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The new SUMPOT to predict 
postoperative complications using 
an Artificial Neural Network
Cosimo Chelazzi1, Gianluca Villa1,2, Andrea Manno3*, Viola Ranfagni2, Eleonora Gemmi2 & 
Stefano Romagnoli1,2

An accurate assessment of preoperative risk may improve use of hospital resources and reduce 
morbidity and mortality in high-risk surgical patients. This study aims at implementing an automated 
surgical risk calculator based on Artificial Neural Network technology to identify patients at risk for 
postoperative complications. We developed the new SUMPOT based on risk factors previously used 
in other scoring systems and tested it in a cohort of 560 surgical patients undergoing elective or 
emergency procedures and subsequently admitted to intensive care units, high-dependency units or 
standard wards. The whole dataset was divided into a training set, to train the predictive model, and a 
testing set, to assess generalization performance. The effectiveness of the Artificial Neural Network is 
a measure of the accuracy in detecting those patients who will develop postoperative complications. A 
total of 560 surgical patients entered the analysis. Among them, 77 patients (13.7%) suffered from one 
or more postoperative complications (PoCs), while 483 patients (86.3%) did not. The trained Artificial 
Neural Network returned an average classification accuracy of 90% in the testing set. Specifically, 
classification accuracy was 90.2% in the control group (46 patients out of 51 were correctly classified) 
and 88.9% in the PoC group (8 patients out of 9 were correctly classified). The Artificial Neural Network 
showed good performance in predicting presence/absence of postoperative complications, suggesting 
its potential value for perioperative management of surgical patients. Further clinical studies are 
required to confirm its applicability in routine clinical practice.

Appropriate perioperative planning of elective post-operative admission to intensive care units (ICUs), high-
dependency units (HDUs) or standard wards after non-cardiac surgery may improve postoperative outcomes 
in patients at risk for postoperative complications (PoCs)1–5. A clear body of evidence shows that elective post-
operative ICU admission reduces the incidence of PoCs, while delayed or emergency admission to ICU/HDU 
following surgery may lead to worse  outcomes6.

There is therefore a critical need for strategies to improve preoperative identification of those patients who 
are at high risk for PoCs through a more thoughtful use of available ICU/HDU  resources7. Traditionally, the 
prediction of postoperative risk for complications and the identification of high-risk patients have been largely 
empirical and based on medical judgement, particularly for elective, non-cardiothoracic patients. Even though 
the clinical judgement of the attending physician retains great importance for assessing the perioperative risk 
of individual patients, this may be not specific and certainly does not allow for the standardized allocation of 
available ICU/HDU  beds8. Several scores are available for risk stratification and identification of patients at risk 
for PoCs. Among them, the American Society of Anesthesiology-physical status (ASA-ps) and the Physiological 
and Operative Severity for the Enumeration of Mortality and Morbidity (POSSUM) have a long history of clini-
cal use; however, they do show drawbacks and  limitations9,10. Briefly, the ASA-ps is consistent with the clinical 
judgement on the global health status of the patient, irrespective of surgical procedure. The POSSUM score is 
more detailed and takes both patient- and surgery-related factors into account; however, it tends to overestimate 
 mortality9. The more recent American College of Surgeon-Veterans Affairs National Surgical Quality Improve-
ment Program surgical risk calculator (ACS-NSQIP) appears to be the most reliable system currently available, 
but the input of data may be cumbersome. It requires a precise preoperative definition of the ongoing surgery 
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and may miss complications that do not fall into specific and pre-defined  areas11,12. Furthermore, the tool has 
not been validated for use outside the United States.

In 2015, an easy to apply score, the Anesthesiological and Surgical Post-Operative Risk Assessment (ASPRA), 
has been implemented to evaluate the risk of PoCs based on type of surgery and  comorbidity13. The main advan-
tage of this tool was its easy and immediate applicability for risk stratification, taking into account both surgery- 
and patient-related risk factors. Statistical validation of the score was prospectively run within a validation set 
of 1928 surgical patients and showed a high positive predictive value to predict the occurrence of postoperative 
complications. An ASPRA score > 7 predicted the occurrence of PoCs in > 84.3% of cases. Moreover, Spearman’s 
correlation test performed on patients in the validation set showed a strong correlation between higher ASPRA 
scores and severity of PoCs, as defined by the Clavien-Dindo  classification13.

For use in practice, a prognostic tool should be easy-to-use and directly applicable at the bedside. With these 
concepts in mind, we explored the potential of using new technologies (such as machine learning) to develop a 
new tool for risk assessment, named SUMPOT (SUrgical and Medical POstoperative complications prediction 
Tool). Based on Artificial Neural Network (ANN) technology, SUMPOT is aimed at supporting physicians in 
perioperative care planning through automatic assessment of risk factors for PoCs in patients undergoing sur-
gery. The advantages of a neural network are threefold: automation; ability to reproduce the complex and hidden 
nonlinear relationship between risk factors and PoC events; and self-learning capability for progressively more 
accurate assessment of PoCs.

