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Wet ball milling of niobium 
by using ethanol, determination 
of the crystallite size 
and microstructures
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Idowu David Ibrahim3, Mxolisi Brendon Shongwe1 & Dawood A. Desai3

This study investigates the effect of using ethanol as the process control agent during the wet ball 
milling of niobium (Nb). Dried nanocrystal Nb powders, of high purity, with particle sizes, ranging 
from 8.5 to 14.3 nm, were synthesized by ball milling. Commercial Nb powder of particle sizes of 
− 44 µm was employed by using the planetary ball mill equipped with stainless still vials with still balls 
in ethanol. A ball-to-powder mass ratio of 10:1 was used at a rotation speed of 400 rpm, an interval of 
15 min with an interval break of 5 s, and a milling time of 10 h. The powder was dried in vacutec at a 
temperature of 100 °C, using a speed of 15 rpm in the vacuum of 250 mbar at a time of approximately 
653 min. The crystal phase of the dried powders was analyzed using X-ray diffraction (XRD) with 
 CuKɑ radiation, and by modification of the Scherrer equation, a single crystallite size of 11.85 nm was 
obtained. The morphology of the particles was observed using scanning electron microscopy (SEM) 
with energy-dispersive X-ray spectroscopy (EDS). The XRD results show that the pure crystal sizes in 
nanometre (nm), which decreases as the 2θ and the full width at half maximum (FWHM) increases.

Niobium is a body-centered cubic (bcc) crystallite structure, an essential micro-alloying metallic element for 
the pipeline steels, steel for structural applications, excellent alloys for aircraft turbine engines, car body steels 
with high strength, and it is in the utmost demand in the mechanized countries, which is now accounting to a 
sale capacity of more than 85,000 tonnes every  year1–4. Niobium has exceptional ductility, a high melting point 
of 2740 K, oxidation and impact resistance, a density of 8.55 g/cm3, high dielectric dissipation, a small neutron-
absorbing cross-sectional area, and a high transition temperature of 9.3 K (i.e. − 264 °C, or − 443 °F), among 
metals. Therefore, the metal is used widely, in nuclear fusion, nuclear industry, space development, high power 
transmission, and  superconductor4.

The decrease in the particle size and the reduction in agglomeration increase the suspension stability of the 
alloyed  materials5. Powder particle size has to be fine enough to gain a smooth surface finish and satisfactory 
optimal  precision6,7. The reduction in particle size of metallic flakes or powders can be achieved by either dry 
milling or wet milling techniques. The better amongst the two techniques remain insignificant in small-scale 
milling, but there exists, the main practical problem when huge scale milling in metallurgical manufacturing, is 
required. In the wet milling technique, process control agents (lubricant or surfactant) such as: ethanol, stearic 
acid, methanol, hexane etc., are added to the powder mixture during milling to reduce the effect of cold  welding8. 
The ethanol will function as surface-active agents, and will be absorbed on the surface of the powder particles, 
and minimize cold welding between niobium powder particles and thus slow down agglomeration. The ethanol 
would interfere with cold welding of the milling particles and therefore, lowered the surface tension of the pow-
dered material. The wet milling process is the main technique used for commercial  production9. In ancient times, 
solvents, e.g., ethanol has been used during the milling process to make metal  flakes10. The solvent is much to 
offer wet milling of metallic powders to form chips. It has been made reported that the use of ethanol and other 

OPEN

1Institute for Nano-Engineering Research (INER), Department of Chemical, Metallurgical and Materials 
Engineering, Tshwane University of Technology, Pretoria, South Africa. 2Department of Civil Engineering, 
Tshwane University of Technology, Pretoria, South Africa. 3Department of Mechanical Engineering, Mechatronics 
and Industrial Design, Tshwane University of Technology, Pretoria, South Africa. 4Department of Mechanical 
Engineering, Ladoke Akintola University of Technology (LAUTEC), Ogbomoso, Oyo State, Nigeria. *email: 
ezeaaben@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-01916-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22422  | https://doi.org/10.1038/s41598-021-01916-w

