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Complete model‑free sliding mode 
control (CMFSMC)
Quanmin Zhu

This study presents a complete model‑free sliding mode control (CMFSMC) framework for the control 
of continuous‑time non‑affine nonlinear dynamic systems with unknown models. The novelty lies in 
the introduction of two equalities to assign the derivative of the sliding functions, which generally 
bridges the designs of those model‑based SMC and model‑free SMC. The study includes a double 
SMC (DSMC) design, state observer design, and desired reference state vector design (whole system 
performance), which all do not require plant nominal models. The preconditions required in the 
CMFSMC are the plant dynamic order and the boundedness of plant and disturbances. U‑model 
based control (U‑control) is incorporated to configure the whole control system, that is (1) taking 
model‑free double SMC as a robust dynamic inverter to cancel simultaneously both nonlinearity and 
dynamics of the underlying plants, (2) taking a model‑free state observer to estimate the state vector, 
(3) taking invariant controller to specify the whole control system performance in a linear output 
feedback control and to provide desired reference state vector. The related properties are studied 
to support the concept/configuration development and the analytical formulations. Simulated case 
studies demonstrate the developed framework and show off the transparent design procedure for 
applications and expansions.

Model‑free sliding mode control. Parallel to model-based control, model-free control, or popularly 
named as data-driven control, has attracted lager cohort research efforts, typically from data-driven  control1, 
model-free  control2, active disturbance rejection control (ADRC)3, adaptive dynamic  programming4, etc. All 
the model-free approaches are based on the belief that the modelling process is expensive, time-consuming and 
inaccurate. For the particular interest of the study, model-free sliding model control (MFSMC), some of the 
related research has been reported. A representative research publication domain has been in the discrete-time 
approaches, which has proposed a class of MFSMC with control input difference formulation plus an ad-hoc 
system  formation5. The research group has expanded this approach to MIMO  systems6, which follows the kernel 
foundation that the control system relies on estimating the control input difference to stabilise the systems. The 
other MFSMC  approach7 is using a first-order system as foundation to assign PID controllers plus switching 
controls, which also provides low-pass filter for estimating the first-order derivative of the controller output 
and disturbance estimator to facilitate the MFSMC design. Another  work8 has presented a work on model-free 
sliding mode control, theory and application, which is based on discrete time formulation again from estimat-
ing existing underlying system behaviour, controller optimisation, to sliding mode design. Even claimed as a 
model free control method, the approach actually uses an online model estimated from the measurement for 
SMC design. In addition, SMC technique is still expanding quickly to a wide range of dynamic systems, such 
as a latest leading  work9 devoted to networked control systems with time delay, using auxiliary matrix-based 
formulations. No doubt such new approaches will be solid foundation for expansion to model free SMC in the 
follow up studies.

State observer. It has been observed that the high cost of the actual equipment, the availability/limitation 
of sensors and other factors, system state components could not be obtained fully directly from measurement 
even with noise. For many application domains, such as control system analysis and synthesis, fault detection 
systems, and various issues in signal processing and identifications, state observer/reconstruction has been gen-
erally widely  adopted10. Particularly, it has been commonly agreed that observer design is critically important 
for all feedback control designs in terms of state space  methodologies11. For model-free observers (MFO), which 
means designing the observers without using the system model, only measured input and output, and the system 
dynamic order are used to fit some pre-defined observers by tuning the gains of the state estimation errors. There 
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have had various MFO configurations, such as sliding model  observer12, high gain  observers10,  ADRC3,13–15. 
Conventional observers consider system state reconstruction. Extended state observer (ESO) estimates state as 
well external disturbance, further it can also estimate unknown model’s  perturbation13. One of the important 
applications of the ESO is associated with active disturbance rejection control (ADRC) which does not need the 
precise mathematical model of the plant. Therefore, ADRC is sometimes viewed as a type of complete model-
free control. While only seeking state estimation, the ESO could be tailored in some way.

U‑model based control (U‑control) system design. It has been a framework to separate plant dynamic 
inversion and controller design with configuration of a double feedback loop  formulation16–18. The kernel of the 
U-control is the inner loop to cancel both plant nonlinearity and dynamics together so that the plant is converted 
into an identify matrix/a unit  constant19. Then various control system designs can be effectively concisely imple-
mented without involving plant models. Some of the U-control bench test applications have been reported 20–22.

The major contribution of the study. In comparison with the other MFSMC approaches, with the 
author’s best knowledge, it could include.

1. This CMFSMC takes all types of systems/models as a bounded uncertainty. Therefore, it includes all the other 
partial MFSMC approaches as its special cases which require additional assumptions such as system model 
structures, unitary input  gain7, state  measurable23, extra effort to deal with chattering effect, based on discrete 
time  approaches5. Further the novelty lays in the introduction of two equalities to assign the derivative of 
the sliding functions, which generally bridges the designs of those model-based SMC and model-free SMC.

