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Structural modification of fentanyls 
for their retrospective identification 
by gas chromatographic analysis 
using chloroformate chemistry
Carlos A. Valdez 1,2,4*, Roald N. Leif 1,2,4, Robert D. Sanner 1,2, Todd H. Corzett1,2,3,4, 
Mark L. Dreyer 1,4 & Katelyn E. Mason1,2,4

The one-step breakdown and derivatization of a panel of nine fentanyls to yield uniquely tagged 
products that can be detected by Electron Ionization Gas Chromatography-Mass Spectrometry 
(EI-GC-MS) is presented. The method involves the treatment of the synthetic opioids with 
2,2,2-trichloroethoxycarbonyl chloride (TrocCl) at 60 °C for 3 h in dichloromethane and furnishes two 
products from one fentanyl molecule that can be used to retrospectively identify the original opioid. 
Parameters that were studied and fully optimized for the method included temperature, solvent, 
nature of scavenging base and reaction time. One of the two resulting products from the reaction 
bears the trichloroethoxycarbonyl (Troc) tag attached to the norfentanyl portion of the original opioid 
and greatly aids in the opioid detection and identification process. The methodology has been applied 
to the chemical modification of a panel of nine fentanyls and in all cases the molecular ion peak for 
the Troc-norfentanyl product bearing the distinctive trichloroethyl isotopic signature can be clearly 
observed. The method’s LLOD was determined to be 10 ng/mL while its LLOQ was found to be 20 ng/
mL. This methodology represents the first application of chloroformates in the chemical modification 
of this class of synthetic opioids that are notoriously inert to common derivatization strategies 
available for GC–MS analysis.

Since its discovery in the laboratory of Paul Janssen in  19601, fentanyl (Fig. 1) has become one of the gold 
standards in the medical field for use as a safe anesthetic during perioperative surgical procedures and in the 
management of pain in various disease  states2,3. The medical practitioners’ preference for fentanyl over morphine 
(Fig. 1) stems from its faster onset time, stronger potency and lower risk for acute heart and respiratory failure 
in the  patient4,5. Unfortunately, the recognized beneficial impact of this synthetic opioid has been opaqued by its 
involvement in numerous deaths stemming from its illicit  consumption6,7. To further augment their notoriety, 
fentanyls have been become part of a specialized group of chemical warfare agents known as incapacitating 
 agents8. Their employment in the Dubrovka Theater siege in Moscow epitomized their power to cause mass 
 casualties9,10. Due to their emergence as a real threat to public health as proven by the outbreak of numerous 
pandemic cases worldwide and the alarming rate of production by clandestine laboratories using published 
 protocols11–13, many efforts are now being directed at counteracting their  effects14,15 with drugs like naloxone 
(Fig. 1) as well as developing more efficient detection methods using Gas Chromatography-Mass Spectrometry 
(GC–MS)16,17 and Liquid Chromatography-Mass Spectrometry (LC–MS)18 instrumentation.

In the field of analytical chemistry, fentanyl detection has mostly been accomplished by LC–MS methods that 
features detection limits for the opioid down to the picogram  level19. Analysis and detection by LC–MS means 
of these opioids is further aided by their UV chromophores as well as their basic nitrogen that in the salt form 
exists in a protonated state increasing the drugs’ solubility in the aqueous gradients used. In contrast, GC–MS 
has not encountered the same level of success in detecting fentanyl at such low levels and this can be attributed 
to several factors. One that stands out is that many of the fentanyls encountered in biological matrices or in the 
environmental setting are in their salt form (either hydrochloride or citrate salts) that require a basic sample 
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preparation step that ultimately converts it to the free base for GC  detection17,20,21. Another is the chemical inert-
ness of fentanyl itself and analogs that effectively hinders the use of derivatizing agents (e.g. silylation, methyla-
tion) for converting them into species with enhanced chromatographic profiles for GC–MS analysis. Thus, the 
only effective reaction of fentanyl itself, and simple analogs thereof, is the one involving its tertiary piperidinyl 
nitrogen with an acid to form a salt, as there are no other reactive functionalities in the molecule to exploit from 
a derivatization standpoint. Naturally, more complex fentanyls, where the presence of hydroxyl and carboxyester 
groups, offer more opportunities for chemical modification via established derivatization techniques.

