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Spontaneous symmetry breaking 
in persistent currents of spinor 
polaritons
Evgeny Sedov1,2,3,4*, Sergey Arakelian3 & Alexey Kavokin1,2,4,5

We predict the spontaneous symmetry breaking in a spinor Bose–Einstein condensate of exciton-
polaritons (polaritons) caused by the coupling of its spin and orbital degrees of freedom. We study a 
polariton condensate trapped in a ring-shaped effective potential with a broken rotational symmetry. 
We propose a realistic scheme of generating controllable spinor azimuthal persistent currents of 
polaritons in the trap under the continuous wave optical pump. We propose a new type of half-
quantum circulating states in a spinor system characterized by azimuthal currents in both circular 
polarizations and a vortex in only one of the polarizations. The spontaneous symmetry breaking in 
the spinor polariton condensate that consists in the switching from co-winding to opposite-winding 
currents in opposite spin states is revealed. It is characterized by the change of the average orbital 
angular momentum of the condensate from zero to non-zero values. The radial displacement of the 
pump spot and the polarization of the pump act as the control parameters. The considered system 
exhibits a fundamental similarity to a superconducting flux qubit, which makes it highly promising for 
applications in quantum computing.

Due to their wide application  prospects1–3, the effects caused by the spin-orbit interaction (SOI) are among the 
most popular topics of study in various branches of contemporary physics including solid state  physics4,  optics5,6, 
ultracold  atoms7–9, two-dimensional  materials10,11, etc. A convenient platform for studying SOI is polaritonic 
systems, semiconductor heterostructures which provide conditions for hybridization of light and elementary 
excitations of  medium12. The structures represent planar optical microcavities which confine light in one spatial 
dimension. Light strongly couples to excitons in quantum wells (QWs) embedded in the microcavities forming 
new hybrid eigenmodes exciton-polaritons (polaritons for brevity). The spin (pseudospin) degree of freedom 
is inherited by polaritons both from photon and exciton constituents. Heavy-hole excitons characterized by a 
projection of the angular momentum on the QW growth axis ±1 couple with photons of right- and left-circular 
polarizations,  respectively13,14, forming bipartite polariton states obeying physics of spin-1

2
 particles.

In atomic condensates, inducing SOI of particles is a non-trivial research problem which was solved recently 
by dressing atomic spin states with a pair of Raman  lasers7–9. In contrast to atomic condensates, SOI is an inher-
ent property of polariton condensates originated from various effects including the TE-TM splitting of photonic 
 modes15, long-range exchange interaction of charge  carriers16, controllable magneto-induced splitting in exciton 
pseudospin  states17–19, etc.

According to the makeshift classification given  in9,20, one can distinguish two types of SOI. The first type 
is the spin-linear-momentum interaction (SLMI) which is responsible for coupling the spin of polaritons to 
their momentum (or quasimomentum � ) that characterizes spreading of quasiparticles in the cavity plane. 
Among the effects caused by SLMI are the optical spin Hall  effect21–23, the zitterbewegung (trembling motion) of 
 polaritons24,25, polarization  multistability26, parametric spin  effects27 and many  others28–31. The second type of SOI 
is the spin-orbital-angular-momentum interaction (SOAMI) which links the spin with the intrinsic (independent 
of the coordinate origin) orbital angular momentum (OAM) of particles. The most remarkable manifestations 
of this are spin-to-orbital angular momentum  conversion32 and generation of half-quantum circulation  states33 
including half-vortices34,35.
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Reduction of the problem from two-dimensional to one-dimensional36–39 enhances the role of nonlinearity 
induced by interactions and gives rise to various topological effects. The trapping of polaritons in quasi-one-
dimensional ring-shaped potentials is of particular interest  here33,40,41. In the case of a narrow ring confining 
potential where the radial degree of freedom is suppressed, SLMI and SOAMI problems merge.

In this manuscript, we consider evolution of a spinor exciton-polariton condensate emerging under the 
spatially-localized non-resonant optical pump in a cylindrical micropillar. Schematic of the possible experi-
ment is shown in Fig. 1. The pump excites the reservoir of incoherent excitons near the center of the pillar. The 
reservoir feeds the polariton state via stimulated scattering processes and acts as a repulsive potential for the 
polariton condensate forming the ring-shaped trap together with the stationary potential created by the edges 
of the pillar. In detail, this excitation scheme is described  in42–44.