The aim of the present study was to assess the efficacy of SUMPOT in preoperatively identifying those patients 
who are at risk for postoperative complications. To this aim, the SUMPOT performance is assessed by compar-
ing it with a Binary Decision Tree (BDT) predictive model. This comparison is motivated by the fact that ANNs 
and BDTs represent two opposite learning paradigms: the former have very strong predictive power, while the 
latter are much more interpretable.

The remainder of the paper is organized as follows. The methodology adopted in this study is contextualized 
and described in “Methods” section. In “Assessment of the SUMPOT” section we first describe the data col-
lection and elaboration processes together with the experimental settings implemented to asses the SUMPOT 
performance, then we report the SUMPOT results compared with the binary decision tree method. The final 
“Discussion and conclusions” section is devoted to discussions and conclusions.

Methods
Background. Machine Learning (ML) is the study of computer programs that learn from  experience14. 
Over the last few decades, ML techniques have been applied to many fields, including healthcare, energy, and 
 transportation15–18.

As an example, we can consider a system which produces a certain output in correspondence to an input, 
according to an unknown functional relationship. Assuming that a dataset of historical input-output pairs, 
namely the training set, is available, ML techniques use the training set to generate (i.e. train) a surrogate model 
of the function, i.e. a model that approximates the behavior of the system. This process is called training phase. 
The model is then used to predict the unknown output for any different input combinations. Since the actual 
output associated to every sample of the training set is known, this type of ML techniques is denoted as super-
vised learning.

The prediction performance of the trained model, also called generalization, is measured on the testing set, 
i.e. a set of samples not used to train the model, for which both input and output are known.

The training phase is a challenging task, one that is commonly formulated as a mathematical optimization 
problem. One of the main difficulties during this phase concerns the overfitting phenomenon. When overfitting 
occurs, excessive effort is dedicated to the training phase, meaning that the resulting model is extremely accurate 
in reproducing the training data but is poor in terms of generalization. Other issues may involve lack or imbal-
ance of data, or lack of an actual functional relationship between input and output.

ML is frequently used for classification. In classification, all samples belong to different classes, so that the 
output of each sample assumes a value in a finite set of categorical elements respresenting the different classes . A 
proper prediction model trained for classification should be able to reconstruct the unknown class membership 
(output) for any given sample (input). The most commonly used ML techniques for classifications are Decision 
 Trees19, Support Vector Machines (SVMs)20–22,  ANNs23–25, and recently Deep Neural Networks (DNNs)26. Even 
if all the above methods have been often applied to classification task in healthcare  domains27–30, the Neural 
Networks based ones seem to be the more suited to capture the complicated and hidden nonlinear relationship 
between the input and the output, and are therefore the most used in this kind of applications. DNNs, which 
are mainly used for complicated image recognition and time series forecast  applications31,32, have the strongest 
computational and representative power, but their training phase can be computational expensive and prone 
to numerical  issues33,34 that may compromise the quality of the predictive model. In this study, as we sought for 
simpler models, easy-to-use for not ML practitioners and sufficiently accurate at the same time, we drove out 
choice to ANNs. In particular we have applied a Single Layer Feedforward Network (SLFN) with the training 
algorithm proposed by Grippo et al.24 and denoted as DEC(2). The usage of a SLFN is strengthened by the adop-
tion of DEC(2) since, as will be better clarified below, DEC(2) is able to reduce the potential limitations of such 
model and to build good quality predictive models.

In the investigated case study we deal with binary classification, i.e. the samples belong to two different classes, 
conventionally denoted with labels 0 and 1.

Overview on ANNs and on the adopted training algorithm. ANNs are characterized by a learning 
mechanism inspired by biological neurons. Briefly, ANNs are generally structured as networks of interconnected 
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formal neurons, in which the formal neurons are processing units organized into ordered layers, while the con-
nections between neurons are weighted (the signal flowing through the connection is multiplied by a coefficient 
called weight) and oriented (the flow has a specific direction). The connections are oriented from the first layer 
(input layer) to the last layer (output layer). Hence, an ANN works as an input-output system that receives input 
signals and produces an output. The output is the result of the propagation of the input signals from the input 
layer to the output layer. During this forward propagation, each neuron processes the weighted sum of all the sig-
nals coming from its ingoing connections by means of a mathematical function (activation function), and then 
produces an output signal that is transmitted to the neurons of the subsequent layer. The problem of training an 
ANN lies in tuning the weights of the connections between neurons so as to minimize the so called loss function, 
which measures the overall discrepancy between the outputs produced by the network in correspondence of the 
training inputs and their corresponding actual outputs.