Having the ability to identify these synthetic opioids in a sample by GC–MS with high degree of confidence 
would be an invaluable tool in the analytical field. GC–MS is an analytical technique that offers several advantages 
over other techniques, including LC–MS, as a means of analyzing this class of compounds. GC–MS instrumen-
tation can be found virtually in every analytical chemistry laboratory, largely due to its much lower cost for 
purchase, maintenance and operation. In addition, the inclusion of mass spectral data in collections like the 
NIST and OCAD libraries make the initial identification of an unknown material a fairly simple task at an early 
stage during sample  analysis22–24. Therefore, providing the analyst with not only standards for direct comparison 
but a derivatization reaction that can unambiguously identify the opioid in the mixture can be of great comple-
mentary value. The analysis of fentanyl and structurally-related congeners by GC–MS can be a daunting task if 
a sample contains a new analog that has not been previously encountered and for which no library analysis and 
match can be obtained. In these instances, a derivatization reaction often solves the problem of unambiguously 
identifying an unknown substance while still relying on a single analytical technique like GC–MS. To date no 
direct derivatization protocol for fentanyls exists and thus no alternate way of analyzing these by GC–MS can 
be accomplished. In this work, we introduce a protocol involving the chemical modification of fentanyls that 
yields two products possessing vestigial features of the starting fentanyl that can be pieced together afterwards 
to retrospectively and unambiguously identify the original opioid.

Methods
Materials. All chemicals were purchased from commercial suppliers and used as received. 2,2,2-trichloro-
ethoxycarbonyl chloride (TrocCl), triethylamine (TEA), diisopropylethylamine (DIPEA), tetramethylpiperidine 
(TMP), acetonitrile (ACN), acetone, ethyl acetate and dichloromethane were purchased from Sigma-Aldrich (St. 
Louis, MO.). Sodium bicarbonate and anhydrous sodium sulfate were purchased from Acros Organics (Westch-
ester, PA.). Deuterated chloroform  (CDCl3) and sodium carbonate were purchased from Alfa Aesar (Ward Hill, 
MA). Acrodisc PTFE syringe filters (0.45 μm) were purchased from Pall laboratories (Port Washington, NY.). 
Autosampler vials and glass inserts were purchased from Agilent Technologies (Santa Clara, CA.). All the fen-
tanyls described in this paper were synthesized using published protocols and their NMR spectra matched the 
published ones. For isobutyrylfentanyl and valeroylfentanyl, their syntheses were accomplished by a modifica-
tion of the synthesis for  fentanyl11 and their associated NMR spectra are included in the Supporting Information 
(Pages S11-S13) section. All fentanyls and the Troc-norfentanyl standard were purified by flash column chroma-
tography using a Biotage Isolera purification system using SNAP KP-Si silica gel column cartridges.

EI-GC-MS analysis method. A 6890 Agilent GC with 5975 MS detector equipped with a split/splitless 
injector was used for the analysis as previously  described25–29. The GC column used for the analysis was an Agi-
lent HP- 5 ms UI capillary column (30 m × 0.25 mm id × 0.25 μm film thickness). Ultra-high purity helium, at 
0.8 mL/min, served as the carrier gas. The inlet was operated in pulsed splitless mode (25 psi for 1 min, followed 
by a 50 mL/min purge flow), with the injector temperature set at 250 °C and the injection volume was 1 μL. The 
oven temperature program was as follows: 40 °C, held for 3 min, increased at 8 °C/min to 300 °C, held for 3 min. 
The MS ion source and quadrupole temperatures were 230 °C and 150 °C, respectively. Electron ionization (EI) 
was used with an ionization energy of 70 eV. The MS was operated to scan from m/z 29 to 600 in 0.4 s with a 
solvent delay of 3.5 min.