www.nature.com/scientificreports/

carbon- and oxygen-containing solvents for either wet-milling or wet-grinding of metal flakes to form powders 
can create several  problems10. The oxygen present in the wet milling solvents can be released from the solvent 
due to the ease with which carbon to oxygen bonds are broken down. When oxygen comes in the system from 
the broken solvent molecules, the oxygen can react or be present with the metal chips being formed or with 
the stainless steel milling intermediate and cause impurities in the resulting  chips10. It is assumed that rupture 
of carbon–oxygen bonds in the wet milling solvents, can leads to a high stage of carbon and iron contamina-
tions in the chips produced and causes a consequential corrosive  environment10. The issue of carbon or oxygen 
contamination depends mainly on further production methods (e.g., consolidation of the powdered particles) 
and the area of application of the final product. However, the annealing of the powders before the spark plasma 
sintering (SPS) powder consolidation techniques, can remove/reduce the oxygen  contamination11 and if carbon 
is the major impurity in Nb, as in the case of this study, the powders produced will be mostly a transition metal 
carbides of niobium carbide (NbC) powders. NbC is an important material and it is often, added as a hard phase 
in composite  materials12. Transition carbide (NbC) possesses a specific combination of thermal, mechanical and 
electrical conductivity properties, such as: high melting temperature, high hardness, good high-temperature 
strength and good electrical  conductivity13. These materials are also used as high-temperature structural materi-
als in the form of hard constituents in metal matrix  composites13–18. NbC can find uses as structural materials 
that are resistant to high temperatures and corrosive atmospheres, like abrasives, supper conductors and high-
performance permanent  magnets19. In summary, the usefulness of transition carbide cannot be overemphasized.

XRD is a convenient method for determining the mean size of nanocrystallites in nanocrystallite bulk 
 materials20. Paul Scherrer, one of the 1st scientist to work on X-ray diffraction, had his research results in a 
published paper that incorporated what turned out to be known as the Scherrer equation as shown in Eq. 1, in 
 191821, which can be employed in the determination of the crystal size.

where L, represents the average crystallite size, K is 0.9 (the Scherrer constant or shape factor), and it is related 
to crystal shape. ʎ = 0.15405 nm (the  CuKα1 wavelength), β is the full width at half maximum (FWHM), whose 
value on the 2θ axis of the diffraction profile, must be in radian. θ, the Bragg angle is the value of half the angle 
between the transmitted and reflected beams, 2θ in degrees or radians; since the cosine values of a number in 
radians correspond to the same value in degree.

In the work of Monshi et al.20, the Scherrer equation was modified to provide a new approach to the use of the 
Scherrer equation, so that the least square technique can be applied to minimize the source of error. Their work 
established the modified Scherrer equation, which was a plot of ℓnβ as a function of ℓn(1/Cosθ) and an inter-
cept is obtained of a least square regression, ln =

K�

L
 , from which a single value of crystal size, L, was obtained 

through all of the available  peaks20.
On the other hand, the current study examines the use of ethanol as a process control agent, used to mill pure 

niobium powders to nanoparticle sizes. Also, the crystal sizes and the changes in the microstructures of the etha-
nol wet-milled niobium were determined. However, it is noteworthy to state the fact that the authors could not 
find any research work on the use of ethanol to mill pure niobium flakes or powders, hence, this study. Besides, 
the purpose of doing this research is to increase the surface area of the niobium particles for better performance. 
A nano-sized particle of niobium has a greater surface area than the same niobium as a micro-size particle. To 
increase the surface area of the niobium particles is to increase the number of catalytic sites to enhance good 
adhesions of the particles during reactions.

Experimental
In the current study, the raw material used is pure commercial Nb powder (95.7% pure) with a particle size 
of ~ 44 µm that was supplied by Alfa Aesar Company. Milling was performed under the condition of a wet ball 
milling process. For the milling process, 40.12 g of the as-received Nb powder were loaded into two separate 
hardened steel containers of 125 ml volume with steel balls of 0.4 mm diameter, in a ball-to-powder weight ratio 
of ~ 10:1.80% volume of the hardened steel containers were filled with 5 ml of absolute ethanol that served as 
the process-controlling agent. The containers were closed and weighed, to balance their weights and to avoid 
imbalance in the milling machine. The powder was wet-milled for 10 h at a speed of 400 rpm, at an interval of 
15 min, and with an interval break of 5 s. After the wet milling procedure, the powders were recovered through 
drying in a vacuum oven, at a temperature of 100 °C, a speed of 15 rpm, a time of 653 min, and in vacuum at 
250 mbar. The crystal phase of the dried powders was analyzed by using the X-ray diffraction (XRD) analyzer, the 
EMPYREAN DIFFRACTOMER with  CuKɑ radiation and was analyzed by using the Highscore with software. 
The morphology and the elemental compositions of the dried powders were investigated by using the High-
Resolution Field Emission Scanning Electron Microscope (SEM), (JEOL-JSM-7600F), attached with energy 
dispersive x-ray spectroscopy (EDS) (Fig. 1).