2. This CMFSMC, integrated with U-control16,18, provides a robust dynamic/nonlinearity inversion scheme with 
a double sliding mode control, cancels both dynamics and nonlinearities together (in contract to feedback 
linearisation approach to cancel nonlinearities first, and then make coordinate transform into a linear system 
to design control, finally re-convert back to original control  input24. Accordingly it makes the total system 
configurated into a double loop control system with both state feedback and output feedback, that is, using 
the inert loop (state feedback) with the CMFSMC for dynamic/nonlinear cancellation into an identity matrix 
or a unit constant, using the outer loop (output feedback) to design linear control system with an invariant 
controller to provide (1) the total closed loop control system performance and (2) the desired state vector 
for inner loop dynamic inversion.

3. Justify a robust model free state observer to provide the state estimate from the measured input and output.
4. With the CMFSMC, the inner and outer loop designs are separated and once off for all the systems satisfying 

the CMFSMC conditions.
5. In this study, Complete Mode-Free Sliding Mode Control means SMC design for dynamic inversion is model 

free, state estimate is model free, and further the whole control system design is model free because the plant 
dynamic/nonlinearity has been cancelled into an identity matrix.

6. Simulated case studies are provided to demonstrate the developed framework and show off the transparent 
design procedure for applications and expansions.

For the rest of the study, “Preliminary” introduces foundations for the follow up technical development. Sec-
tion “CMFSMC” derives both DSMC and LESO, and proves/analyses the associated properties. Section "Model 
free U-control system design" presents a U-control framework to integrate all functional components into a 
CMFSMC. Section "Case studies" provides case studies for the computational experiments to demonstrate the 
analytical derivations. In addition, it is intended to provide a user transparent procedure for potential applica-
tions and expansions. Section "Conclusions" concludes the study.

Preliminary
Model based sliding mode control. Consider a general class of nth order single input dynamic system of

where X =
[
x1 x2 · · · xn

]T
∈ R

n is the state vector, u ∈ R is the control input, and d ∈ R is a bounded 
unknown uncertainty. F , a function vector of the state X , input u , and uncertainty d over a field F, F × F → F , is 
the operator mapping the underlying state, input, and uncertainty into the condensed expressions. For achieving 
SMC, the system states must be completely observable and controllable.

Let the desired state vector as Xd =
[
xd , ẋd · · · x

(n−1)
d

]
 , define a (n− 1)th order of state tracking error 

vector

Then set up a typical sliding function S25 in form of

where the coefficient vector C =
[
c1 c2 · · · cn−2

]
∈ R≥0 is chosen in terms of Hurwitz stable.

The other general type for assigning the sliding  function24 can be expressed as

(1)Ẋ = F(X, u, d)

(2)E = X − Xd =
[
e = x1 − xd ė = x2 − ẋd · · · e(n−1) = x(n−1) − x

(n−1)
d

]T

(3)S = c1e + c2ė + · · · + cn−2e
(n−2) + e(n−1)
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where � ∈ R+ is the slop of the sliding function, a strictly positive constant to make the sliding function Hurwitz 
stable.

There have been many approaches for designing model-based SMC systems, for  example24, the step by step 
procedure is shown below.

1. Define a sliding function S for the error between the system state and desired reference state, which estab-
lishes a foundation for designing SMC to drive the states to and keep on the sliding surface in terms of S = 0.

2. Set the derivative of the sliding surface to generate Ṡ = 0.
3. Derive the equivalent controller, ueq through Ṡ = 0 in conjunction with the plant nominal model.
  x(n) = f (x, u) and the pre-set desired reference state vector Xd.
4. To deal with the uncertainty, design the switch controller usw , by determining a discontinue control gain 

to satisfy the Lyapunov stability conditions V(∗) = 1
2S

TS > 0, V̇(∗) < 0,∀(∗) �= 0 to attract states to the 
sliding surface S = 0 and remain on the surface once arrived.

5. Finally formulate the SM controller as u = ueq + usw.

Model based state observer. Consider a general single input and single output (SISO) state space model 
for uncertain nonlinear system below

where X ∈ R
n for state vector, X0 for initial state, u ∈ R and y ∈ R are the input and measurable output respec-

tively, d for the model uncertainty. F = , a function vector of the state X , input u , and uncertainty d over a field 
F, F × F → F , is the operator mapping the underlying state, input, and uncertainty into the condensed expres-
sions. A ∈ R

n∗n for transition matrix, B ∈ R
n for the remaining part of F − AX , and C ∈ R

1∗n for the output 
gain vector.