The displacement of the pump spot from the center of the pillar breaks the rotational symmetry of the system. 
Behavior of a scalar polariton field in such potential has been investigated both experimentally and theoretically 
 in42–44. It has been shown that breaking the symmetry itself does not lead to formation of azimuthal polariton 
currents. For the emergence of the currents, an additional factor is required which endows the system with chiral-
ity. The spin-orbit interaction of polaritons can successfully act as such factor. Here we consider SOI originated 
from the TE-TM splitting of polariton  modes15 which is the most prominent effect in polariton microcavities.

The exciton-polariton condensate possesses a driven-dissipative nature. It exists under the optical pump 
which compensates dissipation due to a finite polariton lifetime. Thermalization time for polaritons is estimated 
as 1–10 ps. When the polariton lifetime is less than these estimations, polaritons never thermalize, and the con-
densate forms under the pump spot. We consider the polariton lifetime of about 45 ps which allows polaritons 
to occupy the minimum of the effective potential. As demonstrated in the experimental  works45–47, the further 
increase in the polariton lifetime leads to the thermalization of polaritons.

Results
The polariton condensate in a ring trap. The 1D single-particle Hamiltonian for the spinor exciton-
polariton condensate in the ring-shaped trap can be written as follows:

The Hamiltonian (1) is written in the basis [�+(θ),�−(θ)]
T , where Ψ±(�) are the azimuthal wave functions 

of the right- (“+ ”) and left-circularly (“−”) polarized polaritons. The first term in Eq. (1) is responsible for the 
azimuthal kinetic energy. L̂ = −i𝜕𝜃 is the OAM operator, M is the effective mass of polaritons in the pillar. ρ is 
the weighted radius of the ring trap defined as �−2 = ⟨r−2⟩r , where 〈...〉r is averaging over the radial coordinate. 
(r, �) are the polar coordinates. The second and the third terms describe the SOI effect due to the TE-TM split-
ting. � is the splitting constant. The first term in the parentheses appears as a result of spatial quantization of 
the radial condensate mode and it does not affect OAM directly. The dimensional constants �1,2 appear as a 
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Figure 1.  Schematic of the excitation of a spinor polariton current state in a cylindrical micropillar. Polaritons 
are excited by the polarized non-resonant cw optical pump slightly shifted from the center of the micropillar. 
Clockwise ( | �� ) and anti-clockwise ( | �� ) polariton currents characterized by nonzero OAM can emerge 
in different polarizations. The orbital angular momentum is transferred to the photoluminescence of the 
condensate.
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result of averaging the directionally-anisotropic distribution of the TE-TM splitting over the radial coordinate: 
�−2
1

= ⟨�2
rr
− r−1�r⟩r , �−22 = �−2 − ⟨r−1�r⟩r . The Pauli matrices �̌�x,y,z are responsible for the spin (polarization) 

degree of freedom of polaritons. �̌�0 is the 2 × 2 identity matrix
The rotational symmetry break of the system is contained in the interaction part of the Hamilto-

nian which includes both polariton-polariton interaction and interaction of polaritons with the opti-
cally-induced reservoir of excitons. We consider the partially polarized pump described by the vector 
�P⟩ = 0.5P(�, �p)(1 + p − �p, 1 − p + �p)T , where η defines the unpolarized fraction of the pump. The parameter 
p varying from −1 to +1 characterizes polarization of the rest of the pump which is right-circularly (left-circularly) 
polarized when p = 1 (−1 ). P(�, �p) is responsible for the spatial distribution of the pump, which is taken in the 
Gaussian form shifted by �p from the center of the pillar. Since the pump is rotationally symmetric around the 
point �p , the azimuthal coordinate of the shift does not affect the orbital degree of freedom, and without loss of 
generality we can limit ourselves to considering �p = (rp, 0) . The parameters rp and p are the control parameters 
of the circular polariton fluid.

