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Sperm preparedness 
and adaptation to osmotic and pH 
stressors relate to functional 
competence of sperm in Bos taurus
Maharajan Lavanya1,2, Santhanahalli Siddalingappa Archana1, Divakar Swathi1, 
Laxman Ramya1, Arunachalam Arangasamy1, Balakrishnan Binsila1, Arindam Dhali3, 
Narayanan Krishnaswamy4, Sanjay Kumar Singh2, Harendra Kumar2, Muniandy Sivaram5 & 
Sellappan Selvaraju  1*

The adaptive ability of sperm in the female reproductive tract micromilieu signifies the successful 
fertilization process. The study aimed to analyze the preparedness of sperm to the prevailing 
osmotic and pH stressors in the female reproductive tract. Fresh bovine sperm were incubated in 
290 (isosmotic-control), 355 (hyperosmotic-uterus and oviduct), and 420 (hyperosmotic-control) 
mOsm/kg and each with pH of 6.8 (uterus) and 7.4 (oviduct). During incubation, the changes in sperm 
functional attributes were studied. Sperm kinematics and head area decreased significantly (p < 0.05) 
immediately upon exposure to hyperosmotic stress at both pH. Proportion of sperm capacitated (%) 
in 355 mOsm/kg at 1 and 2 h of incubation were significantly (p < 0.05) higher than those in 290 mOsm 
media. The magnitude and duration of recovery of sperm progressive motility in 355 mOsm with pH 
7.4 was correlated with the ejaculate rejection rate (R2 = 0.7). Using this information, the bulls were 
divided into good (n = 5) and poor (n = 5) osmo-adapters. The osmo-responsive genes such as NFAT5, 
HSP90AB1, SLC9C1, ADAM1B and GAPDH were upregulated (p < 0.05) in the sperm of good osmo-
adapters. The study suggests that sperm are prepared for the osmotic and pH challenges in the female 
reproductive tract and the osmoadaptive ability is associated with ejaculate quality in bulls.

In mammals, sperm are exposed to gradients of osmolality and pH while traveling in the male and female 
reproductive tracts. In bovine, the osmolality of the epididymis is 350 mOsm/kg and seminal plasma is 
280–300 mOsm/kg1, whereas the uterine and oviduct osmolality is hyperosmotic (350–355 mOsm/kg)2. These 
physiological stressors necessitate the sperm to undergo maturation in the epididymis and desirable functional 
changes in-terms of capacitation and subsequently the acrosome reaction before they come in contact with 
oocyte.

Sperm motility has been highly compromised in hypoosmotic (below 150 mOsm/kg) and hyperosmotic 
(500 mOsm/kg and above) solutions3. However, in vitro fertilization was achievable over a wide range of osmolal-
ity from 308 to 372 mOsm/kg in the mouse and 292 to 392 mOsm/kg in the hamster4. In bovine, an insignificantly 
higher percentage of in vitro fertilization has been achieved in hyperosmotic (340 mOsm/kg) over isosmotic 
media5. The osmotic stress is well known to induce mitogen-activated kinases (MAPK) which are intimately 
associated with the sperm capacitation process6. The kinases mediate post-translational modification of proteins 
in sperm which are involved in the capacitation, acrosome reaction, and fertilization processes7.

Sperm volume regulation in response to the osmotic stress is indispensable to achieve fertilization8. There 
has been a strong positive correlation of sperm osmo-tolerance ability with fertility and fecundity9,10. Despite the 
existence of osmotic stress in the tightly regulated reproductive tract micromilieu, the information on the osmo-
adaptive ability of sperm and the possible impact on their functional competence have not been studied in detail.
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In bovine, pH of the seminal plasma and uterus is 6.8—6.9, whereas the pH of the oviduct is 7.411,12. Sperm 
metabolic activities have been reported to be maximum within the physiological pH ranges of 6.9 to 7.413,14. 
Sperm are quiescent in acidic epididymal plasma15,16, but gain motility in comparatively alkaline seminal 
plasma17. The gradual exposure of sperm towards alkaline pH during the course of fertilization activates capacita-
tion and hyperactivation by triggering the signaling events associated with tyrosine phosphorylation, cholesterol 
efflux, calcium influx and alkalization of cytoplasmic pH18,19.

Sperm are transcriptionally and translationally silent, but they are endowed with the necessary biomolecules 
including transcripts and proteins for accomplishing fertilization. Sperm retained RNA indicates the transcrip-
tional history of spermatogenesis and responses to the external stimuli with the limited transcriptional activities. 
Hence assessing the relative expression levels of stress associated genes in fresh sperm may shed insight into 
the sperm preparedness towards osmotic and pH stress adaptation ability. The osmo-responsive genes that are 
involved in various functions such as oxidative phosphorylation (MT-ND2 and COX1), glycolysis (ENO1 and 
GAPDH), and calcium ion and hyperosmotic sensor (EFHD1/mitocalcin) activities24 regulate sperm function 
and fertilization. In addition, studying the expression levels of the genes associated with other stress responses 
including chaperone regulating signaling events (HSP90AB1), transcriptional regulation of osmo-protective 
and inflammatory genes (NFAT5), sperm-specific intracellular pH regulator (SLC9C1), and a sperm egg fusion 
disintegrin and metalloprotease (ADAM1B)20–23 in sperm may provide information on the osmo-adaptation 
ability of an ejaculate.