GC–MS analysis method for LLOD and LLOQ. Established methods, for both GC–MS and LC–MS, 
exist for the intact analysis of fentanyl and related opioids and these guided our LLOD and LLOQ values deter-
mination using a pure sample of Troc-norfentanyl synthesized in our lab for this  purpose30–32. Sample analyses 
were performed on an Agilent 6890 GC coupled to an Agilent 5975c MS detector. The GC column used for the 
analysis was an Agilent DB-17ht capillary column (30 m × 0.25 mm id × 0.15 μm film thickness). Ultra-high 
purity helium served as the carrier gas. The inlet was operated in constant pressure mode (25 psi, with inlet purge 

Figure 1.  Structures of fentanyl, morphine and the most common antidote employed in cases of fentanyl 
poisoning, naloxone.
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at 1 min at 50 mL/min purge flow), with the injector temperature set at 285 °C and injection volumes of 1 μL. 
The oven temperature program was as follows: 140 °C, held for 1 min, increased at 25 °C/min to 325 °C, held for 
1.6 min. The MS ion source and quadrupole temperatures were 230 and 150 °C, respectively. Electron ionization 
was used with an ionization energy of 70 eV. The MS was operated to SIM mode (m/z 93, 132, 149, and 259), 
with a solvent delay of 5 min.

Nuclear magnetic resonance. Spectra were obtained using a Bruker Avance III 600 MHz instrument 
equipped with a Bruker QNP 5 mm cryoprobe (Bruker Biospin, Billerica, MA) at 30.0 ± 0.1 °C. NMR data is 
reported as follows: chemical shift (δ) (parts per million, ppm); multiplicity: m (multiplet), d (doublet), t (tri-
plet), q (quartet), app t (apparent triplet), tt (triplet of triplets), qd (quartet of doublets), quin (quintet),  sep 
(septet); coupling constants (J) are given in Hertz (Hz). 1H NMR (600 MHz) chemical shifts are calibrated with 
respect to residual DMSO-d5 in DMSO-d6 centered at 2.50 ppm, whereas for 13C NMR (151 MHz), the center 
peak for DMSO-d6, centered at 39.52  ppm, was used for the spectral calibration. For acquisitions in  CDCl3, 
chemical shifts are calibrated with respect to residual chloroform in  CDCl3 centered at 7.26 ppm, whereas for 
13C NMR the center peak for  CDCl3, centered at 77.0 ppm, was used for the spectral calibration. 13C-DEPT-135 
NMR was used to identify the nature (i.e. 1°, 2°, 3° or quaternary) of the carbon atoms in the synthesized targets.

Chemical synthesis. Isobutyrylfentanyl. 1-phenethyl-N-phenylpiperidin-4-amine (4-ANPP, 100  mg, 
0.36 mmol)11 was dissolved in anhydrous dichloromethane (15 mL) in a 50 mL round bottom flask equipped 
with a stir bar. The solution was cooled with an ice bath (~ 4–5 °C) and treated sequentially with triethylamine 
(106 μL, 0.79 mmol, 2.2 equiv.) and isobutyryl chloride (79 μL, 0.79 mmol) via pipette dropwise. The ice bath was 
removed and the reaction stirred at ambient temperature overnight. The following day, the pale yellow suspen-
sion was transferred to a 250 mL separatory funnel and partitioned with deionized water (50 mL). The organic 
phase was extracted with brine (NaCl/H2O, 50 mL), dried over anhydrous sodium sulfate and evaporated in 
vacuo at 40 °C to give a dark yellow oily mixture. The mixture was purified by flash column chromatography 
(0 → 10% MeOH/DCM) to furnish isobutyrylfentanyl as a light yellow solid (93 mg, 74%). 1H NMR (600 MHz, 
DMSO-d6) δ 7.48–7.46 (m, 2H), 7.44–7.42 (m, 1H), 7.24–7.19 (m, 4H), 7.15–7.13 (m, 3H), 4.40 (tt, J = 12.1, 3.8 
1H), 2.90 (d, J = 11.6, 2H), 2.63 (app t, J = 7.4, 2H), 2.48 (app t, J = 8.2, 2H), 2.11 (sep, J = 6.7, 1H), 1.99 (t, J = 11.8, 
2H), 1.66 (d, J = 11.6, 2H), 1.16 (qd, J = 12.1, 3.7 2H), 0.90 (d, J = 6.7, 6H); 13C NMR (151 MHz, DMSO-d6) δ 175.7 
(C = O), 141.1, 139.4, 130.8, 129.9, 129.1, 128.9, 128.8, 126.4, 60.2, 53.1, 52.4 (C-H), 33.6, 31.8 (C-H, iBu), 30.7, 
20.1 (2 ×  CH3); HRMS (CI) m/z calcd for  C23H31N2O [M +  H]+: 351.2436; found 351.2413.

