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A newly discovered behavior 
(‘tail‑belting’) among wild rodents 
in sub zero conditions
Rafal Stryjek1*, Michael H. Parsons2 & Piotr Bebas3

Rodents are among the most successful mammals because they have the ability to adapt to a broad 
range of environmental conditions. Here, we present the first record of a previously unknown 
thermal adaptation to cold stress that repeatedly occurred in two species of non‑commensal 
rodents (Apodemus flavicollis and Apodemus agrarius). The classic rodent literature implies that 
rodents prevent heat loss via a broad range of behavioral adaptations including sheltering, sitting 
on their tails, curling into a ball, or huddling with conspecifics. Here, we have repeatedly observed 
an undescribed behavior which we refer to as “tail‑belting”. This behavior was performed under cold 
stress, whereby animals lift and curl the tail medially, before resting it on the dorsal, medial rump 
while feeding or resting. We documented 115 instances of the tail‑belting behavior; 38 in Apodemus 
agrarius, and 77 in Apodemus flavicollis. Thermal imaging data show the tails remained near ambient 
temperature even when temperatures were below 0 °C. Since the tail‑belting occurred only when the 
temperature dropped below − 6.9 °C (for A. flavicollis) and − 9.5 °C (for A. agrarius), we surmise that 
frostbite prevention may be the primary reason for this adaptation. It is likely that tail‑belting has not 
previously been documented because free‑ranging mice are rarely‑recorded in the wild under extreme 
cold conditions. Given that these animals are so closely‑related to laboratory rodents, this knowledge 
could potentially be relevant to researchers in various disciplines. We conclude by setting several 
directions for future research in this area.

The yellow-necked mouse, Apodemus flavicollis (Melchior 1834), and the striped field mouse, Apodemus agrarius 
(Pallas 1771), are small non-commensal rodents in the family Muridae. They are common across Eurasia, and 
when conditions are favorable, reproduce rapidly to form numerous  populations1. Despite being plentiful, these 
mice have not been well-studied in their natural environment, particularly during colder seasons. This is primar-
ily because they occur further away from human settlements than more common mice (e.g., Mus musculus), and 
remain in burrows during the  winter2. However, by accident, while providing artificial shelters and food for our 
behavioral assays (e.g.,3–5), we unknowingly witnessed an uncommon amount of behavior during cold weather, 
when animals should otherwise be sheltering. The purpose of this paper is to record a previously undocumented 
behavior among these two species, and to place this behavior in context with that of related species. For instance, 
if two disparate species share this behavior, and given how little research occurs in burrowing mice during cold 
seasons, then there is a high likelihood that other mice also produce this behavior.

Despite the differences in their biology and ecology, both A. flavicollis and A. agrarius have become success-
ful in the same types of environments, including urban and peri-urban  areas1,6. However, unlike Mus species 
and other commensal rodents, these Apodemus species are not dependent on human refuse for food, and are 
therefore, less likely to be observed close to human residences. Though they are currently considered in the same 
genus, there were enough fundamental differences between them (e.g., morphological, biochemical, and gene 
location (rearrangement on chromosomes)7–13 that they were previously positioned within two different sub-
genera (where A. agrarius was assigned to the Apodemus subgenus and A. flavicollis to Sylvaemus). The former 
classification is still used by some  authors7–13.

Adaptations to cold stress. Similar to other rodents, the success of both Apodemus species is largely due 
to their ability to adapt to highly-variable environmental  conditions14–16. Indeed, A. flavicollis and A. agrarius are 
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among the best examples of rodents demonstrating tolerance to a broad range of environmental conditions and 
thus, comprise populations that are widely-distributed from high to low latitudes of Eurasia. They first ranged 
from the southern areas of Scandinavia through western, central, and Mediterranean areas to the northern 
coast of Africa. Later, two ranges were formed; the western range, covering the south-east Scandinavia through 
the central and eastern Europe to northern Balkans and central Asia; and the far eastern range, from the south 
of Russia through eastern China, including the Pacific coast. As a result, both species persist in disparate areas 
across temperate, subtropical, and tropical climates. A. agrarius is also found in the continental climate zones 
where seasonal and daily temperature fluctuations can range from ca. 30 °C to − 30 °C17–19.