Continuous monitoring of the adaptation dynamics of the sperm in a simulated microenvironment of the 
female reproductive tract may provide information for developing an effective method for selection of fertile 
ejaculate for artificial breeding. Hence, the study was designed to understand the preparedness of sperm for 
adapting to the prevailing stressors in the female reproductive tract with an aim i) to analyze the adaptive ability 
and functional changes in sperm attributes at the physiological ranges of osmotic and pH stressors, and ii) to 
assess the expression levels of stress regulatory genes.

Results
Sperm kinematics and head area.  The average osmolality (mOsm/kg) of seminal plasma (n = 12) was 
292 ± 2.72 ranging from 277 to 313. The pH of the bull semen (n = 12) was 6.75 ± 0.05 ranging from 6.5 to 7.0. 
Immediately (0 h) after the addition of sperm to the media, the percent progressive and total motile sperm sig-
nificantly (p < 0.05) decreased in the hyperosmotic than the isosmotic media at both pH of 6.8 (Fig. 1a and c) 
and 7.4 (Fig. 1b and d). Subsequently, a significant (p < 0.05) recovery in progressive motility was observed in 
hyperosmotic media at 1 h as compared to 0 h in pH 6.8 (Fig. 1a). The percent progressive motility was signifi-
cantly (p < 0.05) higher at 4 h in 355 mOsm/kg (HYP1) as compared with 300 mOsm/kg (ISO) media at uterine 
pH, 6.8 (Fig. 1a). Similarly, a significant (p < 0.05) decrease in sperm head area (µm2) was observed on immedi-
ate exposure (0 h) to hyperosmotic stress. Subsequently, a significant increase in sperm head area (µm2) was 
observed at 1–2 h indicating a regulatory volume increase. However, the recovery rate or adaptation ability was 
comparatively lower in HYP2 (420 mOsm/kg) than that of HYP1 at both pH (Fig. 1e and 1f).

The curvilinear velocity (µm/s), straight-line velocity (µm/s) and average path velocity (µm/s) of sperm in 
HYP1 at pH 6.8 were significantly (p < 0.05) higher as compared with ISO at pH 6.8 at 2 and 4 h of incubation 
(Fig. 2). The ALH (µm/sec) and BCF (Hz) were significantly (p < 0.05) higher in HYP1 than ISO (pH 6.8) media 
at 1 h of incubation (Supplementary Fig. S1).

Sperm capacitation status.  The osmolality and pH had a significant (p < 0.001) interaction effect on 
sperm capacitation status. The hyperosmotic media at pH 6.8 (Fig. 3a) and pH 7.4 (Fig. 3b) induced capacita-
tion in a significantly higher percentage of sperm on immediate exposure (0 h) than that of isosmotic media of 
respective groups (Supplementary Fig. S2). Further, the pH also influenced the capacitation process in sperm 
as the percentage of sperm capacitated in the pH 7.4 was significantly (p < 0.001) higher in the isosmotic media 
(ISO 7.4) at 0 and 1 h as compared to pH 6.8.

Sperm functional membrane integrity and acrosome integrity.  The uterine osmolality (HYP1, 
355 mOsm) with pH of 6.8 significantly (p < 0.05) protected the functional membrane integrity as compared to 
ISO and HYP2 media at 4 h of incubation (Fig. 4a). However, the oviductal osmolality (HYP1, 355 mOsm) with 
a pH of 7.4 did not protect functional membrane integrity as compared to ISO and HYP2 media (Fig. 4b). The 
acrosome intact sperm (%) were significantly higher (p < 0.05) in HYP1 at pH of the uterus (Fig. 4c) and oviduct 
(Fig. 4d) from 1 h of incubation.

Sperm viability, mitochondrial membrane potential, and chromatin distribution.  The viability 
of the sperm was significantly (p < 0.05) affected immediately after exposure to hyperosmotic (HYP1) medium 
with both pH 6.8 and 7.4. Thereafter, sperm viability was significantly (p < 0.05) higher in HYP1 as compared 
to isosmotic media (Table 1). The mitochondrial membrane potential was also significantly (p < 0.05) protected 
in hyperosmotic uterine pH (HYP1, 6.8) at 2 and 4 h of incubation as compared to both isosmotic and HYP2 
media. The chromatin distribution was not influenced by pH and osmolality in our study.