Valeroylfentanyl. The same protocol above was followed for the synthesis of valeroylfentanyl with the only dif-
ference that valeroyl chloride (79 μL, 0.79 mmol) was used instead of isobutyryl chloride. Valeroylfentanyl was 
obtained after purification as a yellow solid (85 mg, 65%). 1H NMR (600 MHz, DMSO-d6) δ 7.46 (app t, J = 7.6, 
2H), 7.41 (app t, J = 7.3, 1H), 7.24–7.20 (m, 2H), 7.18 (d, J = 7.3, 2H), 7.15–7.13 (m, 3H), 4.44–4.40 (m, 1H), 2.90 
(d, J = 11.6, 2H), 2.64–2.61 (m, 2H), 2.44–2.41 (m, 2H), 1.99 (t, J = 10.5, 3H), 1.81 (t, J = 7.4, 2H), 1.68–1.66 (m, 
2H), 1.39 (quin, J = 7.4, 2H), 1.21–1.14 (m, 2H), 1.12–1.09 (m, 2H), 0.72 (t, J = 7.3, 3H); 13C NMR (151 MHz, 
DMSO-d6) δ 171.6 (C = O), 141.1, 139.5, 130.9, 129.9, 129.2, 129.1, 128.8, 126.4, 60.2, 53.1, 52.4 (C−H), 34.6, 
33.6, 30.8, 27.6, 24.6, 22.3  (CH3); HRMS (CI) m/z calcd for  C24H33N2O [M +  H]+: 365.2593; found 365.2584.

General method description with optimized conditions. In a typical protocol involving 3 μmol of the fentanyl in 
DCM (200 μL) is treated with an inorganic base (300 μmol) in an autosampler vial equipped with a micro-stir 
bar. To this solution, TrocCl (300 μmol) was added via pipette, the vial capped and heated to 60 °C in an alu-
minum heating block for 3 h with vigorous stirring. After 3 h, the vial was removed from the heating block and 
the mixture allowed to cool to ambient temperature. An aliquot of the reaction mixture (100 μL) was removed 
via pipette and transferred to another autosampler vial equipped with a glass insert for GC analysis (injection 
volume: 1 μL).

Results and discussion
Structurally, fentanyl itself is an unreactive molecule, lacking functionalities that can be exploited for chemical 
derivatization to further enhancing its detection and identification by GC–MS. However, this is not the case for 
other members of this family like carfentanil and remifentanil with reactive ester sites. Almost fifty years ago, a 
report from the Portoghese group at the University of Minnesota described their studies on the reaction of vari-
ous morphine-related compounds with chloroformate  esters33. In these studies the authors found that treatment 
of morphine with phenyl chloroformate resulted in its N-demethylation with concomitant replacement of this 
methyl group by the alkyl portion of the chloroformate employed leading to the formation of a carbamate analog 
of the alkaloid. These studies were largely based on the now century-old report by Gadamer and Knoch in 1921 
on the demethylation of tertiary amine in  bullcapnine34. Since that report, work by other groups expanded the 
use of other various chloroformates during organic synthesis  manipulations35–38. As part of our program at the 
Forensic Science center (FSC) is deeply involved with the development of analytical methods for the analysis of 
these opioids by GC–MS means, we found this report very interesting and noticed its potential application in the 
field of fentanyl chemistry. Given that fentanyl and analogs thereof possess an N-alkyl group off the piperidine 
ring nitrogen showing a similar degree of steric hindrance as the methyl group, we anticipated that fentanyl 
should undergo the dealkylation/carbamate formation process in similar fashion to morphine when reacting 
with a chloroformate. In principle, this reaction would lead to the formation of two products that will have ele-
ments belonging to the original fentanyl they originated from (Fig. 2).
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In analogous fashion to the morphine nucleus, we hypothesized that treatment of a fentanyl with trichloro-
ethoxyethyl chloroformate (Troc-Cl) would result in a quaternary intermediate that undergoes a nucleophilic 
attack by the generated chloride ion at the phenylethyl side chain to produce two products: Troc-norfentanyl 
and 2-(chloroethyl)benzene (Fig. 2). The two products generated in this process can be used to retrospectively 
confirm the identity of the starting fentanyl even if this one cannot be detected in its intact form in a given matrix 
(e.g. biological in nature). An important part of the conjectured process is that replacement of the phenylethyl 
side chain is the preferred route for the reaction over attack of the chlorine atom at the adjacent carbons forming 
the piperidine ring. However, steric hindrance provided by the axial protons in the cyclic piperidine ring favors 
attack of the  Cl− anion at the phenylethyl side chain. What follows below are our optimization studies on various 
components of the reaction. These optimization studies included a screening of bases (organic and inorganic) 
for the reaction and assessment of the temperature, solvent and time for the transformation.