SLFNs are the simplest ANN architectures as they are composed of only the input layer, a single hidden layer 
and the output layer. Although it is well known that SLFNs possess the universal approximation  property35, i.e. 
they can approximate any continuous function with arbitrary precision, their training is not trivial. Indeed, as 
it is the case for general ANNs, minimizing their loss function is very difficult as the latter is highly nonconvex, 
with steep-sided valleys and flat regions, so that a training algorithm is likely to get stuck in poor quality solu-
tions. Moreover, as mentioned before, overfitting phenomena may occur. In addition, it is worth pointing out that 
the SLFNs training algorithms are generally based on a procedure called  backpropagation23 (used to iteratively 
reconstruct the gradient of the loss function) which is very time consuming.

As it is shown  in36, training algorithm DEC(2), by adopting an intense decomposition approach and proper 
regularization techniques, is able to cope with all the previous drawbacks, allowing to quickly obtain good quality 
models. In particular, the decomposition has a strong impact on the computational time and aids the algorithm 
to escape from the attraction basin of poor solutions, while the regularization allows to generate simpler and 
more general models preventing overfitting.

Assessment of the SUMPOT
Data collection and preprocessing. This retrospective, observational, single center study was approved 
by the local ethics committee of Careggi University Hospital (CEAVC Largo Brambilla 3, Florence. Protocol 
number 2017-4010; date of approval 21/11/2017). All participants in the study returned a signed informed con-
sent at the time of preoperative evaluation, prior to data collection. We retrospectively collected data from the 
medical charts of all consecutive in- and outpatients aged >18 who underwent elective, emergency, general or 
urologic surgical procedures from July 1 to October 1, 2017, and who were subsequently admitted to intensive 
care units (ICUs), high-dependency units (HDUs) or standard wards at the tertiary care teaching hospital of 
Careggi (Azienda Ospedaliero-Universitaria di Careggi), Florence, Italy.

For each enrolled patient, presence/absence of each of the risk factors already explored in the literature and 
mainly identified through the ASPRA  score13 was assessed by scrutinizing the anesthetic record charts filled dur-
ing preoperative examination (Table 1). This information formed the input data set of the SLFN. We considered 
only the presence or absence of any of the risk factors on a binary basis (i.e. 0 for absence of the risk factor, 1 for 
presence of the risk factor).

According to most recent literature, some modifications were done on the original risk factors previously 
identified in the ASPRA score. Total protein serum concentration < 7 g/dL and perioperative weight loss > 10% 
were considered as input risk factors to better estimate the nutritional status and frailty of the  patient37. Age and 
sex were not included among the risk factors. Unstable coronary syndromes were excluded from patient-related 
input factors since they usually require treatment prior to elective surgery.

Due to the high number of minimally invasive robot-assisted surgical procedures performed in our center, 
we introduced the surgical approach to the procedure as a new binary input parameter for postoperative risk-
assessment. Data were collected from open, laparoscopic, robotic, and endoscopic surgeries with details on the 
specific procedure. Each surgical procedure received a score of 1 or 0, depending on whether they were used 
or not. Data concerning the type of surgical technique were extracted from the preoperative plan and do not 
necessarily correspond to those actually applied.

The few continuous variables included among the risk factors were dichotomized so as to better fit the remain-
ing binary factors, thus avoiding numerical issues during the mathematical operation involved in the training 
phase. Body Mass Index (BMI, calculated as usual) was dichotomized as normal or altered if < 17 or > 25 
respectively. Elevated serum creatinine value was considered a binary input risk factor if greater than 1.5 md/dL.

According to this modification the new input data set of the SFLN was composed from 41 items, listed in 
Table 1.

Nine of the 41 input data were removed from the dataset, since no patients underwent the corresponding 
surgical procedure thus adding no information (in particular 19, 20, 22, 24, 25, 29, 31, 34, 35).

Each patient was monitored during the postoperative period until hospital discharge so as to evaluate any 
potential postoperative complications.

PoCs were classified according to the Clavien-Dindo classification of surgical complications that assigns a 
Clavien grade to each patient (Table 2). The entire cohort was divided into two classes corresponding to a Clavien 
score of ≤ 1 (the control group) and > 1 (the PoCs group). In so doing, we addressed the binary classification 
problem (Table 2).

Data from a total of 526 surgical patients were entered into the study database. Based on the Clavien-Dindo 
score, 43 out of 526 patients (8.2%) suffered from one or more PoCs, while 483 patients (91.8%) did not. The final 
database was composed of 331 males and 194 females; mean age was 63 years. Table 2 reports the distribution 
of risk factors in the control group and the PoCs group. Table 3 summarizes the complications experienced by 
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the PoC group, while Table 4 reports the distribution of complications among patients according to the Clavien-
Dindo. classification.

