with the nuclei, and possesses a large hyperfine
splitting®. The potential energy curve of the cesium dimer for 3> 3" and a® 3" F states has been reported in
ref.***. The modified and deformed exponential-type molecular potential model under consideration, is given as
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where C is a modified parameter, g is a deformed parameter and g; is an adjustable parameters whose value can
be taken as 1. When the value of the adjustable parameter equals the value of the deformed parameter within
=1, the results of potential (1) gives other useful results. D, is the dissociation energy r. is the equilibrium bond
separation and « is the screening parameter. Its numerical value can be obtain using the formula
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where W is the Lambert function, p is the reduced mass, ¢ is the speed of light and w, is the vibrational frequency.

Parametric Nikiforov-Uvarov method

The parametric Nikiforov-Uvarov method is one of the shortest and accurate traditional techniques to solve
bound state problems. This method was derived from the conventional Nikiforov-Uvarov method by Tezcan
and Sever'’. According to the authors, the reference equation for the parametric Nikiforov-Uvarov is given as
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Following the work of these authors, the condition for eigenvalues equation and wave function are respec-
tively given by!7*!
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The parametric constants in Egs. (3) and (4) are deduced as follows
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The radial Schrédinger equation and the interacting potential
To obtain the energy eigenvalues of the Schrédinger equation with potential (1), we consider the original
Schrodinger equation given by
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Setting the wave function ¥ (r) = Uy.¢(r) Yime(6,¢)r~!, and consider the radial part of the Schrédinger
equation, Eq. (7) becomes
B2 d?Up(r)
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where V(r) is the interacting potential given in Eq. (1), E, is the non-relativistic energy of the system, % is the
reduced PlancK’s constant, u is the reduced mass, # is the quantum number, U,,¢ (1) is the wave function. Substitut-
ing Eq. (1) into (8), and by defining y = e,%, the radial Schrédinger equation with the deformed exponential-
type potential turns to be
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where
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e
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Comparing Eq. (9) with Eq. (3), the parametric constants in Eq. (6) are obtain as follows
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Substituting the parameters in Eq. (13) into Eq. (4), we have the energy equation for the system as
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and the corresponding wave function is obtain when the values of a1o to 13 in Eq. (6) are substituted into Eq. (5),
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Expectation values

In this section, we calculated some expectation values using Hellmann-Faynman Theorey (HFT)**->°. When a
Hamiltonian H for a given quantum system is a function of some parameter v, the energy-eigenvalue E, and the
eigenfunction U, (v) of H are given by
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with the effective Hamiltonian as
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Setting v = y and v = D,,, we have the expectation values of p? and V respectively are
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The average deviation of the calculated results from the experimental results is obtained using the formula
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n RKR'em™ [gp=q; =1cm™ |RKR® cm™ |gqp =g = —1cm™
0 14.4248 14.42647874 19,477.5507 | 19,477.55769
1 43.1680 43.17554991 19,506.2939 19,506.29999
2 71.7657 71.77608344 19,534.8916 | 19,534.90041
3 100.2211 100.2450879 19,563.3470 | 19,563.35986
4 128.5375 128.5580953 19,591.6634 | 19,591.68592
5 156.7182 156.7410068 19,619.8441 | 19,620.43756
6 184.7663 184.7735524 19,647.8922 | 19,648.55903
7 212.6851 212.6619860 19,675.8110 | 19,677.08704
8 240.4778 240.4268832 19,703.6037 | 19,704.38389
9 268.1477 268.2399412 19,731.2736 | 19,732.74500
10 295.6980 296.0578830 19,758.8239 | 19,759.62187
11 323.1320 323.3428999 19,786.2579 | 19,786.99999
12 350.4529 351.0106935 19,813.5788 | 19,814.29857

Table 1. Comparison of theoretical values with experimental values for the vibrational energy levels of the
modified deformed exponential-type molecular potential for 3> Z; state of cesium dimer.

n Nay”” qo = q1 = 1Present results | Liy”’ qgo = q1 = —1Present results
0 60.33300 60.30301255 31.8570 | 31.76487540
1 180.3730 | 180.2529821 90.4530 | 90.32373499
2 299.5550 | 299.3039824 142.523 | 142.3750821
3 417.8710 | 417.2590837 188.240 | 188.0291646
4 535.3130 | 534.4058726 227.679 | 227.3301735
5 651.8720 | 650.2238934 260.837 | 260.3399997
6 767.5390 | 765.0058797 287.665 | 287.1458022
7 882.3050 | 879.4527801 308.098 | 307.8296283
8 996.1620 | 993.0282669 322.155 | 322.4300795
9 1109.100 | 1104.263984 330.170 | 331.0234210
10 1221.113 | 1215.346550 333.269 | 333.6470384

Table 2. Comparison of theoretical values with experimental (in cm™) values for the vibrational energy levels
of the modified deformed exponential-type molecular potential for 5! A state sodium dimer and a* =] state of
lithium dimer.

where Egp is the experimental data, Ecg is the calculated values and N is the total number of the experimental
data.