Assessment of scavenging base for the reaction. Our initial studies involved the modification of 
fentanyl using the protocol. In general, trichloroethoxycarbonylation reactions are conducted over a range of 
temperatures and using scavenging bases that can be organic, nitrogenous species like triethylamine (TEA)39 
or inorganic ones like sodium hydroxide. Interestingly, when triethylamine was initially screened for use in the 
reaction, the major product observed in the mixture was the one arising from the reaction between TEA and 
TrocCl, namely 2,2,2-trichloroethyl diethylcarbamate. As both components were used in excess relative to fenta-
nyl, the dominant species in the mixture was 2,2,2-trichloroethyl diethylcarbamate, while the Troc-norfentanyl 
seemed to only marginally form. By analyzing the proposed mechanism for the reaction, we realized two things, 
one was that the generation of 2,2,2-trichloroethyl diethylcarbamate confidently pointed towards the success 
of the protocol with the opioid, and the other was that we can possibly use more hindered nitrogenous bases 
so as to avoid their reaction with TrocCl, and simply behave as proton sponges in the procedure. With this in 
mind, we decided to evaluate more hindered bases for this purpose such as diisopropylethylamine (DIPEA) and 
tetramethylpiperidine (TMP), with the added benefit that both are liquids at room temperature and miscible in 
DCM. Another set of bases explored were the inorganic ones and these included sodium bicarbonate, potassium 
bicarbonate and sodium hydroxide. Now, due to the solid nature of these inorganic bases and their insolubil-
ity in DCM, we expected for these reactions to be biphasic in nature and potentially not been able to scavenge 
the generated acid as efficiently as their organic counterparts. To our surprise, reaction mixtures involving the 
inorganic bases yielded clean GC–MS chromatograms mainly due to the insolubility of these bases in the DCM. 
In contrast, DIPEA and TMP provided large signals that dominated the GC chromatogram. Additionally, the 
reaction was also carried out in the absence of a base and although it did produce more of the Troc-norfentanyl 
product than when TEA was used, it was not as efficient as the cases where the hindered or inorganic bases were 
used. One possible explanation for the reduced performance in this case involves the reaction of the generated 
HCl in the first step with another fentanyl molecule effectively protonating it and making it unavailable to react 
with TrocCl. Figure 3a shows a bar graph that summarizes the formation of the products, Troc-norfentanyl (teal-
colored bars) and Troc-acetylfentanyl (red-colored bars), as a function of the base used.

Assessment of temperature for the reaction. Reactions between TrocCl and amines during protec-
tive group installations in organic synthesis are routinely carried out at ambient temperature and even at 4 °C 
(ice bath)40,41. In our case, we are not using the reagent to carry out a one-step protection but to efficiently break 
apart a molecule at its tertiary amine point of junction. In our specific case, we are not only relying on the initial 
carbamate formation but also on the subsequent displacement of the phenylethyl side chain by the chloride ion, 
and for this entire process we thought that heating might be a necessary component. To this end, we analyzed 
the formation of the Troc-norfentanyl products, originating from the reaction between TrocCl and fentanyl and 
acetylfentanyl separately, under three different temperatures: 4, 24 and 60 °C. The results are summarized on 
Fig. 3b, and it can be appreciated that increasing the temperature of the reaction leads to the formation of more 
Troc-norfentanyl (teal-colored bars) and Troc-noracetylfentanyl (red-colored bars) products.

