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Vibrational energies of some 
diatomic molecules for a modified 
and deformed potential
C. A. Onate1,5*, I. B. Okon2, M. C. Onyeaju3 & O. Ebomwonyi4

A molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the 
presence of the proposed potential is obtained. The energy equation and its corresponding radial 
wave function are calculated using the powerful parametric Nikiforov–Uvarov method. The energies of 
cesium dimer for different quantum states were numerically obtained for both negative and positive 
values of the deformed and adjustable parameters. The results for sodium dimer and lithium dimer 
were calculated numerically using their respective spectroscopic parameters. The calculated values 
for the three molecules are in excellent agreement with the observed values. Finally, we calculated 
different expectation values and examined the effects of the deformed and adjustable parameters on 
the expectation values.

In the recent time, exponential-type potential has been the subject of interest in the quantum mechanics which 
greatly popularized the relativistic and non-relativistic wave equations such as the Schrӧdinger equation, 
Klein–Gordon equation, Dirac equation and  others1–15. The approximate solutions of these wave equations 
have been obtained mostly for one-dimensional system with various exponential-type potentials using different 
approximation methods developed by different authors. The frequently used methods are Nikiforov–Uvarov 
 method16,17, asymptotic iteration  method18, supersymmetric  approach19,20, factorization  method21, exact and 
proper quantization  rule22,23. Recently, Ikot et al.24,25 have used a new approach called NU Functional analysis 
method. The different methods have different approach for the solutions of the wave equations but give results 
that are approximately the same. For instance, the solutions of the radial Schrӧdinger equation under the Deng-
Fan potential model has been studied by Dong and  Gu26 using factorization method. Zhang et al.27 and Onate 
et al.28 respectively, also studied the potential via supersymmetry quantum mechanics and parametric Niki-
forov–Uvarov method. The results of these authors agreed with one another.

The solutions of the wave equations studied for different potentials, have been applied to the study of several 
systems such as Theoretic  quantities29–32 and Thermal properties (mean energy, heat capacity, free energy and 
entropy)33–38. In ref.27, the result was used to study the rotation transition frequency for HF. In ref.28, the wave 
function was used to study some theoretic quantities such Shannon entropy and Rényi entropy. In ref.39, the 
problem of so(2, 2) was studied under the Pӧschl-Teller potential. Several authors have also studied the energy 
eigenvalues for many diatomic molecules on molecular dynamics and spectroscopy in the field of chemistry 
and molecular  physics40,41. This provides explanations about the dynamics and physical properties of some 
molecules. The potential energy function involved are used to study the bonding between atoms, hence the 
predictions to the behaviour of some class of  molecules42. Some of these potentials can be used to describe 
some experimental values. Generally, a good empirical internuclear potential function should reproduce the 
experimental potential energy curves as determined by the RKR method. Considering this, the present study 
wants to examine an approximate solutions of the Schrӧdinger equation with a new modified and deformed 
exponential-type molecular potential model confined on a cesium dimer, sodium dimer and lithium dimer. The 
study also aims to investigate the potential with two different values for each of the deformed parameter and 
adjustable parameter under the same cesium dimer. This potential has not been reported for any study yet to 
the best of our understanding.

The cesium dimer is an important molecule that has many applications, e.g. vibrational cooling of molecules, 
population dynamics, and even coherent  control43–47. The cesium molecule is an attractive system for examining a 
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possible variation of the electron-to-proton mass ratio and of the fine-structure  constant48. It is noted that 33
∑+

g  
state of cesium dimer has a strong Fermi contact interaction with the nuclei, and possesses a large hyperfine 
 splitting49. The potential energy curve of the cesium dimer for 33

∑+
g  and a3

∑+
u  states has been reported in 

ref.49,50. The modified and deformed exponential-type molecular potential model under consideration, is given as

where C is a modified parameter, q0 is a deformed parameter and q1 is an adjustable parameters whose value can 
be taken as ±1. When the value of the adjustable parameter equals the value of the deformed parameter within 
±1, the results of potential (1) gives other useful results. De is the dissociation energy re is the equilibrium bond 
separation and α is the screening parameter. Its numerical value can be obtain using the formula

where W is the Lambert function, µ is the reduced mass, c is the speed of light and ωe is the vibrational frequency.