Given the widespread distribution, these two species could be excellent rodent models for studies on adapta-
tions to extreme temperatures. Such previous studies have included efficient mechanisms of thermoregulation 
studied at the molecular and sub-cellular  levels20, basal metabolic rate and  thermogenesis21–23, and behavioral 
mechanisms such as social  thermoregulation24,25. In many studies of thermoregulation in endotherms, particular 
emphasis is given to characteristics of the protruding, exposed parts of the  body26–30. The presence of exposed 
organs can be a challenge when the ambient temperature drops below thermoneutrality, thus they must have 
mechanisms to prevent heat loss. This strategy results in vasoconstriction that reduces blood flow and helps 
retain  heat31,32.

Other mechanisms protecting against heat loss are countercurrent heat exchangers closely-spaced vessels, 
often organized in retes, supplying warm blood to the protruding parts of the body and draining cool blood. This 
process allows heat to radiate from arterial to venous blood before it reaches the periphery of the protruding 
organs, where it could be significantly  cooled33. This approach occurs in such species as  sloths33,  cetaceans34 and 
 turtles35. But among rats (Rattus spp.), countercurrent heat exchangers are not likely to be involved in prevent-
ing the loss of heat from tails as it is the case in appendages of some mammals—here a mechanism based on 
vasodilation/vasocontraction plays a key  role36,37. Whereas, in Mus musculus, tails appear to contribute little to 
 thermoregulation38.

The threats that could result from the destabilization of the body’s temperature balance, can also be mitigated 
behaviorally. In rodents, behavioral adaptations include changes in foraging behavior in the Degu (Octodon 
degus39) and deer mice (Peromyscus maniculatus40). This seems to imply that, for these species, thermoregulatory 
abilities may actually be more crucial than mitigating threats from  predators41. Avoiding thermal stress may also 
involve modifying essential life tasks, such as finding resources at different times between day and night (desert 
woodrat, Neotoma lepida42) and different seasons (common vole, Microtus arvalis43). For a recent review of the 
latter,  see44. Behavioral thermoregulation is also associated with the exploitation of various thermal refuges, such 
as vegetation plant  cover45,46.

Another behavioral phenomenon observed at low temperature is curling into a ball-like posture in order to 
keep warm, and adopting this posture to reduce the surface-to-volume  ratio47. Curling, commonly observed 
in mammals, including domestic pets, has also been described in the rodent  literature48–50. In many animals, 
such reductions in body surface area also involve setting the protruding parts of the body so that they adhere 
to its surface as much as  possible51,52. This behavior is, perhaps, also important to protect them from damage, 
such as by frostbite, as the trunk temperature is usually higher and kept relatively constant compared to these 
protruding parts of the body.

A similar phenomenon, which we now refer to as ‘tail-belting’, where the animal lifts and may curl the tail 
medially, before resting it on the dorsal, medial rump, was observed in both A. flavicollis and A. agrarius, during 
feeding and resting between feeding bouts at our artificial  shelter4. We collected 4 different temperature ‘levels’ 
with A. flavicollis and 5 different temperature levels with A. agrarius. The behavior occurred when the surround-
ing temperature was below − 6.9 °C. in A. flavicollis, and − 9.5 °C in A. agrarius. However, we only document the 
appearance of this behavior, and we do not make any apriori hypotheses, nor do we test assumptions. As far as 
we know, this phenomenon has not been described in the literature, and here we systematically document the 
occurrence under particular circumstances.

Methods
The observed behavior was recorded during a field study conducted on free-living colonies of yellow-necked 
mice (Apodemus flavicollis) and striped field mice (Apodemus agrarius) on a private, suburban property in War-
saw, central Poland (52°20′ N 21°03′ E, altitude: 80 m). The experiment took place between 1 November, 2020 
and 15 March, 2021 during the Winter season. Temperatures during this period ranged from + 16 °C to − 20 °C. 
Based on direct and video observations over five months, we estimate the population size of each colony to be 
in excess of 10 individuals of each species. Individual recognition was sometimes possible based on distinctive 
variations in coat patterns, body size, and individual characteristics including marks, scars, wounds, variegation 
of color and shape of tail.

