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Synthesis of low sidelobe level 
antenna arrays through only main 
lobe assumption
Mohammad Khalaj‑Amirhosseini

An analytic method is proposed to design uniformly spaced arrays so that have as low as possible 
sidelobe level and having directivity as close as to that of uniformly excited arrays. The ideal array 
factor of arrays is assumed to have only one main lobe. The actual synthesized array would have 
sidelobe levels which can be controlled by a parameter. Some examples are given to verify the 
effectiveness of the presented method.

Array factor characteristics of linear and planar antenna arrays are important for many applications such as 
communication systems, radars and  imaging1. The sidelobe level (SLL), directivity and beamwidth are three 
important features of antenna arrays which depend on the excitation currents of the antennas and the distances 
between  them2,3.

Uniformly excited arrays of distances equal or more than a half wavelength have the maximum possible 
directivity. However, the sidelobe level of uniformly excited arrays is high and about − 13.2 dB which makes them 
less desirable for many  applications2. Hence, various methods have been presented for sidelobe level reduction 
by researchers, so far.

Sidelobe reduction by iterative sampling and Fourier transform  methods4,5, nonuniform distance between 
the  elements6–9, self  convolution10, m-th power of uniform  array11, Fourier  method12, and some optimization 
 procedures13–15 have been studied.  In14, the arrays are synthesized to have maximum directivity for a specified 
sidelobe level.

In this paper, we propose an ideal desired array factor which has only a main lobe and has no sidelobes. 
Indeed, desired array factor is assumed to have only a main lobe. So, one may call this method as Only Main 
Lobe Assumption (OMLA). This ideal array factor needs infinite number of elements. Therefore, the actual 
synthesized array would have non zero sidelobes due to truncation of infinite number of elements. The sidelobe 
level of synthesized array can be controlled by a parameter which is related to the beamwidth of the main lobe of 
the ideal desired array factor. Unlike some patterns such as Taylor-nbar2, the proposed method gives us explicit 
relations for the excitation currents.

The paper is organized as follows. In “Array factors and excitation currents” section, the relations between 
the array factors and excitation currents of linear arrays are reviewed. In “Only main lobe assumption” section, 
the only main lobe assumption (OMLA) method is introduced. In “Verification and comparison” section, the 
OMLA method is verified using some examples. In “Two dimensional Omla pattern” section, the presented 
OMLA method is applied for planar arrays by a transformation.

Array factors and excitation currents
Figure 1 shows linear antenna arrays having L = 2 N + 1 or L = 2 N elements of equal distances d and unequal 
excitation currents In. The array factor of linear arrays can be written as follows, for odd and even number of 
elements, respectively.

(1)F(ψ) =

N
∑

n=−N
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N
∑

n=−N
n�=0

Inexp
(

j(n∓ 0.5)ψ
)
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where ψ is defined as ψ = 2π d
�
cos θ in which λ is the wavelength. The upper and lower signs in (2) refers to 

positive and negative n, respectively, in entire this paper.
From the Fourier’s series theorem, the excitation currents are related to desired array factor, Fd(ψ), as follows 

for odd and even number of elements, respectively.

Only main lobe assumption
We intend to synthesize a linear array which has as low as possible sidelobe level while having directivity as close 
as to directivity of uniformly excited arrays. To this end, we propose a desired array factor, Fd(ψ), that has abso-
lutely no sidelobes and has only a main lobe similar to the main lobe of uniformly excited array. Figure 2 shows 
such a desired array factor that has only a main lobe within the range ψ = [− ψ0 + ψ0] in which the parameter ψ0 
is an arbitrary value around 2π/L. Therefore, 2 ψ0 denotes the first null beamwidth (FNBW) of the array factor.

The proposed desired array factor can be designed as the expanded or contracted main lobe of a uniformly 
excited array. In this way, the desired array factor is written by a summation as follows for odd and even number 
of elements, respectively.
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∫ π
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Figure 1.  Typical configuration of linear antenna arrays. (a) odd number of elements, (b) even number of 
elements.

Figure 2.  Desired array factor that has only a main lobe of first null beamwidth of 2 ψ0.
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In Eqs. (5) and (6), α is the expansion factor defined as follows.

In fact, the expansion factor is the ratio of the width of desired main lobe to the width of the main lobe of 
uniformly excited array.

Substituting Eqs. (5) and (6) in Eqs. (3) and (4), gives us the required excitation currents as follows for odd 
and even number of elements, respectively.

The first upper and lower signs in Eq. (9) refer to positive and negative n, respectively. Also, the second upper 
and lower signs in Eq. (9) refer to positive and negative m, respectively.

It is worth mentioning that the proposed desired array factor is only an assumption for a linear array hav-
ing definite number of elements. Actually, this array factor can not be realized exactly because it needs infinite 
number of elements according to Eqs. (8) and (9).

Verification and comparison
The proposed OMLA method is verified and compared with other methods such as uniform, Chebyshev and 
Taylor by some examples.