Relationship between sperm osmo‑susceptibility and ejaculate quality.  The study results 
revealed a significant (p < 0.05) negative correlation of ejaculate rejection rate with the sperm mitochondrial 
membrane potential (-0.67 and -0.73), functional membrane integrity (-0.60 and -0.59), and acrosome integrity 
(-0.72 and -0.77) in the HYP1 with a pH of 6.8 and 7.4, respectively at 1 h as compared to the other media (Sup-
plementary Table S1).
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Figure 1.   Effect of osmolality and pH on bovine sperm progressive, total motility and head area in vitro. 
The hyperosmotic (HYP1) uterine (a) and oviduct (b) environment significantly (p < 0.05) decreased the 
progressive motile sperm at 0 h and regained the same at 1 h of incubation. The progressive motility (a) was 
significantly higher at 4 h of incubation in HYP1 as compared to ISO only at pH 6.8. Though the total motility 
differed significantly at 0 h of incubation in both pH, no significant difference was observed in other time 
periods of both pH 6.8 (c) and 7.4 (d). The hyperosmotic (HYP1) uterine (e) and oviduct (f) environment 
significantly (p < 0.05) decreased sperm head area at 0 h and regained at 1 h of incubation. The interaction 
between osmolality and incubation time was significant (p < 0.05) for sperm progressive motility, total motility 
and head area. *represent the effects of osmolality, differ significantly (p < 0.05) at a particular time point. (ISO: 
290 mOsm/kg; HYP1: 355 mOsm/kg; HYP2: 420 mOsm/kg; BI:Before incubation).
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Figure 2.   Effect of osmolality and pH on bovine sperm velocities (µm/s) incubated in vitro. The hyperosmotic 
(HYP1) uterine environment (pH 6.8) significantly (p < 0.05) increased VCL (a), VSL (c), VAP (e), post osmo-
adaptation at 2 h of incubation. However, the hyperosmotic (HYP1) oviduct environment (pH 7.4) did not 
significantly affect VCL (b), VSL (d), VAP (f) at 2 h of incubation. The interaction of osmolality with incubation 
time was significant (p < 0.05) for VCL, VSL and VAP. The interaction between pH and incubation time was 
significant (p < 0.05) for VSL and VAP. *represent the effects of osmolality, differ significantly (p < 0.05) at a 
particular time point. (ISO: 290 mOsm/kg; HYP1: 355 mOsm/kg; HYP2: 420 mOsm/kg; BI:Before incubation; 
VCL: Curvilinear velocity; VSL: Straight line velocity; VAP: Average path velocity).
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Figure 3.   Effect of osmolality and pH on capacitation status in bovine sperm incubated in vitro. The 
hyperosmotic (HYP1) uterine (a) and oviductal (b) environment significantly (p < 0.05) increased capacitation 
of sperm. The interaction of pH with osmolality and incubation time was significant (p < 0.05) for capacitation 
status. *represent the effects of osmolality, differ significantly (p < 0.05) at a particular time point. (ISO: 
290 mOsm/kg; HYP1: 355 mOsm/kg; HYP2: 420 mOsm/kg; BI: Before incubation).

Figure 4.   Effect of osmolality and pH on functional membrane integrity (a, b) and acrosome integrity (c, d) 
in bovine sperm incubated in vitro. The hyperosmotic (HYP1) uterine (a) environment significantly (p < 0.05) 
protected the functional membrane integrity at 4 h of incubation as compared to isosmotic condition. The 
acrosome integrity was also maintained significantly higher in sperm incubated at 355 mOsm in both pH 6.8 
and 7.4 from 1 h. The interaction between osmolality and incubation time was significant (p < 0.05) for sperm 
acrosome integrity. *represent the effects of osmolality, differ significantly (p < 0.05) at a particular time point. 
(ISO: 290 mOsm/kg; HYP1: 355 mOsm/kg; HYP2: 420 mOsm/kg; BI: Before incubation).
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The deterioration in progressive motility was associated with lower sperm osmo-adaptation ability. Based 
on this information, osmo-susceptibility indices were developed to assess semen quality. Out of the six osmo-
susceptibility indices developed, the osmo-susceptibility index showing a strong positive correlation (r = 0.71) 
with the ejaculate rejection rate (supplementary Fig. S3 and S4) was selected for the classification of bulls as 
good and poor osmo-adapters, and subsequent gene expression studies. The index at 18% cut-off had the maxi-
mum likelihood ratio of 6. At the chosen cut-off, the specificity was 83.3% and sensitivity was 100%. The linear 
regression equation had a significant coefficient of determination (R2) of 0.70 for the prediction of ejaculate 
rejection rate (Fig. 5). When the index was validated by including another set of animals (n = 6), the index had 
a high correlation (r = 0.79) with the ejaculate rejection rate. The obtained index was also significantly (p < 0.05) 
negatively correlated with the sperm progressive motility, total motility, mucus penetration, ALH, BCF, head 
area, functional membrane integrity and mitochondrial membrane potential, but positively correlated with the 
acrosome reaction (Supplementary Table S2).

Expression of osmo‑responsive genes in sperm.  In the present study, RPL23 served as endogenous 
control in comparison with PRM1 after analysing the expression levels of both genes in NormFinder (M value-
0.53) and BestKeeper (correlation coefficient-0.87) softwares. The relative expression levels of the genes NFAT5, 
and ADAM1B were significantly (p < 0.05) higher in good osmo-adapters (Fig. 6). Importantly, the expression 
levels of NFAT5 and ADAM1B genes were consistently non-detectable in the poor osmo-adapter group (n = 5). 
Similarly, the expression of ENO1 and EFHD1 genes were observed only in two out of five samples in poor osmo-
adapter group. HSP90AB1 and GAPDH expression levels were upregulated in the good osmo-adapter group with 
a fold change of 2.34 and 1.68, respectively. MT-CO1 expression was higher in the poor osmo-adapter group 
than that of good osmo-adapter group. The relative expression levels of MT-ND2 gene did not differ between the 
groups. The correlation of the expression levels of NFAT5, ADAM1B, SLC9C1 and HSP90AB1 were significantly 