For state estimation, a general state  observer26 can be configurated as

where X̂ ∈ R
n for the estimation of system state, L ∈ R

n for the observer’s gain vector which is to be designed.
Define the observer estimated error vector X̃ = X − X̂ to formulate the error dynamic equation as

The error equation provides a mechanism to design the observer’s gain L , which properly drives the estima-
tion error converged asymptotically.

U‑control (dynamic inversion and invariant controller). The U-model based control (U-control in 
short) has two aspects, U-model to facilitate dynamic inversion and cancelation of nonlinearities, and U-control 
system design to provide a concise framework to implement control performance specifications in form of feed-
back and plant dynamic inversion, which the control performance also forms a desired state vector.

U‑model and its dynamic inversion. A general SISO U-polynomial-model of P ([16]), a mapping u → y, with a 
triplet of 

(
y(t), u(t),α(t)

)
 , y(t) ∈ R,u(t) ∈ R, α(t) ∈ R

J for a time variant parameter vector respectively at time 
t ∈ R

+ , is defined for describing dynamic plants as

where y(M) and u(N) denote the Mth and Nth order derivatives of the output y and input u respectively. J ∈ R
+ 

is the number of the polynomial terms. The time-varying parameter αj ∈ R is an absorbing function to include 
the other outputs 

[
y(M−1), . . . , y

]
∈ R

M and inputs 
[
u(N−1), . . . , u

]
∈ R

N . fj(∗) is a function of the input u(N) . 
Vectors AT =

[
α0 , . . . , αJ

]
 and U =

[
f0 , . . . , fJ

]T over a field F, F × F → F are the operators mapping the 
underlying input, output, and parameters into the condensed expressions.

Remark 2.1 In common, those exiting conventional models can be realised with U-model structure. In dif-
ference, U-model provides a unilateral control-oriented structure for cancellation of both nonlinearities and 
dynamics in one  formulation19, which generally makes linear control system design approaches straightforwardly 
applicable to nonlinear systems no matter in forms of polynomial or state space models.

Remark 2.2 The polynomial U-model structure has been expanded to include state space  models27, rational 
 models17, and neural  networks28 to facilitate dynamic inversions and the follow up U-control system designs.

(4)S =

(
d

dt
+ �

)n−1

e

(5)
Ẋ = F(X, u, d) = AX + B(u,X, d)

y = CX
X(0) = X0

(6)˙̂X = AX̂ + L

(
y − CX̂

)

(7)˙̃X = (A− LC)X̃ + B

(8)y(M) = A
T
U =

J∑

j=0

αj fj

(
u(N)

)
,M ≥ N
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Regarding U-model based dynamic inversion (UMDI), let U-model P , in forms of polynomial, be a map-
ping/function, u → y . Then the UMDI y → u is a process of solution of its inverse P−1 , which can be generally 
expressed as

where y(M)
d  is the specified desired output. Accordingly, the inverse of the model P−1 , a map from output to input, 

y → u is the solution of u(N) from the equation.

Remark 2.3 For the higher order derivative y(M)
d  in UMDI, it can be determined in conjunction with invariant 

controller design in the U-control  systems19.

U‑control system design. Take P for a general model describing dynamic plants which have properties as those 
frequently assumed in the many research  works29.

1. The inverse P−1 exists.
2. Lipschitz continuity satisfied, model P is a mapping/function, u → y , and its inverse P−1 are diffeomorphic 

and globally uniformly Lipschitz in R ; that is,

where u1, u2 are the inputs while P in form of polynomial model and replaced with states x1, x2 while P is a state 
equation, γ1 and γ2 are the Lipschitz constants.

The U-control system is functionally expressed as

where F  is the U-control system configuration, C(∗) is a set of controllers, C1 is a linear invariant controller, and 
Iip = C

(
P−1, P

)
 is a unit constant or identity matrix.

Figure 1 shows model matched and model mismatched U-control configurations.

Remark 2.4 The U-control platform is unilaterally applicable to a wide range of dynamic systems while the 
dynamic inverse P−1  exist17,19.

The step by step design procedure for Fig. 1a is listed below ([18]).

1. Design the dynamic inverter P−1 to achieve C
(
P−1, P

)
= Iip , which gives 

∑
=

(
F ,C1, Iip

)
.

2. Design the invariant controller C1 under 
∑

=
(
F ,C1, Iip

)
 with a required linear transfer function G , which 

gives C1 =
G

1−G in a closed loop configuration.
3. For generating the desired higher order output derivative y(M)

d  or the desired state vector Xd , multiply a 
high-order filter F1 = sM

(αs+1)T
,T ≥ M, where 1

α
≫ pd > 0 , pd is the real part of the system dominant pole.

Figure 1b is an illustrative control system configuration, which will be expanded in the following sections.