Two arrays with L = 10 and L = 15 elements are designed to have the proposed desired array factor. Figures 3 
and 4 illustrate four resultant array factors for α = 1.0 and 1.3. It is seen that the resultant patterns, F(ψ), have a 
main lobe and also several non-zero sidelobes due to truncation of infinite number of elements. The main lobe 
is somewhat wider than the desired one and its widening is reduced as the expansion factor α increases.

The sidelobe level of OMLA patterns are dependent on the expansion factor α and the number of elements 
L. Figures 5 and 6 show the dependence of sidelobe level on these parameters. It is seen that the sidelobe level is 
reduced as the parameter α increases and it is almost independent of L for Ls greater than about 8. In fact, as it 
is seen in Fig. 6, the expansion factor α determines SLL. Also, by choosing the number of elements L besides α, 
the first null beamwidth of the pattern, i.e. 2 ψ0, is determined by Eq. (7).

The beamwidth and directivity of OMLA patterns are depending on d/λ as well as α and L. Figures 7 and 8 
illustrate the variation of HPBW and normalized directivity, i.e. D/L, with respect to α and L for d/λ equal to 0.5. 
It is seen that as the expansion factor α increases, the HPBW increases and directivity decreases. So, reduction of 
SLL is at the expense of some reduction in the directivity, which is expectable in array design. Also, Fig. 9 shows 
directivity for array of L = 10 elements versus d/λ which indicates increase of directivity as d/λ increases. One 
can see from Figs. 8 or 9 and also 6 that the directivity (and HPBW) of OMLA pattern is close to that of uniform 
array, i.e. L, but with SLL less than -19.5 dB rather than being equal to -13.2 dB, for α  > 1.
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Figure 3.  Designed array factors, F(ψ), for array of L = 10 elements.
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It is worth noting that the proposed OMLA method can be used for synthesizing arrays with supposed radia-
tion characteristics containing SLL and directivity or HPBW. For instance, Figs. 6 and 8 are utilized to obtain the 
parameter α and the number of elements L from known SLL and D.

Figures 10 and 11 show the required excitation currents of OMLA pattern for some αs for L = 10 and 15 ele-
ments, respectively. It is seen that as α increases the tapering of currents increases.

One can investigate that directivity of OMLA pattern is close to that of Taylor-nbar  pattern2. Figure 12 com-
pares these two patterns of the same SLL as well as directivity for L = 15 elements and d/λ  = 0.5. Also, Fig. 13 
shows the excitation currents of the elements for these two types of patterns. It is seen that level of the second 
sidelobes onwards of OMLA pattern are less than those of Taylor pattern. Instead, the beamwidth of OMLA 
pattern is slightly greater than that Taylor one. So, the directivity of these two patterns are almost the same.

The performance of OMLA can be compared with Chebyshev and Taylor patterns in terms of taper efficiency 
η = D/Du where Du is the directivity of uniform array. Figure 14 depicts taper efficiency of three patterns of L = 15 
and 30 elements versus SLL for d/λ  = 0.5. The efficiency of OMLA pattern is slightly less than that of Taylor one 
but it is larger than the efficiency of Chebyshev pattern for |SLL| below a specified value.

Figure 4.  Designed array factors, F(ψ), for array of L = 15 elements.

Figure 5.  Sidelobe level of designed array versus L and α as parameter.

Figure 6.  Sidelobe level of designed array versus α and L as parameter.
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Figure 7.  HPBW of designed array versus α and L as parameter for d/λ = 0.5.

Figure 8.  Normalized directivity of designed array versus α and L as parameter for d/λ = 0.5.

Figure 9.  Directivity of designed array versus d/λ and α as parameter for L = 10.

Figure 10.  Excitation currents of elements for OMLA pattern of L = 10 elements.
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The presented OMLA method has two important advantages over Taylor method. First, it gives us explicit 
relations for the excitation currents of elements by Eqs. (8) and (9). Second, the level of all sidelobes of OMLA 
pattern are equal or less than those of Taylor pattern for identical SLLs.

Two dimensional Omla pattern
Usually, the pattern of planar arrays are equated as the multiplication of patterns of two linear arrays by suppos-
ing Imn = ImIn

2. The resultant two dimensional patterns would not have ring type sidelobes in ψx-ψy plane. Here, 
we introduce a transformation to transform an arbitrary pattern of linear arrays, F(ψ), to the pattern of a planar 
array, F(ψx, ψy), having ring type sidelobes. The proposed transformation is as follows to apply the Eqs. (1) and (2).

where ψx and ψy are real variables defined as ψx = 2π d
�
sinθ cosϕ and ψy = 2π d

�
sinθsinϕ . This transformation 

gives a more circular ring type pattern than the transformation presented  in16.

(14)ψ =

√

ψ2
x + ψ2

y

Figure 11.  Excitation currents of elements for OMLA pattern of L = 15 elements.

Figure 12.  Array factors and directivity of OMLA and Taylor of the same SLL for L = 15 elements and d/λ = 0.5.

Figure 13.  Excitation currents of elements for OMLA and Taylor patterns of L = 15 elements.
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The required excitation currents of planar arrays can be obtained from well-known methods such as two 
dimensional sampling method or Fourier’s series method, like the following relation for odd by odd number 
of elements.