Table 1.   Influence of osmolality and pH on viability and mitochondrial membrane potential in bovine sperm 
incubated in vitro (Mean ± SEM). DOI: Duration of incubation; ISO: 290 mOsm/kg; HYP1: 355 mOsm/kg; 
HYP2: 420 mOsm/kg; BI: Before incubation. Values with superscript bearing a,b within a row for a particular 
time point and pH differ significantly (p < 0.05). Values with superscripts bearing X,Y,Z within a column for a 
particular parameter differ indicating a significant effect of time (p < 0.05). The interaction effect of osmolality 
by incubation time was significant (p < 0.05) for sperm viability and mitochondrial membrane potential.

Parameters DOI

Uterine pH 6.8 Oviduct pH 7.4

ISO HYP1 HYP 2 ISO HYP1 HYP 2

Sperm viability (%)

BI 93.1 ± 1.0X 93.1 ± 1.0X 93.1 ± 1.0X 93.1 ± 1.0X 93.1 ± 1.0X 93.1 ± 1.0X

0 h 92.4 ± 1.32aX 87.3 ± 1.17bY 83.1 ± 4.10bY 91.3 ± 1.90aX 87.2 ± 1.47bY 86.2 ± 3.89bY

1 h 83.3 ± 2.30aY 88.4 ± 2.80bY 84.6 ± 3.53abY 86.5 ± 3.10X 87.6 ± 2.80Y 86.0 ± 3.50Y

2 h 78.2 ± 2.93aY 84.7 ± 2.93bY 84.2 ± 2.78bY 77.3 ± 2.62Y 82.5 ± 2.89Y 85.1 ± 3.12Y

4 h 70.7 ± 3.38aZ 78.9 ± 2.37bZ 74.3 ± 2.52abZ 71.2 ± 3.79Y 77.5 ± 3.54Y 78.2 ± 4.15Y

Mitochondrial membrane potential 
(%)

0 h 85.5 ± 2.68X 85.3 ± 2.97X 82.1 ± 2.96X 82.9 ± 2.90X 85.5 ± 3.54X 83.2 ± 3.33X

2 h 79.8 ± 3.78aX 86.6 ± 2.86bX 77.8 ± 5.75X 83.3 ± 4.21X 83.4 ± 4.31X 76.9 ± 3.91X

4 h 69.2 ± 4.92aY 77.9 ± 4.75bX 66.8 ± 6.86X 77.1 ± 5.05X 79.8 ± 5.14X 66.8 ± 5.79Y

Figure 5.   Relationship between the ejaculate rejection rate with osmo-susceptibility index. The coefficient of 
determination of the regression equation (R2) was 0.70.
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(p < 0.05) positive, whereas MT-CO1, EFHD1 and ENO1 were significantly (p < 0.05) negative with sperm func-
tional attributes in the present study (Supplementary Table S3).

Discussion
Sperm are exposed to the inevitable osmotic and pH excursions in the reproductive tract during their quest to 
fertilize the ovum. Since bull sperm stay in the female reproductive tract for at least 6–12 h before accomplish-
ing fertilization, the uterine and oviductal microenvironment play an important role in selecting the competent 
sperm for fertilization.

The study revealed that significantly higher percent of sperm were capacitated in uterine and oviduct hyper-
osmolality as compared to the isosmotic medium. In fact, the high ionic strength (HIS) medium or modified 
Brackett and Oliphant medium (BO) of 380 mOsm/kg has been used as a capacitation media for guinea pigs, 
rabbits, and later in bovine26,27. The high ionic nature of the medium was proposed to efficiently remove the 
decapacitating factor, cholesterol from the sperm surface. The hyperosmotic condition also enhances tyrosine 
phosphorylation of sperm proteins, a hallmark of sperm capacitation, and zona pellucida binding capacity of 
human sperm28.

The sperm motility and velocities were significantly affected upon exposure to osmotic stress. After adapta-
tion, the progressive motility, VSL, and VAP improved with the recovery of sperm head area. Besides, the velocity 
regained during osmo-adaptation in the hyperosmotic medium at 2 h was significantly higher than 0 h as well as 
the corresponding time points in the control medium. A sharp increase in the sperm motility is often attributed as 
a characteristic feature of the capacitated sperm29. In the present study, the ALH and BCF also increased substan-
tially at 1 h in the hyperosmotic medium and can be attributed to hyperactivation30,31. In addition, in this study 
lower level of bicarbonate (12 mM) was used in the medium whereas at least 25 mM bicarbonate was required 

Figure 6.   The osmo-responsive genes and their function pertaining to osmotic stress (a). The relative gene 
expression levels of osmo-responsive genes normalized to housekeeping gene RPL 23 (ΔCt) in good and poor 
osmoadapters (b). The relative expression levels of the genes NFAT5, and ADAM1B were significantly (p < 0.05) 
higher in good osmo-adapter group as compared to poor osmoadapters.
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for sperm hyperactivation32. The extracellular hyperosmolality resulting in cell shrinkage activates chloride 
bicarbonate exchanger favoring the influx of bicarbonate to regulate the volume33. In addition, the osmotic stress 
signaling in somatic cells is mediated by initial calcium influx36. Similarly, addition of sperm to the hyperosmotic 
medium, resulted in instantaneous calcium influx as evidenced from the appearances of CTC-pattern B, which 
is indicative of capacitation. Thus, the altered sperm kinematics during capacitation in the present study might 
be as a result of physiological osmotic stress imposed on sperm. The oviductal pH having a capacitating effect 
on the isosmotic medium has been widely accepted in many species34,35. The present study revealed significant 
interaction effect of osmolality and pH in regulating the sperm capacitation.