The spin-polarized reservoir of excitons emerges predominantly under the pump spot. The displacement of 
the pump within the pillar plane causes the displacement of the cloud of the reservoir excitons which contrib-
utes to the effective potential. This results in the azimuthal dependence of the depth of the trap for polaritons. 
The resulting potential acquires the Z2 symmetry ( x → −x ). The azimuthal interaction Hamiltonian takes the 
following form:

where we have introduced the notation �̌�± =
1

2
(�̌�0 ± �̌�z) . The functions U±

1,2,3
(�) derived in Methods characterize 

the azimuthal dependence of the contribution from the polariton-polariton and polariton-exciton interactions to 
the effective potential. Interactions of polaritons both with the same and opposite spins are taken into account.

In further consideration, we perform a series of numerical experiments reproducing realistic evolution of a 
spinor exciton-polariton condensate characterized by the Hamiltonians (1) and (2). We take into account non-
conservative processes of gain and loss characteristic to realistic experimental conditions. The model used to 
describe the evolution of the spinor �Ψ⟩ =

�
Ψ+(t, �),Ψ−(t, �)

�T is discussed in detail in Methods.
It is convenient to characterize azimuthal polariton currents in an inhomogeneous potential by the average 

OAM per particle ℓ = N−1��|L̂σ̌0|�� , where N = ��|�� is the population of the polariton state. The spin-orbit 
interaction breaks the rotational symmetry and assigns chirality to the system. In these conditions, clockwise 
( � ), corresponding to � < 0 , and anti-clockwise ( � ), corresponding to � > 0 , polariton currents can emerge 
in different polarizations. These circumstances allow us to characterize the spinor polariton condensate by the 
vector |ℓ� = |ℓ+ℓ−� and to limit our consideration to three persistent current states which are co-winding anti-
clockwise � ↑⟩ = � ↺↺⟩ , co-winding clockwise � ↓⟩ = � ↻↻⟩ and counter-winding �0⟩ = � ↻↺⟩ states. �± are 
OAMs in the corresponding polarizations.

The spontaneous symmetry breaking of the polariton current states. In the first series of numer-
ical experiments, we trace the variation of ℓ characterizing the polariton condensate in the steady state with 
the change of the displacement of the pump spot rp under the linearly-polarized pump ( p = 0 ). The resulting 
dependence is presented in Fig. 2a. At small displacement, rp , the polariton condensate is in the state |0� charac-
terized by zero OAM ( � = 0 ). With the increasing rp the polariton condensate undergoes the transition to the 
|ℓ �= 0� state, herewith the current states | ↑� and | ↓� which differ by the direction of the currents in both polari-
zation emerge stochastically with equal probabilities. The insert in Fig. 2a shows the OAM states of the polariton 
condensate in multiple numerical experiments carried out under similar conditions ( rp = 1.4 μm and p = 0 ). 
The distribution of the results between the | ↑� and | ↓� states is random and homogeneous.

One should mention the polarization properties of the spinor polariton condensate in the steady state. The 
polarization is characterized by the Stokes vector � = (sx , sy , sz) with the components sj = N−1⟨Ψ��̌�j�Ψ⟩ , where 
j = x, y, z , and |�| = 1 . The populations of the left- and right-circularly polarized components in the |0� state are 
equal while in the |ℓ �= 0� state they are close to each other such that the circular polarization degree does not 
exceed 5%.

Figure 2b shows examples of the different states of polariton condensates. In the |0� state (lower panels in 
Fig. 2b) the density distribution of the polariton condensate is symmetrical about the axis of the displace-
ment of the pump spot. The left- and right-circularly polarized components contain vortex and antivortex 
around the pillar indicating the emergence of the spinor polariton currents in the corresponding directions. 
The vorticity in different polarization components is characterized by the winding numbers m± found as 
m± = (2π)−1

∫

∂θφ±(θ)dθ , where �±(�) are the azimuthal dependencies of the phases of the corresponding 
polarization components. m± quantize and play the role of topological charges. In the |0� state, the phases of the 
circular polarization components of the polariton condensate makes a full turn around the pillar which results 
in the values of the winding numbers m∓ = ±1.