The whole dataset has been divided into a training set (to train the predictive model) and a testing set (to 
assess generalization performance, see “Methods” section). The training set consisted of 466 patients, of whom 
34 suffered from one or more PoCs (i.e. Clavien > 1, 7.3%) and 432 did not (i.e. control patients, 92.7%). The 
testing set consisted of 60 patients, of whom 9 suffered from one or more PoCs (15%) and 51 (85%) did not. The 
samples of the testing set have been selected randomly in both classes. In order to overcome data imbalance in 
the training set, data from the PoC group were duplicated according to an oversampling strategy (27). As a result, 
the final dataset was composed by 561 patients. Of these, 60 patients entered the testing set and 500 patients, 
of whom 68 (i.e. 34 times 2) belonged to the PoC group (see Table 5) and 432 to the control group, entered the 
training set. This artifice could be introduced on the grounds that it does not impair the generalization accuracy 

Table 1.  The considered risk factors.

Patients comorbidity factors

1. Abnormal ECG (left bundle branch block, left ventricular hypertrophy, repolarization abnormalities, non-sinus rhythm)

2. Untreated hypertension or hypertension not controlled by medical therapy

3. Previous thromboembolism

4. Stable or controlled angina

5. Previous myocardial infarction with no clinical or diagnostic evidence of residual ischemia

6. Compensated heart failure or previous heart failure

7. Diabetes mellitus

8. Neoplastic disease

9. Transfusion in the preoperative period (> 4 units)

10. Smoking and/or drug addiction

11. BMI > 25 or < 17 weight loss>10% in the preoperative period, plasma proteins < 7 g/dl

12. Creatinine > 3.5 g/dl

13. Steroid use

14. Prevision of prolonged surgery (reoperation, anatomical abnormalities, etc.)

15. History of COPD/dyspnea

16. Decompensated heart failure

17. Valve disease

18. Severe arrhythmias: advanced AV block (second-degree block, Mobitz 2 > 2:1, block grade III)

Symptomatic ventricular arrhythmias, supraventricular arrhythmias with uncontrolled ventricular response

Surgical procedures factors

19. Breast surgery

20. Dental surgery

21. Endocrine surgery (no pheochromocytoma)

22. Eye surgery

23. Gynecological surgery

24. Reconstructive surgery

25. Minor orthopedic surgery (other than hip and spine)

26. Minor urological surgery

27. Abdominal surgery

28. Carotid surgery

29. Head and neck surgery

30. Neurologic/orthopedic (hip and spine) surgery

31. Lung/kidney transplant

32. Major urological surgery

33. Endocrine surgery (pheochromocytoma)

34. Peripheral vascular surgery

35. Aortic and major vascular surgery

36. Pancreas/liver surgery

37. Emergency abdominal surgery

Surgical technique factors

38. Open surgery

39. Laparoscopic surgery

40. Robotic surgery

41. Endoscopic surgery
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of the input-output mathematical relation found by the trained SLFN. On the contrary, if the classes of the train-
ing set are imbalanced, the minimization process may tend to favor the minimization of errors associated to 
the largest class with respect to the less represented one, thus producing a model which is accurate for one class 
and not for the other. Oversampling the less represented class allows to allocate more weight to its errors so as 
to mathematically force the training phase toward a more balanced  model38.

Table 2.  Distribution of risk factors in the control group and the Pocs group. For layout reasons, some risk 
factors descriptions have been abbreviated with respect to Table 1.

Risk factors Total Control group (Clavien-Dindo ≤1) Pocs group (Clavien-Dindo > 1)

Abnormal ECG 188 168 (89.4%) 20 (10.6%)

Previous thromboembolism 17 16 (94.1%) 1 (5.1%)

Untreated hypertension or hypertension therapy 247 227(91.9%) 20 (8.1%)

Previous myocardial infarction without residual 
ischemia 26 26 (100%) 0 (0%)

Stable or controlled angina 21 19 (90.5%) 2(9.5%)

Compensated heart failure or previous heart failure 21 20 (95.2%) 1(4.5%)

Diabetes mellitus 64 57 (89%) 7(11%)

Neoplasticdisease 308 277(89.9%) 31(10.1%)

Transfusion in pre-operative period (> 4 units) 9 7 (77.7%) 2(22.3%)

Previous transient ischemic attack (TIA)/stroke 22 21 (95.5%) 1(4.5%)

Smoking addiction and/or drug addiction 180 165 (91.6%) 15 (8.4%)

BMI > 25/< 18, weight loss > 10%, plasma proteins < 
7 g/dl 277 255 (92%) 22 (8%)

Creatinine > 1.5 mg/dl 45 41 (91%) 4 (9%)

Steroid use 29 25 (86%) 4 (14%)

Prevision of prolonged surgery 12 8 (66.6%) 4 (33.4%)

History of COPD/dyspnea 99 89 (89.9%) 10 (10.1%)

Decompensated heart failure 2 1 (50%) 1 (50%)

Symptomatic valvular disease 0 0 0

Severearrhythmias: 0 0 0

Endocrine surgery (no pheochromocytoma) 1 1 (100%) 0 (0%)

Gynecological surgery 4 3 (75%) 1 (25%)

Minor urological surgery 158 153 (96.8%) 5 (3.2%)