(9)P−1 ⇔ u(N) ∈ y
(M)
d −

J∑

j=0

αjfj

(
u(N)

)
= y

(M)
d −A

T
U = 0,M ≥ N

�P(u1)− P(u2)� ≤ γ1P�u1 − u2�,∀u1, u2 ∈ R

�P−1(u1)− P−1(u2)� ≤ γ2P
−1�u1 − u2�,∀u1, u2 ∈ R

(10)
∑

=
(
F , C

(
C1, P

−1
)
, P
)
⇔

∑
=

(
F ,C1, C

(
P−1, P

))
⇔

∑
=

(
F ,C1, Iip

)

Figure 1.  U-control systems.
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CMFSMC
This section involves in two aspects, design of SMC and observer.

MFSMC. Consider a general SISO states space model for describing nonlinear dynamic systems

where X =
[
x1 x2 · · · xn

]T
∈ R

n is the state vector, u ∈ R is the control input, and d ∈ R is bounded 
unknown external disturbance, and F is a bounded unknown smooth nonaffine nonlinear vector function of 
the state vector X , the control input u , and the disturbance d . In this study F is bounded but assumed unknown 
as total  uncertainty13.

Remark 3.1 To formulate MFSMC, a straightforward view of the conventional model-based SMC is that the 
switching control has been already in somewhat of model free control, even though still using the bound of 
nominal model plus the uncertainty. For the equivalent control, the MFSMC requires some way to remove the 
design from the dependence of the nominal model. This study proposes a double sliding mode control (DSMC) 
approach to achieve the aim of the MFSMC.

For designing the MFSMC, define the same error vector as in Eq. (2)

Accordingly, assign a basis sliding function

where coefficient vector C =
[
c1 c2 · · · cn−2

]
∈ R≥0 is chosen in terms of Hurwitz stable.

The corresponding derivative of the sliding function is given by

Now assign two sliding functions for banded sliding surface and lined sliding surface respectively, which 
establishes a model-free SMC platform.

Global sliding banded function is specified with

where the sliding band function with thickness δ  = 0 is introduced.
Local sliding line function is specified with

where the sliding line function with thickness δ = 0 is introduced. This band thickness approach neighbour-
ing the switching surface has been widely used in dealing with chattering  effect24. This new approach, will be 
explained technically shortly, is to derive a solution of the equivalent control to smooth the classical switching 
control to the equivalent control without suddenly forcing the derivative of the sliding function to zero.

Figure 2 part of the figure  from30 shows the double sliding mode control (DSMC) against the classical SMC.
For deriving the controllers, define switching control usw and equivalent control usw for attracting the states 

towards to the sliding band and sliding line respectively.
Define two Lyapunov functions, for Vg for global and Vl for local respectively, which are formulated below

Accordingly, the derivatives of the Lyapunov functions are

Theorem 3.1 There exit controllers usw = −kg sgn(S + δ1) and ueq = −klS − ε to make the MFSMC of BIBO system 
Eq. (11) asymptotically stable. The gains satisfy some proper conditions.

Proof Introduce a sliding function coordinate system of ( S, Ṡ ) to map the system to be controlled onto the 
sliding function plan for facilitating derivation of the controllers, two typical relationships are shown in Fig. 3

where k = (X, u, d,Xd) and ε is an offset of kS.

(11)Ẋ = F(X, u, d)

(12)E = X − Xd =
[
e = x1 − xd ė = x2 − ẋd · · · e(n−1) = x(n−1) − x

(n−1)
d

]T

(13)S = c1e + c2ė + · · · + cn−2e
(n−2) + e(n−1)

(14)Ṡ = c1ė + c2ë + · · · + cn−2e
(n−1) + e(n)

(15)Sg = S + δ1, 0 ≤ |δ1| ≤ |δ|

(16)Sl = S + δ2, |δ2| = |δ| = 0

(17)
Vg =

1
2

(
Sg
)2

= 1
2 (S + δ1)

2

Vl =
1
2 (Sl)

2
= 1

2 (S)
2

(18)V̇g = Ṡ(S + δ1)

V̇l = ṠS

(19)Ṡ = k + u
Ṡ = kS + ε + u
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The first equation provides a bang–bang control to drive state to the convergent domain in the minimum-time 
and the second equation drives state to the convergent domain along a smooth trajectory. For SMC, combining 
the two equations with a switching boundary layer δ gives

This is shown in Fig. 4.
Let the last line of system model Eq. (11) be

With reference to Eq. (20) and sliding function Eq. (13), the derivative of the sliding function can be expressed 
as

where f =
∑n−1

i=1 c1e
(i) + fn(X, u, d)− x

(n)
d

For SM switching control, let the derivative of sliding function Eq. (14) with

where f = k =
∑n−1

i=1 c1e
(i) + fn(X, u, d)− x

(n)
d  , which satisfies inf

(
f
)
= m ≤ f ≤ sup

(
f
)
= M, and |m| ≤ |M| . 