In the |ℓ �= 0� state, the density distribution loses its axial symmetry, herewith the distributions in the | ↑� 
and | ↓� states are mirror-symmetrical to each other. The phases of the two circular polarization components 
depend on the azimuthal angle in the same way, so that two spin-polarised superfluid currents are parallel. This 
is in contrast to the |0� state where we observe antiparallel circular currents. Another peculiarity of the states 
shown in the upper and middle panels in Fig. 2b is that although azimuthal polariton currents are present in 
both polarizations, only one of the polarizations contains a vortex. In the discussed case, at large displacement 
of the pump spot the impact of particle-particle interactions on the azimuthal polariton behavior is considerable 
in comparison with the role of SOI. In the co-winding regime, the polariton current in one of the polarizations 
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keeps its direction imposed by the spin-orbit interaction, while the current in the opposite polarization changes 
its direction. In this case, for the former state, the spin-orbit interaction and particle-particle interaction effects 
cooperate in the formation of the current state and support formation of a vortex. For the latter one they tend 
to compensate each other, that prevents formation of a vortex state. In particular, in the | ↑� state the winding 
numbers are m+ = 0 and m− = +1 , so the vortex is present in the “−” polarization. In the latter, the overall change 
of the phase by +2π around the pillar includes the positive rapid variation (jump) of the phase around the dip of 
the polariton density. In the opposite polarization (“+”), the overall change of the phase is zero, and one observes 
the smooth increase of the phase in the clockwise direction along the ridge of the condensate compensated by a 
step-like decrease of the phase at the dip of the density. The situation is opposite in the | ↓� state which is char-
acterized by m+ = −1 and m− = 0 , and which exhibits an antivortex in the “ + ” polarization.

The spinor polariton condensates possess a half-moon-shape density distribution due to the broken rotational 
symmetry. Scalar half-moon condensates have been studied in Ref.43,44. The azimuthal variation of the condensate 
density in addition to the variation of its phase results in fractional values of the average OAM. For the states 
� ↑⟩ and � ↓⟩ illustrated in Fig. 2a the values of ℓ are about ±0.72 . The black drops in the distribution of the phases 
of the condensates in Fig. 2b illustrate the steady state polariton currents in the corresponding polarizations.

The interplay of SOI and interactions. For further consideration, it is convenient to refer to the azi-
muthal spectrum of the spinor polariton condensate characterized by the following decomposition:

To fulfill single-valuedness of the polariton wave function, the azimuthal polariton spectrum possesses a 
discrete character. ψ±

m (t) are the spectral components which characterize vortices with the topological charges m. 
In a similar way, we can decompose the azimuthal distribution of the optical pump, P(�, rp) = ⟨P(�, �p)⟩r , as

which is a function of the displacement rp.
Both SOI and depending on the optical pump particle interactions affect the azimuthal spectrum of the 

polariton condensate. Substitution of the decomposition (3) into the SOI part of the Hamiltonian (1) shows that 
the considered here SOI mechanism couples the non-symmetric spectral components in different polarizations, 
namely it couples the m component in the right-circular polarization ( �+

m
 ) with the m + 2 component in the 

left-circular polarization ( �−
m+2

 ) or equivalently, the m component in the left-circular polarization ( �−
m

 ) with 
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Figure 2.  Spontaneous symmetry breaking of the polariton current state under SOI. (a) Variation of the 
average OAM per particle, ℓ , of the exciton-polariton condensate with the displacement of the pump spot from 
the center of the pillar, rp , under the linearly-polarized non-resonant optical pump ( p = 0 ). The insert shows 
results of a series of numerical experiments at rp = 1.4µm . Each pixel corresponds to a separate numerical 
experiment. Pink and blue colors correspond to the states | ↑� and | ↓� , respectively. (b) Spatial distribution 
of the density of the polariton condensate, n (left), as well as of the phase of the left-circularly, �+ (middle), 
and right-circularly, �− (right) polarized components of the condensate for the polariton states | ↑� , | ↓� 
and |0� indicated in (a). The black drops in the middle and right columns show the polariton currents in the 
corresponding polarizations. (c) The change of the dependence of the energy functional, E(�) , on OAM with the 
displacement of the pump spot. The insert in (c) shows the change of the energy, E, of the ground states of the 
polariton condensate corresponding to the minima of the functional E(�) with increasing rp.
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the m − 2 component in the right-circular polarization ( �+
m−2

 ). This is one of the reasons of the SOI induced 
chirality of the system.