The uterine hyperosmolality significantly protected sperm viability both in terms of structural and functional 
membrane integrities, though the membrane integrity was reported to be optimally maintained between 200 
and 300 mOsm/kg3. The variations between earlier observations and the present study may be also due to single 
time point evaluation, as the hyperosmolality mediated effect on sperm membrane integrities were evident only 
after 2 h of incubation. Furthermore, the hyperosmotic medium prevented the percentage of sperm undergo-
ing acrosome reaction by protecting acrosome integrity. Hyperosmotic stress causes the cells to undergo actin 
polymerization and reorganization as a defense strategy resulting in protection of cell membrane, maintenance 
of cell shape, and promoting cell motility37,38. In sperm, actin polymerization occurs during capacitation and 
acrosome reaction39. In the present study, as the sperm were not challenged with acrosome reaction inducers, 
the higher acrosome integrity and longer sustenance of progressive motility in the hyperosmotic medium can 
also be attributed to the polymerization of actin in the sperm membrane40.

The mitochondria are the stress perceiving organelles and their crosstalk with the nucleus decide the fate 
of cell survivability41. The mitochondrial membrane depolarization and elevation of membrane potential in 
response to osmotic stress is a determinant of cellular adaptation42. The bovine sperm mitochondrial membrane 
potential tended to be higher in hyperosmotic uterine pH rather than oviductal pH indicating an efficient osmo-
adaptation process at uterine pH. The present study suggests that the osmotic stress markedly influences the 
sperm functional attributes and thereby may influence male fertility.

Sperm functional attributes like functional membrane integrity, acrosome integrity and mitochondrial mem-
brane potential in hyperosmotic media were more significantly correlated with ejaculate rejection rate than 
isosmotic media. This may be due to simulating the reproductive tract microenvironment, which is rather 
uncommonly used for bull fertility prediction tests. The progressive motility was initially hampered in hyperos-
motic media due to the osmotic stress and it improved with the increase in the sperm head area. The recovery of 
progressive motility differed temporally and in magnitude between bulls; hence can be preferred as the suitable 
parameter representing sperm osmo-adaptation. Based on these observations, osmo-susceptibility indices were 
developed by calculating the loss of sperm progressive motility in hyperosmotic media having oviduct pH and 
osmolality. The regression equation suggests that 70% of the variations observed in the ejaculate rejection rate 
may be contributed by the sperm osmo-susceptibility.

Since the ejaculated sperm are transcriptionally and translationally silent, preparedness towards osmo-adapta-
tion events were studied by assessing the expression levels of the stress-regulating genes in sperm. The expression 
levels of the osmo-responsive genes NFAT5, HSP90AB1, SLC9C1, ADAM1B, and GAPDH were upregulated, 
whereas MT-CO1, ENO1, and EFHD1 were downregulated in the good osmo-adapters. NFAT5 also known as 
tonicity responsive enhancer binding protein (TonEBP) acts as a transcription factor for several effectors of 
the osmo-adaptation process namely aquaporins, aldolase reductase, sodium myoinositol transporter43, tau-
rine transporter, betaine transporter44, heat shock proteins45 and urea transporter46. In mice, NFAT5 knockout 
resulted in embryonic mortality signifying its essential role in reproduction. NFAT5 protects the epididymal cells 
from hyperosmotic stress by regulating hypertonicity-induced genes expression47. The positive association of 
NFAT5 expression level with sperm head area, mitochondrial membrane potential, percent hyperactive sperm 
and a strong negative correlation with semen rejection rate are evidence for NFAT5 mediated osmo-adaptation 
regulation in sperm.

The study reveals that ADAM1 and SLC9C1 genes positively regulate sperm acrosome integrity. ADAM1 is a 
membrane-anchored protease that activates downstream kinases such as MAPK, ERK, and JUNK during osmotic 
stress21. These kinases mediate post-translational modification of sperm proteins during capacitation48. SLC9C1, 
sperm-specific sodium proton exchanger (sNHE) is an effector protein during osmotic stress and controls the 
accumulation of solute inside the cell to overcome cell shrinkage. SLC9C1 regulates sperm intracellular pH49 and 
cellular volume50,51. Moreover, SLC9C1 knockout mice had absolute male infertility52. In addition, expression 
levels of SLC9C1 were also negatively associated with the ejaculate rejection rate signifying the importance of 
this gene in promoting semen quality.