Assign the control

(20)Ṡ =

{
k + u ∀|S| ≥ |δ|
kS + ε + u ∀|S| < |δ|

(21)ẋn = fn(X, u, d)+ u

(22)Ṡ =

n−1∑

i=1

c1e
(i) + fn(X, u, d)+ u− x

(n)
d = f + u

(23)Ṡ =

n−1∑

i=1

c1e
(i) + fn(X, u, d)+ u− x

(n)
d = f + u = k + u

(24)u = usw = −kg sgn(S + δ1)

Figure 2.  System states (red for classical SMC and red + blue for DSMC).

Figure 3.  Sliding function coordinate system of ( S, Ṡ).
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where sgn(∗) is the signum function of the sliding surface (S + δ1) . Then substitute switching input into the 
derivative of the Lyapunov function Eq. (18) to give

where kg is selected with kg ∈ R>0 > |M| . Therefore V̇g ≤ 0
For SM equivalent (smooth) control, assign the derivative of sliding function Eq. (14) with

where f = kS + ε =
∑n−1

i=1 c1e
(i) + fn(X, u, d)− x

(n)
d  , and inf

(
f
)
= m ≤ f = kS + ε ≤ sup

(
f
)
= M.

Assign the control

Then substitute it into the derivative of the Lyapunov function Eq. (18) to give

where kl ∈ R>0 >
∣∣sup(k)

∣∣ . Therefore V̇l ≤ 0.
Now, for the whole MFSMC, let the composite Lyapunov function be

With the specified controls of usw = −kg sgn(S + δ1) and ueq = −klS , the Lyapunov stability conditions can 
be proved with

QED. Remark 3.2 Lyapunov stability analysis have been used twice to derive the DSMC to achieve MFSMC. 
The DSMC design procedure actually is a process of the proof. The first Lyapunov stability ( Vg ≥ 0 V̇g ≤ 0 ) 
used is to drive the state vector x converged to the sliding mode band Sg = S + δ1, 0 ≤ |δ1| ≤ |δ| by switching 
control. The second Lyapunov stability ( Vl ≥ 0 V̇l ≤ 0 ) used is to drive the state vector X in the sliding band 
converge asymptotically to the final sliding mode line Sl = S + δ2 = S, δ2 = 0 by continuous equivalent control.
Theorem 3.2 With the selection of Ṡ = kS + ε + u = kS + ueq = −(kl − k)S|(kl−k)>0 + ε , the sliding function 
S − ε

(kl−k) monotonically exponentially converges to zero with the decay rate of kl − k.

Proof The solution of the 1st order differential equation of Ṡ + (kl − k)S = ε is S(t) = ε
(kl−k)

(
1− Exp(−(kl − k)t

)
 . 

Therefore S(t)− ε
(kl−k) = − ε

(kl−k)Exp(−(kl − k)t) and lim
t→∞

(
S(t)− ε

(kl−k)

)
|(kl−k)>0 → 0 . The derivative of the 

sliding function Ṡ follows Ṡ = εExp(−(kl − k)t) and lim
t→∞

Ṡ = lim
t→∞

εExp(−(kl − k)t)|(kl−k)>0 → 0

QED. Theorem 3.3 The selections of Ṡ = kS + ε + u and Ṡ = k + u present a generalisation of accurate model‑
based, nominal model‑based, and model‑unknown/free SMC by assigning the derivatives of the sliding functions 
with different expressions.
Proof The three cases are analysed below.

For accurate model-base, let Ṡ = kS + ε = f + u = 0 , so that the equivalent control is determined by u = −f

(25)V̇g = Ṡ(S + δ1) = (f + u
sw
)(S + δ1) = f (S + δ1)− kg |S + δ1|

(26)Ṡ =

n−1∑

i=1

c1e
(i) + fn(X, u, d)+ u− x

(n)
d = f + u = kS + ε + u

(27)u = ueq = −klS − ε

(28)V̇l = ṠS = (f + ueq)S = (kS + ueq)S = kS2 − klS
2

(29)V = Vg + Vl

(30)
V = Vg + Vl ≥ 0

V̇ = V̇g + V̇l ≤ 0

Figure 4.  Combined sliding functions on ( S, Ṡ).
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For nominal model-based, f  is not exactly known, but assume it is bounded with 
∣∣∣f̂ − f

∣∣∣ ≤ F(X) , where f̂  is 
the estimate of f  . Let Ṡ = kS + ε = f̂ + u = 0 , consequently, u = −f̂ − ksgn(S) , where, k = F + η and η is a 
strictly positive constant ([23]).