Another source of mixing spectral components of the polariton condensate is the optical pump which feeds 
the polariton condensate and defines the shape of the effective potential for polaritons. Mixing of polariton 
states as a result of particle-particle scattering described by the nonlinear terms in (2) is of a complex nature, 
which, however, obeys the condition of conservation of the overall vorticity in each act of scattering. The spectral 
redistribution of polaritons as a result of the described mechanisms is discussed in Methods.

In Fig. 3 we show the contribution of the three central components of the decomposition (3) characterized 
by m = 0 and ±1 to the final polariton state, WΨ = N−1

∑
j±

∑
m=0,±1 ��

j
m�2 , as well as the fraction of the same 

components of the pump (4) in the whole spectrum, WP =
�∑

m=0,±1 Pm
��∑

m∈ℤ Pm
�−1 , as functions of the pump 

displacement rp . If the displacement rp of the pump spot is small, the azimuthal distribution P(�, rp) is described 
by the function P0 + P1 cos(�) with a great accuracy. In this limit, the parameter WP is close to one. This means 
that the central states with m = 0,±1 are predominantly pumped, and their evolution determines the evolution 
of the entire polariton condensate. The induced by interactions effective potential is weakly modulated in the 
azimuthal direction, and its contribution to the azimuthal behavior of the polariton condensate is dominated by 
SOI. The SOI-induced chirality determines formation of the polariton |0� state with counter-winding currents in 
opposite circular polarizations. With the increasing displacement rp the contribution of the spectral components 
Pm of the pump characterized by |m| > 1 monotonically increases (while WP decreases), which brings the higher 
spectral components of the wave function (3) into play. This stimulates redistribution of the azimuthal spectrum 
of the polariton condensate due to interactions. If the SOI contribution to the mixing process is dominated by 
the pump-induced mixing, the system switches to the state with � ≠ 0 . At the critical value of rp the contribu-
tion of the states with |m| > 1 abruptly increases (see the kink in the black curve in Fig. 3 around rp = 0.85 μm ) 
followed by the monotonic decrease of WΨ with the increase of rp . The relative contributions of various integer 
angular momentum states into the polariton condensate wave function in different current states are shown in 
the right column in Fig. 3.

The energy of the polariton current state. Averaging the total Hamiltonian Ĥ = Ĥ0 + Ĥint , we can 
find the mean-field energy of the polariton condensate, E = ��|Ĥ|�� , corresponding to the solutions presented 
in Fig. 2a. The ground-state energy corresponds to the minima of the energy functional written in the general 
form as

that is a function of the order parameter ℓ . The first and second terms in (5) are responsible for the contribution of 
SOI and interactions, respectively. As we have discussed above, the linear polarization of the optical pump ( p = 0 ) 
is inherited by the polariton condensate, so the components of the classical pseudospin vector take values sz ≃ 0 
and sx ≃ 1 . The Hamiltonian Ĥ0 in (1) contains an explicit contribution of the OAM operator. The structure of 
the functional ESOI(�) repeats the structure of Ĥ0 , and at p = 0 it takes the following form:

where c0 and c1 are the constants emerging after the integration over θ . In the case of the rotationally-symmetric 
trapping potential, where the contribution of interactions into the azimuthal polariton behavior of polaritons is 

(5)E(�) = ESOI(�) + Eint(�),

(6)ESOI(�) = c0 + c1�
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Figure 3.  Variation of the spectral width of the wave function. The dependence of the contribution of the 
population of three central spectral components ( m = 0 and ±1 ) of the decomposition (3) to the final polariton 
state, WΨ (black curve), and the contribution of the three central components of the optical pump, WP (orange 
curve). The right panels show the populations of the vortex states with the winding numbers m from −4 to +4 
contributing to the final polariton states indicated in the main figure.
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reduced, the parameters ℓ and m merge, and Eq. (6) describes the quantized parabolic spectrum of the annular 
polariton states.