Figure 15 shows the OMLA pattern of α = 1.3 for a planar array of 15 by 15 elements. The ring type sidelobes 
are seen obviously. Also, Fig. 16 shows the excitation currents which have ring type symmetry and create an 
almost circular boundary planar array.

Conclusion
An analytic method was proposed to design uniformly spaced arrays so that have as low as possible sidelobe 
level and having directivity as close as to that of uniformly excited arrays. The proposed method gives us explicit 
relations for the excitation currents. The synthesized array would have sidelobe levels which can be controlled by 

(15)Imn =
1

4π2

π
∫

−π

π
∫

−π

F(ψx ,ψy) exp
(

−j(mψx , nψy)
)

dψxdψy

Figure 14.  Taper efficiency of three types of patterns for L = 15 and 30.

Figure 15.  OMLA pattern of α = 1.3 for a planar array of 15 by 15 elements.

Figure 16.  Excitation currents of elements for OMLA pattern of α = 1.3 for a planar array of 15 by 15 elements.
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the expansion factor which is related to the beamwidth of the main lobe of the ideal desired array factor. It was 
seen that as the expansion factor increases the SLL decreases at the expense of some reduction in the directivity 
and some increase in the HPBW. The second sidelobes onwards of the synthesized pattern are less than those of 
Taylor pattern while the directivity of these two patterns are almost the same.

Received: 15 July 2021; Accepted: 8 November 2021

References
 1. Sun, G. et al. Sidelobe control by node selection algorithm based on virtual linear array for collaborative beamforming in WSNs. 

Wirel. Pers. Commun. 90(3), 1443–1462 (2016).
 2. Hansen, R. C. Phased Array Antennas, Wiley Series in Microwave and Optical Engineering (Wiley, 2009).
 3. Jayaprakasam, S., Rahim, S. K. A., Leow, C. Y., Ting, T. O. & Eteng, A. Multiobjective beam pattern optimization in collaborative 

beamforming via NSGA-II with selective distance. IEEE Trans. Antennas Propag. 65(5), 2348–2357 (2017).
 4. Keizer, W. P. M. N. Low sidelobe phased array pattern synthesis with compensation for errors due to quantized tapering. IEEE 

Trans. Antennas Propag. 59(12), 4520–4524 (2011).
 5. Stutzman, W. L. Sidelobe control of antenna patterns. IEEE Trans. Antennas Propag. 20(1), 102–104 (1972).
 6. Harrington, R. F. Sidelobe reduction by nonuniform element spacing. IRE Trans. Antennas Propag. 9, 187–192 (1961).
 7. Khalaj-Amirhosseini, M., Vecchi, G. & Pirinoli, P. Near-Chebyshev pattern for nonuniformly spaced arrays using zeros matching 

method. IEEE Trans. Antennas Propag. 65(10), 5155–5161 (2017).
 8. Khalaj-Amirhosseini, M. Design of nonuniformly spaced arrays using zeros matching method. Int. J. RF Microw. Comput. Aided 

Eng. 28(9), e21490 (2018).
 9. Khalaj-Amirhosseini, M. Design of nonuniformly spaced antenna arrays using Fourier’s coefficients equating method. IEEE Trans. 

Antennas Propag. 66(10), 5326–5332 (2018).
 10. Alijani, M. G. H., Neshati, M. H. & Boozari, M. Side lobe level reduction of any type of linear equally spaced array using the method 

of convolution. Prog. Electromagn. Res. Lett. 66(3), 79–84 (2017).
 11. Safaai-Jazi, A. & Stutzman, W. L. A new low side lobe pattern synthesis technique for equally-spaced linear arrays. IEEE Trans. 

Antennas Propag. 64(4), 1317–1324 (2016).
 12. Safaai-Jazi, A. & Stutzman, W. L. A Fourier method for sidelobe reduction in equally spaced linear arrays. Radio Sci. 53, 565–576 

(2018).
 13. Yan, K.-K. & Lu, Y. Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. Antennas Propag. 45(7), 

1117–1122 (1997).
 14. Khalaj-Amirhosseini, M. Synthesis of antenna arrays of maximum directivity for a specified sidelobe level. Iran. J. Electr. Electron. 

Eng. 17(1), 1747–1752 (2021).
 15. Sun, G., Liu, Y., Li, H., Liang, S., Wang, A. & Li, B. An antenna array sidelobe level reduction approach through invasive weed 

optimization. Hindawi Int. J. Antennas Propag. Article ID 4867851 (2018).
 16. Khalaj-Amirhosseini, M. Synthesis of linear and planar arrays with sidelobes of individually arbitrary levels. Int. J. RF Microw. 

Comput. Aided Des. 29(3), 1–9 (2018).

Author contributions
This paper has only one author.

Competing interests 
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.K.-A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Synthesis of low sidelobe level antenna arrays through only main lobe assumption
	Array factors and excitation currents
	Only main lobe assumption
	Verification and comparison
	Two dimensional Omla pattern
	Conclusion
	References