For model-unknown/free, f  is assumed bounded with inf
(
f
)
= m ≤ f ≤ sup

(
f
)
= M , let Ṡ = kS + ε + u 

and u = −klS + ε − kg sgn(S + δ1) , where kl ∈ R>0 >
∣∣sup(k)

∣∣ and kg ∈ R>0 > |M| . It should be noted that in 
this case, it cannot determine control u by letting the derivative of sliding function Ṡ = 0 . Alternatively, applying 
twice of Lyapunov stability theorem to determine the global switching gain and local smooth gain.

QED. Remark 3.3 Comparison of the designs between model-based and model free shows that model-based 
approaches use the derivative of the sliding function Ṡ = 0 to determine the control u , this model-free approach 
takes up twice of Lyapunov stability theorem to determine the global switching gain and local smooth gain to 
satisfy V = Vg + Vl ≥ 0 and V̇ = V̇g + V̇l ≤ 0.

Stats observer. For a class of SISO nonlinear system of y(n) = f
(
y(n−1), . . . y, u, d

)
 , where f (∗) representing 

the nonlinear dynamics and has proper properties (dynamic plant invertible, state observable/controllable, sta-
bilisable, stable zero dynamics), d is the external disturbance. By letting y = x1 y(1) = x2 = ẋ1 · · · y(n) = ẋn , 
A generalised triangle state space model for realising the nonlinear system input/output relationship can be 
determined below

where state vector X =
[
x1 · · · xn

]T
∈ R

n.

Remark 3.4 There is a one-to-many relationship between an input/output model and minimal state space realisa-
tions because many state-space realisations can produce the same input/output behaviour. Accordingly, assume 
such transforms exist for the conversions of the state models while keeping the consistence with the system 
input–output behaviour. By such assumption, this study proposed state space model and its observer imply the 
input/output equivalence with the other state space models and the ad hoc observers.

In this study, a linear extended state observer (LESO)13 is adopted for reconstructing the state variables for 
the consequent state space model-free control system design.

The LESO is given below

where ωo > 0 is the observer bandwidth, normally assigned by system bandwidth or trial and error approach 
in advance. αi ∈ 1 · · · n+ 1 are the regulable constants to satisfy the Hurwitz stability condition and generally, 
determined  by31

where αi = (n+1)!
i!(n+1−i)! , i = 1, 2, . . . n+ 1.

Remark 3.5 The analysis of this type of  LESO31 covers two cases of (1) the system input/output model f (∗) 
known and (2) the system model f (∗) is unknown. It has been  proved31 that

1. For a known input/output function f (∗) , the estimation errors are converged with
  lim

t→∞
x̃i(t) = 0, i = 1, 2, . . . n+ 1 where the estimation errors are defined with x̃i = xi − x̂i.

2. For unknown input/output function f (∗) , the state estimation error is bounded and its upper bound monoto-
nously decreases with the observer bandwidth. It is noted that the second property provides a framework 
for model free state estimation.

Remark 3.6 The LESO shares the commonalities with high gain observers, which this type of observers provides 
a very natural platform for the state reconstruction, particularly effective while in the situation of lack knowledge 

(31)

ẋ1 = x2
...

ẋn−1 = xn
ẋn = f (X, u, d)+ u

y = x1

(32)

·

x̂
i
= x̂i+1 + ωi

oαi
(
y − x̂1

)
, i = 1, 2, . . . n− 1

...
·

x̂
n
= x̂n+1 + ωn

oαn
(
y − x̂1

)
+ u

·

x̂
n+1

= ωn+1
o αn+1

(
y − x̂1

)

(33)(s + 1)n+1 = sn+1 + α1s
n · · · + αns + αn+1
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on the system dynamics. Comprehensively, such observers can be appropriately integrated with state feedback 
to give output  feedback10.

Model free U‑control system design
The control objectives are summarised below. For a class of general dynamic systems given in Eq. 
(11), Ẋ = F(X, u, d) , the aim of the U-control is to drive the model-unknown systems to track a desired refer-
ence trajectory in request, which is configurated by a robust state feedback dynamic/nonlinearity inversion and 
a robust output feedback trajectory tracking control. The major objectives include

1) Robust DSMC based dynamic/nonlinearity inversion.
2) LESO for state vector estimation.
3) Control system performance specification/implementation including desired state vector assignment.

Figure 5 shows the model free U-control system with the configuration and the simulation platform.
Figure 5a is an illustrative schematic diagram. The step by step design procedure for Fig. 5b is listed below.
The main roles of the two loops in the control system configuration are briefly summarised below.