Heat shock proteins are molecular chaperones recruited under stress conditions to protect the cellular 
proteins53. HSP90 has been reported to regulate sperm motility, calcium influx, and capacitation process54. 
In this regard, the upregulation of HSP90AB1 in the good osmo-adapter group suggests that HSP90AB1 may 
protect sperm proteins during osmotic stress and thereby positively influence sperm motility. Apart from these 
genes, GAPDH was 1.6 fold upregulated in the good osmo-adapter group. Under the osmotic stress conditions, 
the cellular metabolic reprogramming recruits the constitutive proteins for other cellular functions of neces-
sity. Such multi-tasking proteins are called moonlighting proteins and GAPDH performs such functions under 
osmotic stress55.

A strong negative influence of EFHD1 and ENO1 with sperm motility and mitochondrial membrane potential 
is suggestive of their role on mitochondrial dysfunction and activation of apoptotic pathways in poor osmo-
adapter semen56,57.

The study suggests that the uterine and oviductal osmolality though impede sperm motility immediately upon 
exposure, the sperm have the ability to overcome the stress. The hyperosmolality protects the structural, func-
tional membrane and acrosomal integrities apart from favoring capacitation by promoting calcium influx within 
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sperm. The reproductive tract osmotic stress and pH excursions are more of appreciative nature towards fertili-
zation. Overall, upregulation of some of the stress-responsive genes including HSP90AB1, SLC9C1, ADAM1B, 
and NFAT5 in good semen samples is suggestive of the preparedness of sperm to counter various stresses in the 
reproductive tract micromilieu.

Materials and methods
ICAR-National Institute of Animal Nutrition and Physiology’s Institutional Animal Ethics Committee approved 
the present study (NIANP/IAEC/1/2020/10). All methods were carried out in accordance with relevant guide-
lines and regulations.

Procurement and transport of semen sample.  Fresh semen samples from Holstein Friesian (HF) bulls 
were procured from Nandini Sperm Station, Hessarghatta, Bengaluru. The ejaculates having at least 500 million 
sperm/ mL and 70% progressive motility were selected for the study. From each bull (n = 12), two ejaculates were 
collected and pooled to minimize the biological variation between the ejaculates. An aliquot of semen samples 
(n = 12) was diluted (1:1) in the isosmotic modified tris egg yolk extender (mTEY) and transported to the labora-
tory at 25–28 °C within 4 h. Another aliquot was immediately centrifuged at 10,000 g for 5 min at 4 °C and the 
seminal plasma was removed. The sperm pellet was resuspended in 1 ml of PBS (pH 7.4), snap frozen in liquid 
nitrogen and stored at -80 °C until RNA isolation58. The ejaculate rejection rate for each bull during the past 
one year was obtained from the semen station. The ejaculate with anyone of the following criteria was rejected: 
concentration < 500 million sperm/ml of ejaculate, mass motility < 3, or individual progressive motility < 70%.

Experimental design.  Tyrode basal medium (290 mOsm, pH 6.8) was considered as the isosmotic control 
medium. The desired hyperosmolarity 355 (hyperosmotic- test) and 420 (hyperosmotic-control) mOsm was 
obtained by adding 11.8 and 22.7 g of fructose per liter of medium, respectively. The fructose was preferred to 
increase the osmolality as it belongs to the class of organic and non-ionic osmolyte. Osmolality was measured 
using osmometer (OSMOMAT 3000, Gonotec, Germany), which calculates osmolality based on freezing point 
depression of a solution. In the test and control media, the pH was adjusted to 7.4 using 5 N sodium hydroxide 
and measured with digital pH meter (EuTech PH 700 benchtop pH meter, Qtech, India). Maintenance of osmo-
lality after the pH adjustment was checked and confirmed.

In the laboratory, the diluted semen (100 μL) was layered over modified low bicarbonate Tyrode medium 
(mLBT, 1 mL) in a conical bottom microcentrifuge tube and centrifuged at 200 g for removing seminal plasma 
and egg yolk. After washing, the sperm pellet was resuspended in mLBT (100 µL) and concentration was meas-
ured. The semen sample (100 µL) containing about 100 million cells was transferred to each control and test 
media (900 µL) and incubated in a water bath at 37 °C for 4 h. At 0, 1, 2 and 4 h of incubation, sperm functional 
parameters such as sperm viability, kinematics, sperm subpopulation positive for functional membrane integrity, 
mitochondrial membrane potential, chromatin distribution, capacitation reaction and acrosome integrity were 
evaluated (Supplementary data I).

Sperm functional attributes.  Sperm viability was assessed using eosin and nigrosin stain59. Sperm that 
appear unstained were considered live and partially or completely stained with pink were considered dead. 
Sperm kinematic parameters were analyzed using a computer-aided sperm analyzer (CASA; Sperm Class Ana-
lyser, Version 6.4, Microptic SL, Spain)60. Hypo-osmotic swelling –Giemsa test (HOS-G) was carried out to 
assess the subpopulation of sperm positive for functional membrane integrity61. Sperm chromatin distribution 
was assessed by Feulgen’s staining method61. Sperm mitochondrial membrane potential was evaluated using 
mitochondria-specific cationic fluorophore JC-1(5,5`,6,6`-tetrachloro-1,1`,3,3`-tetraethyl benzimidazolyl car-
bocyanine iodide) and examined under fluorescent microscope61. Fluorescein isothiocyanate with Pisum Sati-
vum Agglutinin (FITC – PSA) was used to assess acrosome integrity62. For each of these tests, a minimum of 200 
sperm was counted and analyzed.