The contribution of the interactions is determined by the azimuthal distribution of the polariton condensate 
as well as of the exciton reservoir, and in general case it should be calculated self-consistently. However, the 
energy functional Eint(�) to a good approximation can be written in the following form (see Methods for the 
approximation):

As one can see, the interaction energy, Eint(ℓ) , decreases with increasing OAM and it is minimized at � ≠ 0 . 
This can be explained as follows. The optically-excited reservoir of incoherent excitons plays two important 
for our problem roles. First, it acts as a source of polaritons for the condensate. Second, it is responsible for the 
energy blueshift due to the repulsive polariton-exciton interaction. The spatially localized exciton reservoir cloud 
forms a potential maximum providing the system with the gradient of the effective potential. Polaritons emerging 
within the reservoir spot tend to move away from it along the potential gradient. This causes the decrease in the 
overlap of the condensate and the reservoir, which results in the reduction of the reservoir-induced blueshift. 
This scenario is valid in our system if the exciton reservoir is shifted from the center of the pillar which is why it 
causes the azimuthal modulation of the effective potential. In the azimuthally symmetric annular geometry, the 
interaction energy of the polariton condensate is not affected by its OAM.

The effective potential (7) is playing the same role in quantization of the energy of a polariton condensate as 
the effective double-well potential induced by Josephson junctions plays for quantization of energy of supercon-
ducting flux  qubits48,49 The central potential barrier isolates the two OAM states, | ↑� and | ↓� , from each another. 
It is important to note that the energy constant EJ does not depend on the order parameter ℓ , herewith it can be 
tuned by varying the control parameter of the displacement of the pump rp . ζ is the parameter, responsible for 
the control of the orbital momentum of the condensate, ℓ , due to the inhomogeneity of the azimuthal distribu-
tion of the density of the polariton condensate. The increase of EJ with rp results in the symmetry breaking of the 
polariton condensate manifested in the switching from the single counter-winding state to the two degenerate 
co-winding states. This symmetry breaking is evidenced by the set of numerical results summarized in Fig. 2a. 
In Fig. 2c we show schematically the variation of the energy-OAM dependence (5) with the change of the control 
parameter rp . The minima of the presented dispersions E(�) correspond to the energies, E, of the ground states 
of the polariton condensate which are the | ↑�, | ↓� and |0� states. In the insert in Fig. 2c the variation of E with 
the change of rp is shown.

The effect of the polarization of the pump. We now investigate the effect of the polarization of the 
pump onto the symmetry breaking of the polariton current state. The color map in Fig. 4a shows the polariton 
current states in the plane of the control parameters (p, rp) . The corresponding circular polarization degree char-
acterized by the Stokes vector component sz is shown in Fig. 4b. The circular polarization of the pump partially 
transfers to the polariton condensate. The imposition of circular polarization does not cancel the switching 
between the |0� and |ℓ �= 0� states, herewith it reduces the critical value of the displacement rp characteristic of 
this switching. In addition, the circular polarization of the pump removes the degeneracy of energies of the | ↑� 
and | ↓� states in the � ≠ 0 states. Namely, under the predominant right-circular polarization (“+”), the polari-
ton condensate occupies the | ↓� state and supports clockwise currents in both polarizations. In contrast, under 
the left-circularly polarized pump (“+”), the condensate occupies the | ↑� state characterized by anti-clockwise 
currents. The choice of the direction of the currents by the polariton condensate at different polarizations of the 
pump is determined by the SOI-induced symmetry breaking discussed in previous sections. The color map in 
Fig. 4a contains the transition regions of the mixed phases where both |0� and |ℓ �= 0� states emerge spontane-
ously. Herewith, the separation of the states with the co-winding clockwise and anti-clockwise polariton currents 
depending on the polarization of the pump is maintained.

The spin (polarization) degree of freedom contributes to the energy of the polariton conden-
sate, E(�) → E(�, sz) . The SOI part of the energy functional keeps its form (6) with the constants modified 
as follows: c0 → c0sx and c1 → c1 + c2sx . The structure of the functional ESOI(�, sz) repeats the structure of the 
Hamiltonian (1) after a unitary transformation ǍĤ0Ǎ

−1 , where Ǎ = cos(𝜃)�̌�0 + i sin(𝜃)�̌�z is the rotation matrix. 
The spin vector components are linked to each other by sx = (1 − s2

z
)1∕2.