The inner loop. Plant model-fee dynamic/nonlinearity inversion includes DSMC and LESO which have devel-
oped. The rest of the parameters tuning include in DSMC

(
S, δ, kg , kl

)
 and LESO(ωo,αi , i = 1 · · · n+ 1) , which 

the parameters have been defined in previous sections. In formulation of the SMC blocks in Fig. 5b, SM by Eq. 
(12), δ by trial and error or experience, kg∈ usw by Eq. (24), kl∈ ueq by Eq. (27). In formulation LESO block in 
Fig. 5b, the bandwidth is assigned with ωo ≥ (4 ∼ 5)ωs , where ωs is the bandwidth of the sliding function, and 
αi = 1 · · · n+ 1 are determined by Eq. (33).

The external loop. For the external U-control loop, as explained in "U-control system design", (1) design the 
invariant controller C1 under 

∑
=

(
F ,C1, Iip

)
 with a required linear transfer function G to specify the whole 

system desired output and state responses, which gives C1 =
G

1−G in a closed loop configuration. (2) For generat-
ing the desired higher order output derivative y(M)

d  or the desired state vector Xd , multiply a high-order filter 
F1 =

sM

(αs+1)T
,T ≥ M, where 1

α
≫ pd > 0 , pd is the real part of the system dominant pole. The design details can 

be referred to U-control foundation  work19.

Remark 4.1 Qualitatively, the stability conditions in the inner loop are determined by Lyapunov stability, which 
converges to an identity matrix monotonically exponentially (refer to Theorems 3.1 and 3.2) and the external loop 
designed is to satisfy the Hurwitz stability (obviously as the closed loop transfer function can be easily specified 
with assigning its all poles on the left half s plane. Accordingly, the whole control system is asymptotically stable 
with the designed structure and parameters.

Remark 4.2 While the LESO inserted in the control system, for the frequency bandwidth related parameters, it 
requires ωo ≥ (4 ∼ 5)ωs ≥ (4 ∼ 5)ωn to generate proper responses, where ωo is the LESO bandwidth, ωsis the 
bandwidth of the sliding function, and ωn is the bandwidth of the invariant controller. Many  publications13,31 

Figure 5.  CMFSMC.
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are available for the analysis of the LESO stability and convergence. This study is just borrowing the results in 
its control system configurations.

Case studies
Preparation. Two case studies are conducted for (1) investigating the numerical results with functionally 
configured control systems against those analytically derived, (2) illustrating the design process with a step by 
step procedure for potential applications and expansions.

The reference input is specified as a series of steps with

A level external disturbance ( d(t) = 1 ) is added at each of the system output.

Control system design. This once off design is intended applicable for both of the cases in the simulation study.

DSMC. Set sliding function S = 20e + ė . For each case, the control tasks are tuning the gains ( kg , kl ) and the 
sliding band thickness δ

LESO. For both cases, assign the observer bandwidth ωo = 100 and the corresponding LESO is given below

where α1 = 3 α2 = 3 α3 = 1 , which are determined from 1
(s+ωo)

3 = 1
s3+3s2+3s+ω3

o
= 1

s3+α1s2+α2s+α3ω3
o

U‑control. For both cases, assign the desired closed loop transfer function with G =
ω2
n

s2+2ζωns+ω2
n
 with ωn = 5 

and ζ = 0.7 , that is, G = 25
s2+7s+25

 . Accordingly, the invariant controller C1 =
G

1−G = 25
s2+7s

 . Consequently, the 
two desired states are assigned as xd1 = 1

s
25
s+7 , ẋd1= xd2 =

25
s+7.

Assigned bandwidth. In summary, in the above design, it has assigned ωn = 5 (the bandwidth of the invariant 
controller), ωs = 20 (the bandwidth of the sliding function), and ωo = 100 (the LESO bandwidth).

Simulation demonstrations. Case 1: Control of nonlinear non‑affine dynamic system. The considered 
nonlinear dynamic system is expressed with

where y, u are the system output and input respectively.
By letting y = x1 y(1) = x2 = ẋ1 y(2) = ẋ2 , the system state space realisation is determined in form of

By trial and error approach, the DSMC acting as the dynamic/nonlinearity inverter is tuned with the gains 
kg = −5 and kl = −4 and the sliding band thickness δ = 1

Figure 6 shows a pack of the generated plots.