Capacitation status of sperm was assessed using chlortetracycline assay63 with minor modifications. On 
a clean grease-free glass slide, equal volume (5 µL) of semen and chlortetracycline (0.39 mg/ml) were added, 
mixed well and allowed to react in dark for a few seconds. Then, glutaraldehyde (0.5 µL of 0.6%) was added and 
smeared. Antifade agent, DABCO- 1,4 diazo bicyclo (2,2,2) octane was added over the smear and covered with 
coverslip. A minimum of 100 cells was counted under a 100 × epifluorescence microscope (Nikon Eclipse 80i, 
Nikon, Japan) with an excitation filter of 510–560 nm and an emission filter of 505 nm.

Relationship between sperm osmo‑adaptation ability and ejaculate quality.  The progressive 
motility of sperm obtained by CASA was used for computing the osmo-adaptation ability. The loss of progressive 
motility (PM) at different time points was calculated as follows:

Percent motility loss at 1 h =
( PM % before incubation−PM % in HYP 1 at 1 h)

PM% before incubation (BI) × 100

Percent motility loss at 4 h =
( PM% before incubation− PM% in HYP 1 at 4 h)

PM% before incubation × 100

The osmo-susceptibility indices, OSI1 (percent loss of progressive motility at 1 h in HYP1 media, 355 mOsm 
with pH, 6.8), OSI2 (percent loss of progressive motility at 4 h in HYP1 media, 355 mOsm with pH, 6.8) and 
OSI3 (sum of percent loss of progressive motility at 1 and 4 h in HYP 1 media with pH, 6.8) were calculated. 
Similarly, osmo-susceptibility indices, OSI4 (percent loss of progressive motility at 1 h in HYP1 media with pH, 



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22563  | https://doi.org/10.1038/s41598-021-01928-6

www.nature.com/scientificreports/

7.4), OSI5 (percent loss of progressive motility at 4 h in HYP1 media with pH, 7.4) and OSI6 (sum of percent 
loss of progressive motility at 1 and 4 h in HYP1 media with pH, 7.4) were calculated.

The efficiency of different osmo-susceptibility indices was analyzed by correlating the indices with the fresh 
semen ejaculate rejection rate (Supplementary Fig. S3 and S4). Since OSI6 had the highest positive correlation 
with fresh semen ejaculate rejection rate, the optimal cut-off value of 18% was arrived based on receiver operat-
ing characteristic curve analysis. The semen quality prediction ability of the index was determined using the 
regression analysis and the model was also validated in randomly selected another set of animals (n = 6) of known 
rejection rate (Supplementary Table S4).

Sperm osmo‑regulation associated genes expression.  Based on the chosen cut-off in the regression 
model, the semen samples were classified as good (n = 5) and poor (n = 5) osmo-adapters and the differential 
expression levels of osmo-responsive genes in sperm were studied between groups. This was used to assess the 
adaptive ability of sperm to meet the osmolarity changes in the female microenvironment.

The genes relevant to osmo-adaptation related sperm function were selected based on a literature survey 
(Fig. 6). The primers for the osmo-responsive genes NFAT520, ADAM1B21, SLC9C122, HSP90AB123, ENO1, EFHD, 
MT-ND2 and GAPDH24, MT-CO125 were designed using Primer3Plus software (Table 2).

RNA isolation and real time‑PCR.  Total RNA was extracted from sperm as per the established protocol58. 
Briefly, the snap frozen semen samples were thawed and resuspended in 1 ml of PBS (pH 7.4). The semen sample 
(1 mL) was layered over 4 mL of 50% Bovipure gradient solution in 15 mL conical bottom centrifuge tubes and 
centrifuged at 200 g for 20 min at room temperature (28 °C). The sperm pellet was re-suspended in 10 mL of PBS 
and washed by centrifugation at 700 g for 5 min at 4 °C. Then the sperm pellet was again re-suspended in 1 mL of 
PBS and sperm concentration was measured using a hemocytometer. Sperm (30—40 million cells) was subjected 
to double lysis and RNA extraction was carried out using the kit (PureLink RNA mini kit, Invitrogen, USA)58. 
The quality of the RNA was assessed using a spectrophotometer (NanoDrop, ND- 1000, Thermo Scientific, 
USA) by analyzing the absorbance ratios of 260/280 and 260/230. To remove the genomic DNA contamination, 
the isolated RNA was subjected to DNase treatment (TURBO DNA-free kit, Ambion, Life Technologies, USA). 
The total RNA was quantified using fluorometer (Qubit 4.0, Invitrogen). The RNA free from genomic DNA was 

Table 2.   The details of the Primers used for gene expression studies in the study.