The study included continuous video recording of two chambers which were constructed to test individual 
responses to scents from conspecifics and/or  predators4. The chambers were constructed from 12 mm waterproof 
plywood and painted with odorless paint. The internal floor dimensions were 35 × 40 cm with a wall height of 
70 cm. Chambers were deployed near cover beside bushes in the natural habitat of neighboring forest and mead-
ows. Malleable bent sewer pipes (70 mm diameter and 50 cm length; Certus, Cieszyn, Poland) were connected 
to entrance holes. The bottom of the chambers was covered with 1 cm of rinsed sand and replaced twice per 
week. Animals were baited to the chambers nightly at dusk with 5 g of chocolate-nut cream (Nuss Milk Krem; 
i.e., Nutella™53–55) placed on 70 mm Petri dishes (PRO Scientific Inc., Oxford, CT, USA).

For continuous surveillance, we used three infrared cameras (Easycam EC-116-SCH; Naples, FL, USA) 
connected to a digital video recorder (Easycam EC-7804T; Naples, FL, USA). This setup enabled 24/7 motion 
detection recording for the duration of the study. Following several observations of this behavior, we deployed a 
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thermal imaging (Seek Thermal Shot SW-AAA camera; Santa Barbara, CA, USA), and recorded two visits to the 
chambers by yellow-necked mice (both at + 1.5 °C) and five instances of visits by striped field mice (at − 1.5 °C, 
− 2.5 °C, 5 °C, 6 °C, and 8 °C).

Ethics statement. This observational study was a non-invasive experiment based on the surveillance of 
free-ranging animals that were free to enter or ignore experimental chambers with food and video cameras. 
Thus, it did not require permission of the local ethics committee for animal experimentation. The study was 
carried out on private land with permission of its owners, and all procedures were conducted in accordance with 
the Polish Animal Protection Act (21 August, 1997). The study was designed and carried out in compliance with 
the ARRIVE  guidelines56.

Results
We recorded 115 instances of tail-belting (38 in A. agrarius and 77 in A. flavicollis) during five months of con-
tinuous observation of the two colonies. Within the 5-month period, the only instances of tail-belting occurred 
between January 16 and February 11, 2021 during a particularly harsh winter period in Warsaw, Poland (Sup-
plemental Table 1). Given the number of incidents and the colony size of both species, it is possible that over a 
dozen animals of each species displayed this behavior. While we could not always identify individuals due to 
their somewhat uniform appearance, we can be certain that at least 8 individuals (4 of each species) displayed 
this behavior. We were able to distinguish the 8 individuals due to observable differences in coat patterns, body 
size, and individual characteristics such as scars, or crooked tails. The lowest chamber temperature recorded 
during foraging was − 17 °C for A. flavicollis (Fig. 1; Supplemental Video 1) and − 14.5 °C for A. agrarius (Sup-
plemental Video 2). While animals were recorded across many temperatures during the 5 months, tail-belting 
was first recorded when the temperature dropped to − 6.9 °C in A. flavicollis and − 9.5 °C in A. agrarius (Fig. 1). 
Thermal images showed the temperature of the tail dropping well below trunk temperature and, in some cases, 
equaling ambient temperature below 0 °C for both species (Fig. 2; Supplemental Videos S1, 2). The frequency 
of tail-belting may have increased with additional decreases in temperature (Supplemental Table 1), though we 
did not quantify this number.

Discussion
We have documented over one hundred instances of tail-belting, a previously undescribed behavior, among two 
non-commensal rodents under cold stress in Warsaw, Poland. Because this behavior only occurs in sub-zero 
temperatures, it is most likely an adaptation to prevent frostbite of an exposed, protruding appendage, or freez-
ing of the tail to a surface. Indeed, we assume frostbite prevention, and not decreased heat loss, is the most likely 
explanation for two reasons. Firstly, thermovision (Fig. 2, Supplemental Videos 1, 2) showed that the temperature 
of the tails dropped well below that of the trunk, and equaled ambient temperature even in sub-zero temperatures. 
Secondly, tails appear to contribute very little to thermoregulation among  mice38.