Abdominal surgery 249 223 (89.5%) 26 (10.5%)

Thoracic surgery 1 1(100%) 0 (0%)

Head and neck surgery 11 11(100%) 0 (0%)

Lung/kidney transplant 1 1 (100%) 0 (0%)

Mayor urological surgery 74 68(91.9%) 6 (8.1%)

Pheochromocytoma 1 1 (100%) 0 (0%)

Pancreas/liversurgery 24 19 (79.2%) 5 (20.8%)

Emergency abdominal surgery 2 0 (0%) 2(100%)

Open surgery 142 125 (88%) 17(22%)

laparoscopic surgery 143 132 (92.3%) 11(7.7%)

Robotic surgery 89 81 (91%) 8(9%)

Endoscopicsurgery 152 146 (96.7%) 6(3.3%)

Table 3.  Clavien scores.

Grade Definition

Grade I
Any deviation from the normal postoperative course without the need for pharmacological treatment, or surgical, endoscopic, 
or radiological procedures. Permitted therapeutic regimens: drugs and antiemetics, antipyretics, analgesics, diuretics, electro-
lytes, and physiotherapy. This grade also includes wound infections opened at the bedside

Grade II Requiring pharmacological treatment with drugs other than those permitted for grade I complications

Grade III Requiring surgical, endoscopic, or radiological procedures. Grade IIIa: procedure not under general anesthesia Grade IIIb: 
procedure under general anesthesia

Grade IV Life-threatening complications (including central nervous system complications) requiring IC/ICU management. Grade IVa: 
single-organ dysfunction (including dialysis) Grade IVb: multiorgan dysfunction

Grade V Death
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The distribution of patients in the final training and training sets is provided in Table 6.

Experimental settings. A grid-search fivefold cross-validation  technique14 has been used to determine 
the best hyperparameters of the SLFN. In particular, a finite set of candidate values for each hyperparameter is 
initially specified by the user. For each possible combination of values of hyperparameters among the considered 
candidate sets (the points of the ideal grid), a fivefold cross-validation procedure is used to assess the quality of 
the model for such combination. In the fivefold cross-validation, the training set is partitioned into 5 partitions, 
and 5 different new training sets (trials) are obtained by removing from the original training set one partition 
at a time. At each of the 5 cross-validation steps, the ANN is trained on one of the trials and validated with a 
performance score on the corresponding removed partition (validation set). The final cross-validation score is 
the average of the scores obtained on the 5 different validations sets. The combination of values obtaining the 
best cross-validation score is selected, and then the ANN model is trained over all the original training set and 
tested on the separate testing set.

As  in36, the neurons of the hidden layer of the SLFN have been equipped with a sigmoidal activation func-
tion of the form

where β is a given parameter. The values of the hyperparameters explored in the grid-search was

• {15, 35, 55, 75} as the number of hidden layer neurons,
• {1, 2, 3, 4} as β coefficient in the activation function,
• {0.0, 0.1, 0.01, 0.001} as the weighting coefficient of the regularization terms,
• {10, 20, 30, 40} as the maximum number of macro-iterations of the training algorithm.

The better configuration determined by the grid-search cross-validation procedure was 35 hidden layer neurons, 
β = 3 , 0.01 as the regularization coefficient, and 20 macro-iterations. It is worth mentioning that the natural 
output of ANNs is continuous, however, a binary classification is easily obtained by adding a filter in which out-
puts greater than a certain threshold are assigned to one class and outputs less than the threshold are assigned 
to the other class. In this study, since samples were assigned either class 0 or class 1, we used a threshold of 0.5 
for the filter.

1

1+ e−βx

Table 4.  Distribution of complications among patients, according to the Clavien-Dindo classification.

Clavien score Number of cases

0–1 483 (91.8%)

2 25 (4.7%)

3 12 (2.3%)

4 3 (0.6%)

5 3 (0.6%)

Table 5.  Distribution of the Clavien-Dindo score among patients, according to the ASA score.

ASA score

Clavien-Dindo score

≤ 1 > 1

1 66 (94.3%) 4 (5.7%)

2 294 (93.3%) 921 (6.7%)

3 118 (87.4%) 17 (12.6%)

4 5 (83.3%) 1 (16.7%)

5 0 0

Table 6.  Distribution of patients in the training set and the testing set.

Training set Testing set

Patients from the control group 432 51

Patients from the PoCs group 68 9

Total 500 60
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Performance measures and comparisons. The accuracy of the system in predicting the development of 
postoperative complications is expressed as accuracy rate, i.e. the rate of patients correctly classified by the SLFN. 
Specifically, “positive accuracy” (also denoted as sensitivity) was defined as the rate of correct preoperative pre-
dictions of complications in patients who did actually experience PoCs while “negative accuracy” (also denoted 
as specificity) was defined as the rate of correct preoperative predictions of absence of complications in patients 
who experienced an uneventful postsurgical course (i.e., control cases). Besides positive and negative accuracies, 
we consider also mean accuracy, balanced accuracy, positive predicted value (PPV), negative predicted value 
(NPV), ROC and AUC criteria.