Primer ID Primer Primer sequence (5′ to 3′) Primer length (bp) Product size (bp) NCBI accession number

SLC9C1
Forward GGA​ACG​CCT​CGA​ATA​AGC​CT 20

149 XM_024994321.1
Reverse TCA​GCT​CAA​AGT​TGC​TCC​CT 20

HSP90AB1
Forward GTG​ACG​ATC​TCC​AAC​AGG​CT 20

213 NM_001079637.1
Reverse GTC​GTT​TTT​GTC​CGC​CTC​TG 20

EFHD1
Forward AAC​GTG​CCT​CTA​CTT​GGC​AG 20

145 NM_001075832.1
Reverse TTA​ACA​TCA​CTG​GCC​TCC​CG 20

ENO1
Forward ATG​TCA​CCG​AGC​AGT​GTG​AG 20

212 NM_174049.2
Reverse GAT​ACT​TGG​TGG​GAG​CGA​GG 20

NFAT5
Forward ACC​TCT​TCC​AGC​CCT​ACC​AT 20

170 XM_002694839.6
Reverse AAG​ACT​GTG​TGC​CTC​TTC​GG 20

MT-ND2
Forward TCT​CAG​GCC​AAT​GAA​CCG​TA 20

127 NC_006853.1:4266–5307
Reverse ATG​CCC​TGT​GTT​ACT​TCT​GGG​ 21

MT-CO1
Forward GTA​ACC​GCA​CAC​GCA​TTT​GT 20

217 NC_006853.1:5687–7231
Reverse GGT​ACA​CGG​TTC​AGC​CTG​TT 20

ADAM1B
Forward GAG​TGG​GAA​TGA​CAG​GCT​CA 20

119 NW_020192236
Reverse TGA​CAG​AAT​CCC​TCC​TCC​TAGT​ 22

PRM1
Forward AAG​ATG​TCG​CAG​ACG​AAG​GAG​ 21

222 NM_174156.2
Reverse GTG​GCA​TTG​TTC​GTT​AGC​AGG​ 21

RPL23
Forward CAG​CGG​TGG​TAA​TTC​GAC​AAC​ 21

116 NM_001035014.2
Reverse GGC​GGA​ACC​TTT​CAT​CTC​G 19

GAPDH
Forward CTG​AGG​ACC​AGG​TTG​TCT​CCTG​ 22

141 NM_001034034.1
Reverse CCC​TGT​TGC​TGT​AGC​CAA​ATTC​ 22

CDH1
Forward CTG​CAT​TCC​TGG​CTT​TGG​TG 20

171 NM_001002763.1
Reverse GTA​AGC​ACG​CCA​TCT​GTG​TG 20

CKIT
Forward GAA​TAG​CTG​GCA​TCA​GGG​TG 20

224 AF263827.1
Reverse CCA​GAT​CCA​CAT​TCT​CTC​CATC​ 22

PTPRC
Forward TGG​ACG​AAA​TTG​CAT​CCC​TCA​GGA​ 24

237 NM_174156.2
Reverse RTG​GTC​AGG​ACG​TTT​ACA​GCT​

CAC​A 24
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subjected to complementary DNA (cDNA) synthesis using the first-strand cDNA synthesis kit (SuperScript IV, 
Invitrogen, USA). An equal quantity (20 ng) of RNA from each sample was used for cDNA synthesis. For the 
detection of RNA from other contaminating cells, the cDNA samples were tested with cell-specific gene primers, 
namely CDH1 (Epithelial cadherin) for somatic cells, CKIT (Kit oncogene) for germ cells and PTPRC (Protein 
tyrosine phosphatase receptor type C) for leucocytes using qPCR (Table 2). RPL23 and PRM1 were compared 
for the suitability to consider as an endogenous control using NormFinder and BestKeeper tools. The gene with 
the best stability, RPL23 was selected for normalizing the expression levels of sperm transcripts. The genes were 
amplified for 40 cycles and the unique product was confirmed by melt curve analysis. The product size was 
verified using agarose gel (2.0%) electrophoresis. Relative gene expression levels were computed using the 2-ΔΔCt 
method64. The undetermined values in qPCR were replaced with maximum possible Ct value of 35 for statistical 
analysis for calculating fold change65.

Statistical analyses.  The percentage data were arcsin transformed before subjecting to the statistical analy-
sis. A mixed model 2 × 3 × 5 factorial ANOVA with repeated measures was used to assess the treatment effects 
of pH (6.8 and 7.4), osmolarity (290, 355 and 420 mOsm/kg) and incubation time (before incubation, 0, 1, 2 
and 4 h) on sperm kinematics, head area, membrane integrities, capacitation status, mitochondrial membrane 
potential, and chromatin distribution variables. As a first step, effects of interactions between treatments were 
examined. If not, the main effects for osmolality and pH were investigated. When the F value was significant, 
Tukey’s post-hoc analyses were conducted to determine pairwise differences. Analyses were carried out using 
IBM SPSS version 20 and GraphPad prism 6. The student’s t-test was used for analyzing the significant differ-
ences in sperm functional parameters and relative gene expression (∆Ct) between good and poor osmo-adapt-
ers. The capability of osmo-susceptibility index in predicting the ejaculate rejection rate was evaluated using 
ROC curve analysis. Pearson correlation was used for assessing the relationship between the osmo-susceptibility 
indices with ejaculate rejection rate. All the values were presented as mean ± SEM. The significance level was set 
at p ≤ 0.05.

Data availability
All data generated or analyzed during this study are available from the corresponding author on reasonable 
request.
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