Discussion of result

The comparison of the observed values of RKR and calculated values for 33X} state of cesium dimer with
qgo=q1 =1,q0 = q1 = —1,D, = 2722.28 cm~!,r, = 5.3474208 A, and w, = 28.891 cm™!is reported in Table 1.
The results for two values for each of the deformed parameter and adjustable parameter agreed with the observed
values of the cesium dimer. However, the results obtained with gy = q; = —1are higher than their counterpart
obtained with qo = q; = 1. In Table 2, the comparison of vibrational energies of sodium dimer and lithium
dimer respectively are reported. When the deformed parameter and the adjustable parameter are taken as one
with D, = 79885 cm™!, r, = 1.097 A, w, = 2358.6 cm™, the results agreed with the observed values of 5' A,
state of sodium dimer. Taken the deformed parameter and adjustable parameter respectively as minus one, with
D, =2722.28 cm ™', r, = 4.173 A and w, = 65.130 cm ™!, the results obtained correspond to the observed values
of lithium dimer.

To deduce the effect of the deformed and adjustable parameters on the numerical values and discrepancy of
the calculated results from the experimental data, we used the formula given in Eq. (28). For cesium dimer, the
average percentage deviation for o = q; = 1is 0.0038% while the average percentage deviation for gy = q; = —1
is 0.0002%. For sodium dimer with gy = q1 = 1, the average percentage deviation is 0.0342% while the average
percentage deviation for lithium dimer with go = q; = —1,1is 0.0016%. In Table 3, we presented the numerical
results for the two different expectation values calculated in Eq. (20) and Eq. (21). The effect of the deformed
and adjustable parameters on the expectation values can be seen in Table 3. For (p?), the values obtained with
qo = q1 = lare higher than their counterpart obtained with g = gq; = —1. However, for (V) ,, the values obtained
with go = g1 = —1are higher than their counterpart obtained with g9 = q; = 1.

The effect of the screening parameter on the energy eigenvalues with two values each of the deformed param-
eter and adjustable parameter are shown in Fig. 1. In each case, the energy of the system varies inversely with
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Qo =q1=—1. Qo =q =1

n ), (V) (o), (V)

0 —0.068637482 | 0.295409752 | 22.32941128 —15.96118652
1 —0.111005221 | 0.626165798 | 22.44835649 —16.66269191
2 —0.094264753 | 0.781132946 | 22.33359455 —17.40250843
3 —0.072565924 | 0.855219469 | 21.92055901 —18.17986161
4 —0.056599797 | 0.888914740 | 21.12697090 —18.99025081
5 —0.044980410 | 0.901338383 | 19.84830239 —19.82213968
6 —0.033277583 | 0.902210621 | 17.95340272 —20.65071832
7 —0.016766628 | 0.896751247 | 15.28301985 —21.42578612
8 0.008774554 | 0.887879382 | 11.65940036 —22.04728521
9 0.046903527 | 0.877275751 6.930904930 | —22.31342118
10 0.100553144 | 0.865926536 1.123376051 | — 21.80368609

Table 3. Expectation values at various quantum states with s = y = 1, = 0.4 = 0.25and D, = 5.
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Figure 1. Variation of energy E, against the screening parameter o, with A = & = 1y, = 0.4and D, = 5.

the screening parameter. The energy of the system for go = q; = 1are lower than the energy of the system for

q=q1 = —1.

Conclusion

The solutions of a one-dimensional Schrodinger equation is obtained for a molecular potential model using para-
metric Nikiforov-Uvarov method. By changing the numerical values of the deformed parameter and adjustable
parameter, the results obtained for different molecules agreed with experimental values. However, the results
obtained with go = g1 = —1 are closer to the experimental values compared with the results obtained with
qo = q1 = 1. The results for lithium dimer are more closer to the experimental values followed by the results for

cesium dimer obtained with go = q; = —1.
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