Case 2: Control of Van de Pol (VDP) oscillator dynamics. Regarding the characteristics, the Van der Pol oscil-
lator is a non-conservative system with nonlinear damping to follow a second-order  dynamic32. For controlled 
VDP system, it has

where y, u are the system output and input respectively.
By letting y = x1 y(1) = x2 = ẋ1 y(2) = ẋ2 , the VPD system state space realisation is determined in form of

(34)r(t) =






2
6
0
−2

2 < t ≤ 10
10 < t ≤ 20
20 < t ≤ 30
30 < t ≤ 40

(35)

·

x̂
1
= x̂2 + α1ωo

(
y − x̂1

)

·

x̂
2
= x̂3 + α2ω

2
o

(
y − x̂1

)
+ u

·

x̂
3
= α3ω

3
o

(
y − x̂1

)

(36)y(2) = −0.6y(1) − yy(1) − uy(1) + sin(u)+ 2u+ u3 + d(t)

(37)

ẋ1 = x2

ẋ2 = −0.6x2 − x1x2 − ux2 + sin (u)+ 2u+ u3

y = x1 + d(t)

(38)y(2) = µ
(
1− y2

)
y(1) − y + u

(39)

ẋ1 = x2

ẋ2 = µ
(
1− x21

)
x2 − x1 + u

y = x1 + d(t)
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Figure 6.  Case 1—simulated plots.
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For this case study assign µ = 1.5 , which is a parameter for the nonlinearity and the damping strength.
By trial and error approach, the DSMC acting as the dynamic/nonlinearity inverter is tuned with the gains 

kg = −100 and kl = −50 and the sliding band thickness δ = 5.
Figure 7 shows a pack of the generated plots.

Discussions on the simulated results. 

1. The plant input/output relationships with the both cases are tested with the reference input sequence before 
the control systems built up, which indicate they are input/output bounded nonlinear dynamics.

2. The two gains and the sliding band thickness work well in the ranges of case 1 ( −6 ≤ kg ≤ −4 , −7 ≤ kl ≤ −3 , 
0.6 ≤ δ ≤ 2 ) and case 2 ( −150 ≤ kg ≤ −100∗ , −50 ≤ kl ≤ −20 , 1 ≤ δ ≤ 5).

3. The system outputs at both cases well follow the specified linear dynamic system performances (transient/
steady state response, control input, and output errors).

4. Even with an external disturbance d(t) = 1 , the steady state errors between the reference and the output are 
z e ro.  T h i s  i s  c ons i s te nt  w i t h  t he  ana ly t i c a l ly  pre d i c te d  s te a dy  s t ate  e r ror, 
ess = lim

s→0

s
s
1+D(s)
1+C1

= lim
s→0

1+1
1+C1

= 1+1
1+∞ = 0

5. The LESO works well for both cases. With the U-control, the simulations have demonstrated that compre-
hensively, such observers are appropriately integrated with state feedback to give output  feedback10.

6. Both cases demonstrate that the sliding function S − ε
(kl−k) monotonically exponentially converges to zero 

with the decay rate of kl − k.
7. This type of model-free/data driven control does not require conventional data iteration in the while process, 

this is because the use of twice Lyapunov stability condition guides the convergent direction and the gains 
designed generate possible power to drive the systems along the trajectories to the convergent states.

8. It should be noted that the difference of the state and its estimate in Figs. 6f and 7f is caused from the external 
constant disturbance with amplitude 1 (d(t) = 1 ) referring to "Preparation", therefore the error = difference 
between the real state and estimated. Bear in mind, the state is not used for feedback control, just an indica-
tion in case of disturbance free. In the simulated control the estimated states are used for control feedback in 
representing the realistic situation with added disturbance. This well demonstrates the LESO performance 
to estimate both state and disturbance. Jointly the disturbance is dealt with the both inner loop and exter-
nal loop. The figures, with the others simulated, demonstrate the expected control performance even with 
external disturbance.

Jointly the disturbance is dealt with the both inner loop and external loop. The figures, with the others simu-
lated, demonstrate the expected control performance even with external disturbance.

Conclusions
The study has taken a system to be controlled as an uncertainty, except assuming the system having some reason-
ably known characteristics, such satisfying Lipschitz conditions, bounded, controllable/observable, and dynamic 
order known. The once a control system performance specified, the rest of the DSMC controller tuning is to use 
trial and error to find the four parameters in the DSMC

(
S, δ, kg , kl

)
.

DSMC plays a kernel role in the dynamic/nonlinearity inversion, therefore in the whole U-control system 
design. The novelty lays in the introduction of two equalities to assign the derivative of the sliding functions 
instead of just letting it be zero, which bridges the designs of those model-based SMC and model-free SMC. The 
by-product of the DSMC is to relieve the chattering effect without additional functions inserted in SMC design.

This is the first stage work on CMFSMC with focus on system configuration, functioning components, basic 
property analysis, and numerical validation with the integrated function blocks. The next stage study could be 
a rigour mathematical descriptions and proofs of some of the details.

Surely more critical bench tests are needed to find out drawbacks of the results for further improvement. The 
other potential study could be the expansion of the SISO procedure to the MIMO cases.
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Figure 7.  Case 2—simulated plots.
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