Parametric Nikiforov–Uvarov method
The parametric Nikiforov–Uvarov method is one of the shortest and accurate traditional techniques to solve 
bound state problems. This method was derived from the conventional Nikiforov–Uvarov method by Tezcan 
and  Sever17. According to the authors, the reference equation for the parametric Nikiforov–Uvarov is given as

Following the work of these authors, the condition for eigenvalues equation and wave function are respec-
tively given  by17,51

The parametric constants in Eqs. (3) and (4) are deduced as follows

The radial Schrӧdinger equation and the interacting potential
To obtain the energy eigenvalues of the Schrödinger equation with potential (1), we consider the original 
Schrödinger equation given by

Setting the wave function ψ(r) = Un,ℓ(r)Ym,ℓ(θ ,φ)r
−1, and consider the radial part of the Schrӧdinger 

equation, Eq. (7) becomes

where V(r) is the interacting potential given in Eq. (1), Enℓ is the non-relativistic energy of the system, � is the 
reduced Planck’s constant, µ is the reduced mass, n is the quantum number, Unℓ(r) is the wave function. Substitut-
ing Eq. (1) into (8), and by defining y = 1

e−αr , the radial Schrӧdinger equation with the deformed exponential-
type potential turns to be
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Comparing Eq. (9) with Eq. (3), the parametric constants in Eq. (6) are obtain as follows

Substituting the parameters in Eq. (13) into Eq. (4), we have the energy equation for the system as

and the corresponding wave function is obtain when the values of α10 to α13 in Eq. (6) are substituted into Eq. (5),

Expectation values
In this section, we calculated some expectation values using Hellmann-Faynman Theorey (HFT)52–56. When a 
Hamiltonian H for a given quantum system is a function of some parameter v, the energy-eigenvalue En and the 
eigenfunction Un(v) of H are given by

with the effective Hamiltonian as

Setting v = µ and v = De,, we have the expectation values of p2 and V  respectively are

The average deviation of the calculated results from the experimental results is obtained using the formula
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where EER is the experimental data, ECR is the calculated values and N is the total number of the experimental 
data.

Discussion of result
The comparison of the observed values of RKR and calculated values for 33�+

g  state of cesium dimer with 
q0 = q1 = 1, q0 = q1 = −1, De = 2722.28 cm−1, re = 5.3474208 Å, and ωe = 28.891 cm−1 is reported in Table 1. 
The results for two values for each of the deformed parameter and adjustable parameter agreed with the observed 
values of the cesium dimer. However, the results obtained with q0 = q1 = −1 are higher than their counterpart 
obtained with q0 = q1 = 1. In Table 2, the comparison of vibrational energies of sodium dimer and lithium 
dimer respectively are reported. When the deformed parameter and the adjustable parameter are taken as one 
with De = 79885 cm−1, re = 1.097 Å, ωe = 2358.6 cm−1, the results agreed with the observed values of 51�g 
state of sodium dimer. Taken the deformed parameter and adjustable parameter respectively as minus one, with 
De = 2722.28 cm−1, re = 4.173 Å and ωe = 65.130 cm−1, the results obtained correspond to the observed values 
of lithium dimer.

To deduce the effect of the deformed and adjustable parameters on the numerical values and discrepancy of 
the calculated results from the experimental data, we used the formula given in Eq. (28). For cesium dimer, the 
average percentage deviation for q0 = q1 = 1 is 0.0038% while the average percentage deviation for q0 = q1 = −1 
is 0.0002%. For sodium dimer with q0 = q1 = 1, the average percentage deviation is 0.0342% while the average 
percentage deviation for lithium dimer with q0 = q1 = −1, is 0.0016%. In Table 3, we presented the numerical 
results for the two different expectation values calculated in Eq. (20) and Eq. (21). The effect of the deformed 
and adjustable parameters on the expectation values can be seen in Table 3. For 

〈

p2
〉

, the values obtained with 
q0 = q1 = 1 are higher than their counterpart obtained with q0 = q1 = −1. However, for 〈V〉n the values obtained 
with q0 = q1 = −1 are higher than their counterpart obtained with q0 = q1 = 1.