Since the SLFN model has strong representation power with scarce interpretability, in order to better assess 
and contextualize its performance in relation to the investigated case study, we compared the SLFN performance 
to that of  BDTs39.Without entering into details, BDTs are structured as a sequence of binary decisions operated 
in correspondence of nodes interconnected according to a hierarchical tree-based structure. At each decision 
node there is a bifucraction of the tree, indeed the node has 2 outgoing connections. The decision mechanism 
is such that each decision node is associated to a predictor variable, and a sample passing through that node is 
forwarded to its left connection if the corresponding predictor variable assumes a value higher than a certain 
threshold (or assumes value 1 if the variable is binary), otherwise (or if it assumes value 0 in the binary case) it is 
forwarded to the right connection. Starting from the first decision node (root node), each sample goes through 
a path in the tree according to the decision mechanism of the nodes. The paths along the tree end in different 
terminal nodes (leaf nodes) associated to one of the 2 classes, so that each sample will be associated to the class 
of the terminal node in which it falls. Training a BDT essentially consists in determining the predictor variable 
associated to each decision node and the corresponding threshold (if the variable is not binary), and like ANNs 
is performed in a supervised learning manner.

As already mentioned, the rationale behind this comparison is that the BDT approach is the opposite to the 
ANN one. Indeed, BDTs are characterized by a high level of interpretability, but they generally lack accuracy; 
this is essentially due to the mathematical complexity of the BDTs training optimization problem and to the 
absence of nonlinear input-output mappings in their structure that makes model architecture too simple. The 
purpose of this comparison was to evaluate the extent to which the adoption of ANNs can increase accuracy of 
the predictive model at the expenses of interpretability.

The DEC(2) training algorithm used in the experiments is the FORTRAN custom implementation directly 
obtained from its authors, while the BDT was implemented with the function FITCTREE of the MATLAB Sta-
tistics and Machine Learning Toolbox.

Lastly, we collected the ASA scores of all enrolled patients (Table 5 reports the distribution of PoCs in patients 
according to the ASA score), as reported in the anesthetic record chart, and compared them to the ANN model 
for prediction of postoperative complications.

Results. The SLFN equipped with DEC(2) training algorithm obtained an average classification accuracy of 
90% in the testing set (54 patients out of 60 were correctly classified), 90.2% in the control group (46 patients out 
of 51 were correctly classified), and 88.9% in the PoC group (8 patients out of 9 were correctly classified). The 
trained BDT model obtained an average classification accuracy of 83.3% in the testing set (50 patients out of 60 
were correctly classified), 94.1% in the control group (48 patients out of 51 were correctly classified), and 22.2% 
in the PoC group (2 patients out of 9 were correctly classified).

The following confusion matrices highlight the performance of both methods with respect to different criteria. 

SLFN

actual

positive negative

predicted
positive 8 5

negative 1 46

mean accuracy 90%
balanced accuracy 90.45%

sensitivity 88.9%
specificity 90.2%

PPV 61.5%
NPV 97.9%

BDT

actual

positive negative

predicted
positive 2 3

negative 7 48

mean accuracy 83.3%
balanced accuracy 58.15%

sensitivity 22.2%
specificity 94.1%

PPV 40%

NPV 87.3%

 Figure 1 shows a much higher ROC curve for the SLFN than for the BDT, corresponding to a much large 
value of the AUC (0.89 and 0.58 respectively).

Ethics approval. The study was performed in accordance with the principles of the Declaration of Helsinki 
and was approved by the local ethics committee (Comitato Etico di Area Vasta Centro, Largo Brambilla 3 Flor-
ence). Protocol number: 2017-4010. Date of approval: 21/11/2017).

Consent to participate. Informed consent was obtained from all participants if subjects are under grade 
4th and 5th, from a parent and/or legal guardian.
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Discussion and conclusions
This study aimed at implementing an automated surgical risk calculator based on ANN technology to define 
patients’ individual risk for postoperative complications.

High-risk patients undergoing non-cardiac surgery represent a large share of admissions to ICUs in more 
developed  countries40. A thorough preoperative assessment followed by an adequate monitoring strategy are 
paramount to improve perioperative management of surgical patients, improve postoperative outcomes and 
reduce morbidity, mortality, and related health  costs41. Postoperative complications may be linked to patient-
related factors and surgical-related factors. These factors can be detected at the time of preoperative assessment, 
provided a clear surgical plan has been  made42. Another crucial factor is the intraoperative course of surgery; 
however, preoperative analysis of risk factors does not consider unpredictable intraoperative events (e.g. bleed-
ing from accidental vascular injury)43. Since most complications originate in the first 48 hours, with hypoxia/
hypotension occurring most frequently, a planned ICU/HDU admission may be a beneficial option to allow 
prompt detection and timely management of the ongoing  issue3. Accurate identification of patients at high risk 
for PoCs remains difficult. Recent papers have emphasized that less than 15% of “high-risk” surgical patients 
are electively admitted to the highest level of postoperative care, but account for 80% of perioperative  deaths44. 
Although elective postoperative ICU admission may be standard practice for some subsets of high-risk patients 
(e.g. after cardio-thoracic or emergency surgery), for other patients this is not the case. In the setting of non-
cardiac surgery, clinical scores may represent valuable clinical tools to identify those patients who could benefit 
from more intensive levels of postoperative care.