Figure 1.  Video stills from IR cameras showing visible tail-belting in mice. (A–C) Yellow-necked mice; (D–F) 
Striped field mice. (A) and (D) show the lowest temperature that tail-belting was recorded at for each of the 
two species, (C) and (F) show the highest temperature that tail-belting was recorded at for the two species. Red 
arrows indicate the position of the tail being belted.
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Tail-belting, despite the visual resemblance to common tail curling (the widespread behavior among i.a., cats, 
dogs, foxes, and lemurs—see52,57–61) seems to be different in function. The purpose of curling tails, especially hairy 
tails, is to cover other body parts to keep them warm. However, these papers are mainly discussed as observations 
rather than strictly  quantified52,57–61. Among larger rodents, a similar tail curl is observed, e.g., in Norway rats 
and water rats in the  cold62,63. This behavior is necessary to reduce heat loss by appendages protruding from the 
body’s surface. But here again, there are no data to evaluate the assumptions.

Overall, there is an abundance of information on the contribution of tails to thermoregulation. The tails of 
rats, beavers, muskrats, foxes, rabbits, and many others contribute to  thermoregulation64–68. Of course, in these 
instances, when the ambient temperature drops, the mechanisms guaranteeing the outflow of heat in the tails are 
turned off, so they cease to function as a radiator. However, there is a clear gap in the data as to what the body 
does to protect the tails in such conditions, especially when the temperature drops to dangerous values for the 
tissues that form tails. Apart from behavior data, there is a little information available on antifreeze proteins in 
mammals’  tails69.

Given that rodents are among the most successful and best-known animals, particularly the genus Mus15, 
we can only assume this behavior has not previously been documented because of the difficulty of observing 
small, free-ranging rodent species in sub-optimal conditions in the wild. Additionally, mice minimize foraging 
in winter while remaining in burrows and consuming hoarded food. Under natural conditions (e.g., without 
access to our experimental chambers with food), during temperatures when this tail-belting behavior is promi-
nent, most mice would likely not even come out of their burrows. These individuals may have ventured out only 
because we provided a consistent, aromatic and highly-palatable food on a daily basis for months before and 
after the cold temperatures of the particularly harsh winter of 2021 in Warsaw, Poland. Indeed, we suspect we 
only observed this behavior because we set up trials intending to record and assess behaviors in the presence or 
absence of particular scents near a food reward. Given the relatively distant relatedness between the two  species9,13 
it is likely that this behavior also occurs in other rodents, particularly free-ranging animals that usually remain 
inside burrows in colder climates.

Future studies should be determined by experts in the area of thermal ecology or laboratory researchers 
interested in this behavior. Examples might include obtaining precise temperature measurements of body parts 
using thermo-vision  cameras70 as well as morphological and histological comparisons of the species. Precise 
linear studies should ensue to determine if decreasing temperatures below the threshold increase the frequency 
of this behavior. Anecdotally, it appears that this was the case. However, we do not know if temperature is the 
only factor that causes this behavior. It is unknown whether anyone has reduced the temperature in the labora-
tory in attempts to induce the behavior in other species. M. musculus is currently the primary model for studying 
frostbite injuries, however, this is not done by lowering the temperature, but instead by adhering frozen magnets 
to the  skin71. Thus, tail-belting would not have been expressed by M. musculus under these conditions. Moving 
forward, this behavior could also be sought out within laboratory conditions, with direct comparisons between 
the two Apodemus species and Mus.

Mice assays are very popular throughout science and account for more than 60% of all laboratory assays 
with animals used in research in  Europe72. Thus, there should be many opportunities to examine whether this 
behavior is also observed among laboratory animals. We suspect that this behavior is an unconditioned reflex, 
perhaps if this is shown to be the case, then studies could seek to determine a corresponding neural pathway. 

Figure 2.  Thermal images showing temperature of the tail equaling ambient temperature (for NETD = 70mK). 
(A–C) a striped field mouse; (D) a yellow-necked mouse. NETD = noise equivalent temperature difference.
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Regardless of the mechanism, it appears that this behavior is yet another example, among many, of how rodents 
have become one of the most diverse, adaptable and successful taxa.

Received: 26 July 2021; Accepted: 28 October 2021
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