Results and discussion
XRD results. The XRD diffractograph of the milled Nb powder is shown in Fig. 2, consisting of four sharp 
peaks. The sharpness of the peaks decreased with an increase in 2θ, which indicated a decrease in the crystal size 
of the powders. Table 1 summarises the Scherrer equation data for the milled powders. In the Table, there is a 
moderately gradual increase in the values of β · cosθ and 2θ with decreases in the crystal size, L values. Figure 3 
shows the graph of the crystal size of the milled powders against the angle between the transmitted beam and 
the reflected beam, 2θ and Fig. 4 shows the graph of the crystal size, Las a function of FWHM of the peak profile. 

(1)L =

K�

β · cos θ
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Figure 1.  shows the SEM and EDS images of the starting powders.

Figure 2.  XRD diffraction pattern of the milled Nb powder.

Table 1.  The summary of the Scherrer equation data for the milled powders.

Peak Position [°2θ] FWHM [°] β = FWHM [in radians] Bragg angle θ [°] Cosθ β · Cosθ Crystallite size, L [nm]

38.4231 0.5884 0.0103 19.2116 0.9443 0.0097 14.2900

55.4389 0.7446 0.0130 27.7195 0.8852 0.0115 12.0600

69.5056 1.0138 0.0177 34.7528 0.8216 0.0145 9.5600

82.3355 1.2465 0.0218 41.1678 0.7528 0.0164 8.4500
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It was observed that there is a decrease in the crystal sizes as the 2θ and FWHM values increase; this behavior 
might be a result of the crystalline nature of the Nb powdered material.

Table 2 is the summary of the modified Scherrer’s equation data (values of ℓnβ and ℓn(1/cosθ)) and Fig. 5 
shows the modified Scherrer’s equation (the plot of ℓnβ as a function of ℓn(1/cosθ)) of the milled powders. Since 
β · Cosθ value is, in fact, not a constant value for all the four peaks, this was the cause of the deviation from a 
45° slope, observed in Fig. 5. The slope of the modified Scherrer’s equation plot in this study is negative. This is 
as a result of the fact that at high 2θ angles, with low values of Cosθ and higher values of ℓn(1/Cosθ), the sizes 
of the β values obtained are less than what it must be when applied to the Scherrer’s Eq. 20. The modified Scher-
rer equation can offer the advantage of reducing the size of the absolute values, thereby, producing a single line 
throughout the points and hence, yielding a single value of the intercept, where a single value of the crystal size, 
L, of the available peaks, can be  obtained20.
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Figure 3.  The plot of Crystallites size, L as a function of 2θ.
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Figure 4.  Plot of the crystallite size, L as a function of the FWHM of the peak profile.
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Monshi et al.20, reported the fact that if the result of ℓnβ is plotted as a function of ℓn(1/cosθ), a straight-line 
graph with a slope of around one and an intercept of about ℓn K

L
 , should result. After obtaining the intercept, the 

exponential of the intercept is obtained, which is equal to K�
L

 and knowing the values of K and ʎ, a single value 
of L in nanometer, can be  calculated20,22. However, in this study, Fig. 5 is the plot of ℓnβ as a function of ℓn(1/
cosθ). The intercept of the resulting graph is:

Therefore, K�
L

= 0.0117.

The single crystallite size, L of the four peaks is,

4.4469 and
K�

L
= e

−4.4469
.

Table 2.  The summary of the data obtained from the modified Scherrer equation (values of lnβ and ℓn(1/
cosθ))of the milled powders.

β (radian) ℓnβ Cosθ 1/Cosθ ℓn(1/Cosθ)

0.0103 − 4.5756 0.9443 1.0590 0.0573

0.0130 − 4.3428 0.8852 1.1297 0.1220

0.0177 − 4.0342 0.8216 1.2171 0.1965

0.0218 − 3.8258 0.7528 1.3284 0.2840

Figure 5.  Modified Scherrer’s equation (the graph of lnβ against ℓn(1/cosθ)).