Solvent effects for the reaction. Following our assessment of temperature effects in the reaction, we 
turned to studying the effect of solvent polarity in the overall yield of the Troc-norfentanyl and Troc-nora-
cetylfentanyl products. The results are presented in Fig. 3c and it can be concluded that product formation is 

Figure 2.  Outline of derivatization strategy described in this work. Treatment of a fentanyl with TrocCl results 
in an intermediate that undergoes a chloride-mediated dealkylation to furnish two products: Troc-norfentanyl 
and 2-(chloroethyl)benzene. The dashed boxed sections in both products can be retrospectively joined to reveal 
the identity of the original fentanyl.
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heavily favored in solvents like DCM and ethyl acetate, while their formation is less favored in solvents like 
acetone and acetonitrile (ACN). Regarding these results one can invoke several factors at play such as the sol-
vent’s polarity for which we can use dielectric constant values (ε) to create a conjecture. Based on this, one can 
argue that the reaction proceeds well in solvents with lower dielectric constants (ε) like DCM (ε = 8.9) and EtOAc 
(ε = 6.0) rather than ones featuring higher dielectric constants like acetone (ε = 20.7) and ACN (ε = 37.5). This 
actually favors nucleophilic attack by the chloride ion as there is no tight coordination of the solvent molecules to 
the  Cl− ion, even though stabilization of the ionic species might not be favored heavily in these solvents, however 
all this is overweighed by the fact that heating is a vital characteristic of this protocol.

Optimizing reaction time and application of method to other fentanyls. Lastly, we assessed the 
accumulation of the Troc-norfentanyl and Troc-nor-acetylfentanyl products as a function of time. The selected 
time points that were chosen for EI-GC-MS analyses were 30, 60, 90, 120 and 240 min. The results are summa-
rized in Fig. 3d and demonstrates that most of the product accumulates after two hours with this concentration 
becoming steady over the four-hour period that the reaction was monitored.

To this end and after putting together the most optimized conditions for the reaction, we moved on to test 
the reaction’s performance with other members of this class of opioids. The results of the protocol against a 
panel of 9 fentanyls are summarized in Table 1. As it can be observed all the fentanyls reacted in similar fashion 
to provide two products, the chloride arising from the N-alkyl side chain excision during the process and the 
Troc-norfentanyl fragment, becoming unique markers for each fentanyl. The results in Table 1 also show that 
the method appears to be universal for this class of synthetic opioids providing the predicted Troc-norfentanyl 
product every time. An appealing part of the protocol is the production of a non-natural nor-fentanyl marker in 
each case (i.e. Troc-norfentanyl) that can be used, in conjunction with the N-alkyl chloride originating from the 
N-piperidinyl side chain of the fentanyl, to retrospectively identify the original opioid. Figure 4 shows the applica-
tion of the optimized reaction conditions for the fentanyl:TrocCl system. One interesting observation is the fact 
that no molecular ion peak can be observed for the fentanyl (Fig. 4b) as well as for the other eight analogs studied 
in this work (See Supporting Information, Pages S3-S11). In contrast, molecular ion peaks for Troc-norfentanyl 
and 2-chloroethylbenzene can be clearly observed (Figs. 4d and f). The mass spectrum for 2-chloroethylbenzene 
can be found in the instrument’s internal library and can be used to identify the material with high degree of 

Figure 3.  Optimization of reaction parameters for the reaction between fentanyl and acetylfentanyl with 
TrocCl (n = 6, ± standard deviation for each bar graph presented). (a) Effect of the nature of the base in the 
production of Troc-norfentanyl (teal bars) and Troc-nor-acetylfentanyl (red bars) at 60 °C at t = 3 h.; (b) effect 
of temperature on the reaction demonstrating the increase of the Troc-norfentanyl products as temperature 
is increased; (c) effect of solvent on the reaction showing its higher performance in DCM and ethyl acetate 
(EtOAc); (d) effect of time on the reaction.
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confidence (Match score: 920). The spectrum is quite simple with few diagnostic peaks (including the molecular 
ion peak with m/z = 140.1) and its base peak (m/z = 91.1) that can be used to identify the material by using the 
ion extraction mode in the instrument’s software. In contrast, Troc-norfentanyl features a more complex mass 

Table 1.  aAlkyl chloride from N-alkyl group after reaction; bTroc-norfentanyl fragment after reaction; cProduct 
yields based on GC–MS; dMass fragments present in the Troc-norfentanyl product after reaction; eMass 
fragments in italics belong to chlorine-containing clusters, while italicized and bold-faced fragments bearing an 
asterisk indicate they are part of the molecular ion peak; f Molecular ion peaks visible upon closer inspection of 
the spectrum but are in very low abundance.