Over the last few years, several large international trials have been planned or are underway to define the best 
approach to preoperative assessment. Recently, Kahan et al.45 reported the results of a secondary analysis of the 
International Surgical Outcome Study (ISOS) database, in which the authors aimed to shed light on the relation-
ship between critical care admission and perioperative mortality in a large cohort of elective surgical patients. 
Interestingly, no direct association was found between the two variables. Although presenting some limitations, 
the study by Taccone et al.46 made it clear that routine postoperative admission to ICUs is not helpful “per se”. 
The authors underline the need for tailored postoperative admission based on the risk factor of each individual 
patient, and thus stress the importance of accurate postoperative risk  prediction47.

There are several scores that can be used to predict a complicated postoperative course. In general, these scores 
correlate the probability of PoCs to the general health status of the patient, and/or to the expected complexity of 
the planned surgery. The most widely used scores include the ASA-ps classification, the original and modified 
versions of the POSSUM score, and the APACHE score for patients already admitted to postoperative  ICUs48–50. 
Despite their widespread use, however, these scores show certain limitations, including a high inconsistency 
between  ratings48,49, and the tendency to under- or over predict mortality in low-risk surgical  patients51–54. 
They also consider no (ASA-ps) or few (POSSUM) surgery-related  variables55. In 2015, the ASPRA score was 
implemented and tested, showing good predictive ability, as from the ROC curves, remarkably good negative 
predictive value for scores > 7, and a trend towards a positive association between higher scores and more severe 
complications as defined by the Clavien-Dindo score.

ANNs are increasingly being included in several clinical processes of shared decision-making for their capac-
ity to detect patterns and relationships among a broad range of different input data, thus enabling decision-
making under uncertain  conditions56. ANN is a ML method evolved from the idea of simulating the human brain.

The new and easy-to-use ANN-based SUMPOT was implemented to generalize the hidden relationship 
between the input (i.e. patient- and surgery-related risk factors) and the output (i.e. occurrence or not of PoCs, 
as defined by the Clavien-Dindo score). In the testing set, the accuracy of SUMPOT in correctly identifying 
complicated and uncomplicated postoperative courses was 88.9% and 90.2%, respectively. Comparison with BDT 
performance shows that loss of interpretability due to the adoption of an ANN model is completely justified by 
increase in overall predictive accuracy. Indeed, the too simple BDT model, while achieving slightly better results 
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in relation to the most represented control group class (94.1%), was totally inadequate for predicting the less 
represented PoC group (22.2%). Overall accuracy is 90% for ANN and 83.3% for BDT.

Since the ANN is able to progressively learn which input factors are more closely linked to the output, grading 
of the presumptive strength of association between single risk factors and PoCs was not necessary.

Based on data already available in the literature, we looked for the possibility to use already known preopera-
tive risk factors as a starting point to implement an entry set of risk factors for postoperative complications. Thus, 
as input entries, we used a binary transformation of the risk factors already identified (i.e. 1 if the factor was 
present, 0 if not). Unstable coronary syndromes were excluded from the input factors since they usually require 
urgent treatment and certainly require postoperative elective ICU admission, irrespective of the scores. We 
included a BMI ratio > 25 or < 17 among the input risk  factors57–60. Serum albumin concentration was substituted 
with total plasma protein value (see “Methods” section). Due to its capability to predict poor surgical outcomes, 
weight loss in the preoperative period was included among the variables for risk assessment to better estimate the 
nutritional status and frailty of the patient (see “Methods” section). Elevated serum creatinine value was added to 
the input risk factors if greater than 1.5 md/dl. Omission of age and sex as predictors of postoperative complica-
tions is consistent with results from other studies which demonstrate that a comprehensive frailty assessment of 
patients (using the same variables included in our neural network) has higher predictive power compared to age 
or sex  alone61,62. Finally, we decided not to include more complex data such as cardiopulmonary exercise testing 
and biomarker assays, even though they could potentially increase the accuracy of the predictive  score63. All the 
characteristics described above contribute to make SUMPOT an easy to apply tool in routine anesthesia practice.