Figure 6.  SEM of the milled Nb powder.
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Figure 7.  EDS element composition of the milled Nb powder.
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Therefore, the single average crystallite size of the whole peaks is,

SEM and EDS of the milled Nb powder. Figure 6 shows the SEM of the milled Nb powder. The points 
labeled: 1, 2, 3 and4are the spectra identified by the EDS (Fig. 7). The microstructure image in Fig. 6 shows that 
ethanol wet milling can reduce the particle sizes and minimize the rate of agglomeration of the Nb powders 
after milling. The particle size of the powder, slowly decreased with the increasing rotation speed, from 200 to 
400 rpm of the milling machine, owing to the high energy milling  process23. During the ethanol wet milling 
process, the Nb powder, ethanol, and the steel balls were subjected to high energy particle-to-particle interac-
tion, and the steel milling balls collision at a high revolution speed of 400 rpm. It appeared achievable that these 
outcomes are appropriate to the initial grains, which were broken down into unit squashed portions. However, 
looking at the upper left side of the SEM image (Fig. 6) it can be observed that the powder attained a certain 
level of agglomeration after 10 h of the ethanol-wet milling. Hence, more time is required in achieving, often tiny 
particle sizes, during the ethanol wet milling of the Nb powder. The high definite surface area of the particles 
increases the van der Waals forces between them and this is the basis of the de-agglomeration of the powdered 
 particles6,24, following wet milling.

This present work is significant, considering the possibility of reducing the particle size and the minimization 
of agglomeration, which will result in the better sintering of the Nb powders. Also, Nb being a good alloying 
element, the enhancement of the particle surface area will influence the interfacial-adhesion of the Nb powder 
particles, which enable them to marry well with the particles of the base element (different material). The results 
of the current study are consistent with those of Fayyaz et al.6, Yang and  German25, who found out that wet milling 
is appropriate to decrease the rate of agglomeration and reduce the particle size of pre-alloy nanophase metallic 
powders. Figure 7 shows the EDS elemental compositions of the ethanol wet-milled Nb powder. Fe, O, and C 
were observed as impurities in the EDS analysis. The Fe presence may be from the steel balls used in the milling 
since Fe is the major component of steel. The presence of oxygen could be due to the native oxide layer at the 
surface of Nb (Fig. 1), which then enhances the admission of more oxygen from the processing liquid (ethanol). 
It is frequently mentioned in the literature, in the study of niobium that the existence of a native oxide layer on 
the surface of Nb, exposed it to oxygen, and Nb is characterized by its high attraction and binding energy to 
 oxygen26–28. To obtain a highly pure Nb surface, without the presence of oxygen or oxide layer, the metal powder 
was annealed or heated above the temperature of 2000 K, in ultra-high vacuum  conditions11,26,27. A significant 
presence of carbon, C (up to 36 wt.%) was observed in the milled powder when compared to other impurities 
(Fe = 0.8 wt.%, O = 14 wt.%) and this is purely from the ethanol used in the milling. Nb can form very stable 
carbides, possessing high inter-atomic bonding energy and it is used in the stabilization of stainless steels to 
prevent intergranular corrosion since it helps to lower the content of carbon in the  steel27,29. The relevance of 
this study cannot be overemphasized, since the results of this study, have shown another means of extracting 
important and useful transition carbide (niobium carbide, NbC).

Conclusion

1. The use of ethanol in the wet milling of Nb powder enhanced the reduction of the particle sizes, from -44 µm 
to an average crystallite size of 11.85 nm, according to the modified Scherrer’s equation employed in the 
determination of crystal size. The application of the Scherrer’s equation systematically shows increases in 
the values of nano crystallite size as FWHM and 2θ values decrease since β · cosθ cannot be maintained as 
constant.

2. In the plot of ℓnβ as a function of ℓn(1/cosθ), the exponent of the intercept was equal to K�
L

 , from which a 
single average value of L = 11.85 nm was obtained.

3. The study can be another way of synthesizing important transition carbide, e.g., NbC, as exemplified in the 
SEM and EDS results.
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