The effect of the screening parameter on the energy eigenvalues with two values each of the deformed param-
eter and adjustable parameter are shown in Fig. 1. In each case, the energy of the system varies inversely with 

Table 1.  Comparison of theoretical values with experimental values for the vibrational energy levels of the 
modified deformed exponential-type molecular potential for 33

∑

+

g  state of cesium dimer.

n RKR1  cm−1 q0 = q1 = 1  cm−1 RKR49  cm−1 q0 = q1 = −1  cm−1

0 14.4248 14.42647874 19,477.5507 19,477.55769

1 43.1680 43.17554991 19,506.2939 19,506.29999

2 71.7657 71.77608344 19,534.8916 19,534.90041

3 100.2211 100.2450879 19,563.3470 19,563.35986

4 128.5375 128.5580953 19,591.6634 19,591.68592

5 156.7182 156.7410068 19,619.8441 19,620.43756

6 184.7663 184.7735524 19,647.8922 19,648.55903

7 212.6851 212.6619860 19,675.8110 19,677.08704

8 240.4778 240.4268832 19,703.6037 19,704.38389

9 268.1477 268.2399412 19,731.2736 19,732.74500

10 295.6980 296.0578830 19,758.8239 19,759.62187

11 323.1320 323.3428999 19,786.2579 19,786.99999

12 350.4529 351.0106935 19,813.5788 19,814.29857

Table 2.  Comparison of theoretical values with experimental (in  cm−1) values for the vibrational energy levels 
of the modified deformed exponential-type molecular potential for 51�g state sodium dimer and a3�+

u  state of 
lithium dimer.

n Na2
57 q0 = q1 = 1 Present results Li2

57 q0 = q1 = −1 Present results

0 60.33300 60.30301255 31.8570 31.76487540

1 180.3730 180.2529821 90.4530 90.32373499

2 299.5550 299.3039824 142.523 142.3750821

3 417.8710 417.2590837 188.240 188.0291646

4 535.3130 534.4058726 227.679 227.3301735

5 651.8720 650.2238934 260.837 260.3399997

6 767.5390 765.0058797 287.665 287.1458022

7 882.3050 879.4527801 308.098 307.8296283

8 996.1620 993.0282669 322.155 322.4300795

9 1109.100 1104.263984 330.170 331.0234210

10 1221.113 1215.346550 333.269 333.6470384
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the screening parameter. The energy of the system for q0 = q1 = 1 are lower than the energy of the system for 
q0 = q1 = −1.

Conclusion
The solutions of a one-dimensional Schrӧdinger equation is obtained for a molecular potential model using para-
metric Nikiforov–Uvarov method. By changing the numerical values of the deformed parameter and adjustable 
parameter, the results obtained for different molecules agreed with experimental values. However, the results 
obtained with q0 = q1 = −1 are closer to the experimental values compared with the results obtained with 
q0 = q1 = 1. The results for lithium dimer are more closer to the experimental values followed by the results for 
cesium dimer obtained with q0 = q1 = −1.

Table 3.  Expectation values at various quantum states with � = µ = 1,re = 0.4,α = 0.25 and De = 5.

n

q0 = q1 = −1. q0 = q1 = 1.

〈

p2
〉

n
〈V〉n

〈

p2
〉

n
〈V〉n

0 − 0.068637482 0.295409752 22.32941128 − 15.96118652

1 − 0.111005221 0.626165798 22.44835649 − 16.66269191

2 − 0.094264753 0.781132946 22.33359455 − 17.40250843

3 − 0.072565924 0.855219469 21.92055901 − 18.17986161

4 − 0.056599797 0.888914740 21.12697090 − 18.99025081

5 − 0.044980410 0.901338383 19.84830239 − 19.82213968

6 − 0.033277583 0.902210621 17.95340272 − 20.65071832

7 − 0.016766628 0.896751247 15.28301985 − 21.42578612

8 0.008774554 0.887879382 11.65940036 − 22.04728521

9 0.046903527 0.877275751 6.930904930 − 22.31342118

10 0.100553144 0.865926536 1.123376051 − 21.80368609
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Figure 1.  Variation of energy En against the screening parameter α, with � = µ = 1,re = 0.4 and De = 5.
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