The planned surgical technique (open vs. laparoscopic vs. robot-assisted) was added to the input risk factors 
to consider the potential advantages of less invasive surgery, as drafted in the surgical plan. Actual occurrence 
of a surgical complication was evaluated retrospectively in the postoperative period. This approach is consistent 
with that of other surgical risk score calculators that take into account the planned surgical technique. A general 
limitation of this approach is that, if a different technique is chosen during surgery (e.g. during conversion from 
laparoscopic to open procedure), also postoperative risk changes. In the case of SUMPOT, that can be easily 
overcome by reassessing the risk of the patient for postoperative complications. In this regard, it is worth men-
tioning that in our dataset the rate of laparoscopic-to-open conversion was about 4%.

Binary assessment of presence/absence of risk factors was easy to perform and required only routine clinical 
and surgical data available from the patient’s medical chart and his/her medical history and clinical examinations.

In the testing set, the accuracy of the model to predict the complication was defined as the rate of correct 
patient classifications (complicated/uncomplicated postoperative course). SUMPOT works as an input/output 
black-box model. Since the Clavien-Dindo score defines any deviation from normal postoperative course as 
“complicated”, based on treatments required during the postoperative period, we considered those patients with 
a Clavien score of 1 (need for morphine or extra fluids) as not complicated. This modification was made in order 
to add clinical meaningfulness to the prediction returned by SUMPOT. In particular, SUMPOT predicts patients 
with Clavien-Dindo scores > 1, thus making the score itself more clinically consistent with the chance a patient 
has to experience major postoperative complications and thus to benefit from a higher level of postoperative 
care. The accuracy of SUMPOT in predicting an uncomplicated course was 90.2%; thus, the new tool has a high 
likelihood of identifying patients at lower risk of developing substantial postoperative complications and who can 
therefore receive appropriate treatment in standard wards. The observed positive predictive value (PPV) and the 
negative predictive value (NPV) for SUMPOT were 61.5% and 97.9% respectively. However good these figures 
may appear, the performance of SUMPOT cannot be entirely described through the PPV and NPV, since the 
ANN technology relies on a self-training mechanism that tends to improve its predictive performance through 
repeated use (i.e. PPV and NPV will change over time). That is why a low initially observed PPV does not mean 
that the test is of lower quality. For the same reason, it is not possible to directly compare SUMPOT with more 
traditional surgical risk scores. Being based on ANN technology, the SUMPOT performance is better described 
through “accuracy” (see above). On the other hand, the new SUMPOT does not give any clues as to the severity 
of the expected complication, since the score itself is not graded; it simply pre-emptively classifies the surgical 
patient as having a complicated or uncomplicated course.

Moreover, our analysis confirms that in most cases the widely used ASA score is poorly consistent with the 
real clinical postoperative course (see Table 4), both for low-risk and high-risk surgical patients. Among patients 
with lower ASA scores (i.e., ASA ≤ 2) postoperative complications occurred in 6.5% of cases (25 patients). Under-
estimating the actual risk of the patient is dangerous, not only in terms of the event “postoperative complication” 
but also in terms of predicting its clinical relevance. In our study, 3 patients with lower ASA scores developed 
substantial postoperative complications (i.e., Clavien-Dindo score 4). On the other hand, 123 patients (87.2%) 
with higher ASA scores (i.e., ASA > 2) did not experience postoperative complications. To consider them as 
“high-risk patients” for whom post-operative admission to ICU/HDU was necessary would have led to inap-
propriate allocation of, usually limited, hospital’s resources. These findings indicate that SUMPOT may be more 
efficient than ASA in identifying high-risk surgical patients and properly allocating limited ICU/HDU beds. 
Results of this study suggest that the ANN-based SUMPOT could support the physician in planning the most 
appropriate postoperative level of care.

An important advantage of SUMPOT is that preoperative evaluation of the patient is fast and simple, since 
it only requires clinical data easily accessible from the patient medical chart and a review of his/her medical 
history and clinical examinations, both aspects which are part of routine anesthesiology assessments. SUMPOT 
differs from other perioperative scoring systems in that it is not time-consuming and does not require recollec-
tion of complex information. This new ANN-based tool offers the advantage of automation and self-learning 
for progressively more accurate assessment. Our results demonstrate the efficacy of SUMPOT and underline its 
potential value in supporting clinical decision making.
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Some limitations should be acknowledged. First, SUMPOT was developed using data from a single center. 
However, due to self-learning properties, it would be easy to test it in other surgical contexts. Second, the accu-
racy of the algorithm does not necessarily equate clinical efficacy. To be clinically meaningful, its mathematical 
efficacy needs to be challenged during clinical practice to test whether its use can improve the process of alloca-
tion of limited ICU/HDU resources and have an impact on postoperative outcomes. Since the ANN technology 
works with a self-learning black-box algorithm, even a low number of cases could be considered to validate 
the SUMPOT calculator. However, for further validation, a large number of cases will be included in our next 
analysis. Third, comparison with other scores—including the American College of Surgeons risk score calcula-
tors (the “NSQIP”) was not possible for technical reasons. In the next protocols, we will compare SUMPOT with 
other, more traditional surgical scores so as to consider also more severe complications and increase specificity.
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