Entry Fentanyl Alkyl Cla,c Troc-nor-fentanylb,c MS (Troc-nor-
fentanyl) d,e

rt-fen
(min.)

rt-troc
(min.)

1 149, 57, 93, 132, 
77, 259, 257, 203, 
406*, 408*, 410*,
349, 351.

33.53 33.77

2 43, 135, 93, 136, 
77, 245, 257, 259,
392*, 394*.

33.07 33.29

3 149, 57, 93,  132, 
77, 259, 257, 203, 
406*, 408*, 410*,
349, 351.

33.65 33.77

4 55, 257, 147, 148, 
131, 132, 77, 93, 
404*, 406*, 386, 
388, 349, 351.

33.66 33.90

5 43, 93, 163, 164, 
71, 131, 132, 203, 
257, 258, 350, 
351, 420*, 422*.

34.14 34.38

6 43, 163, 71, 93, 
131, 132, 203, 
257, 258, 350, 
351, 420*, 422*.

33.40 33.64

7 135, 57, 178, 93, 
131, 132, 203, 
257, 259, 350, 
351, 434*, 436*.

34.96 35.19

8 150, 57, 158, 349, 
351, 315, 317, 
256, 258, 405, 
407.

f

34.80 34.94

9 150, 57, 158, 349, 
351, 315, 317, 
256, 258, 405, 
407.

f

32.00 34.94
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spectrum full of key peaks that are unique for this material (Fig. 4d). The molecular ion peak at m/z = 406.1, 
even though not one of the most intense peaks in the spectrum is still clearly visible and features the trademark 
isotopic pattern that arises from the three chlorine atoms in the Troc tag (Fig. 4d, inset). The mass spectrum 
for Troc-norfentanyl also features a peak at m/z = 371.0 [M–Cl]+ representing a loss of a chlorine and a peak at 
m/z = 349.1 [M–C3H5O]+ representing scission of the N-propanoyl moiety. The base peak with a m/z = 149.1 
appears to originate from the cleavage of the C-N bond at the 4-position of the piperidine ring resulting in a 
species with the general formula  [C9H11NO]+. The method’s lower limit of detection (LLOD) and lower limit of 
quantitation (LLOQ) were determined and the LLOD value was defined as the concentration of Troc-norfentanyl 
that provided a signal-to-noise value between 3 and 10 for 4 diagnostic ions (m/z = 93, 132, 149, and 259) while 
the LLOQ value was the concentration of Troc-norfentanyl that provided a signal-to-noise value > 10 for the 4 
diagnostic ions (See Supporting Information, pages S21-S39). Both the LLOD and LLOQ values had acceptable 
precision and accuracy using percent coefficient of variation (%CV) < 20%. The method’s LLOD and LLOQ were 
found to be 10 ng/mL and 20 ng/mL and where determined using a pure sample of Troc-norfentanyl.

Conclusions
We have demonstrated in this work that the reaction between the synthetic opioid fentanyl and the chloroformate 
2,2,2-trichloroethoxycarbonyl chloride (TrocCl) yields two products of predictable structures. The first one is 
2-phenylethyl chloride arising from fentanyl’s N-side chain while the other one has been identified as Troc-nor-
fentanyl. After optimizing the conditions for the reaction, the method was tested on a panel of nine fentanyls to 
yield uniquely tagged products that can be detected by EI-GC-MS. The methodology described herein represents 
the first application of the use of chloroformate chemistry to chemically modify this class of synthetic opioids 
that are notoriously inert to derivatizing agents available for GC–MS analysis. Current work is focusing on the 
applicability of the protocol for effectively modifying and detecting these opioids in biological sample matrices.
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