The contribution of the spin to the interaction part (6) is more complicated, which, nevertheless, can be 
revealed by fitting the numerical results in Fig. 4a. The phenomenological prefactor EJ(�, sz) now depends on sz , 
which describes the reduction of the critical value of the displacement rp with the increase of the contribution of 
the circular polarization of the pump. The argument of the cosine, ζℓ , transforms to ζℓ+ ζ1p+ f (p)sz , where 
the second term is responsible for lifting the degeneracy of the states | ↑� and | ↓� with the increase of |p|. The 
last term is responsible for the circular polarization of the polariton condensate in the current state |ℓ� . f(p) is 
the even function of the control parameter p. In Fig. 4c we represent the typical maps showing the variation of 
the energy functional on the phase plane (�, sz) for the selected polariton states indicated in Fig. 4a. The color 
maps are supplemented by the variation of the energy functional along the line on the plane (�, sz) linking its 
minima for the |ℓ �= 0� state and along the line sz = 0 for the |0� state. The color maps Fig. 4a, b correspond to the 
minimization of the functional with respect to the variables ℓ and sz.

Discussion
In this manuscript, we have predicted the spontaneous symmetry breaking in the system of persistent azimuthal 
currents in the annular spinor exciton-polariton condensate under the effects of SOI and particle-particle inter-
actions. An approach to the trapping of polaritons bases on combining the stationary confinement potential 

(7)Eint(�) = EJ cos(��).
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from the cylindrical micropillar and the optically induced core repulsive potential makes it possible to control 
the symmetry of the effective trapping potential. Displacing the pump spot from the center of the pillar reduces 
the symmetry of the trap from the rotational symmetry to the axial ( Z2 ) symmetry, while the SOI effect endows 
the system with chirality.

The symmetry breaking occurs with the increase in the displacement of the pump where the effect of particle-
particle interactions starts dominating the contribution of SOI to the azimuthal polariton dynamics. Beyond 
the transition point, the counter-winding persistent currents of polaritons in opposite circular polarizations are 
replaced with the co-winding currents, where the direction of the currents can be controlled by the polarization 
of the optical pump. Average OAM per particle, ℓ , changes from � = 0 at small displacement to � ≠ 0 with the 
increasing displacement.

The newly found polariton current states characterised by fractional OAM can be compared with half-
vortices34,35 and spin-mediated half-quantum  circulations33. The states of a spinor condensate studied in this 
work are characterized by the presence of azimuthal polariton currents in both circular polarizations, however 
only one of them possesses vorticity. The currents are supported by the azimuthal inhomogeneity of the trapping 
potential which also leads to the half-moon shape of the polariton condensate. The dip in the azimuthal density 
distribution of polariton allows for controlling variation of the phase of the condensate, so that the condition of 
the single-valuedness of the wave function is fulfilled.

The symmetry breaking is characterized by the change of the shape of the energy functional E(�) from a 
single-well to a double-well. For description of the spinor polariton current states in the considered system, an 
approach analogous to one successfully employed for the description of flux qubits in superconducting circuits 
containing Josephson junctions can be used. The fundamental similarity between half-moon-shape polariton 
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Figure 4.  The effect of the pump polarization on the spinor polariton current states. (a) The color map showing 
the variation of the polariton current states | ↑� , | ↓� and |0� over the phase plane of the control parameters (p, rp) . 
In the shaded regions the polariton condensate occupies | ↑� and |0� (pink shaded) or | ↓� and |0� (blue shaded) 
states in different numerical experiments. (b) The dependence of the degree of circular polarization of the 
polariton condensate, sz , as a function of rp and p. (c) Variation of the energy functional, E  , with the change 
of the parameters ℓ and sz for the polariton states indicated in (a). The upper panels show variation of E  
in the plane (�, sz) . The lower panels show variation of E  with the change of ℓ along the dashed line in the 
corresponding upper panels.
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condensates and superconducting flux qubits confirms the high potential of polariton condensates for realisation 
of qubits and quantum networks as discussed  in50.

We expect that the effects discussed in this manuscript are characteristic to the whole class of polaritonic 
systems confined in annular potentials regardless the origin of these potentials. In particular, as an alternative 
geometry of the possible experiment we suggest optically induced ring  traps51–53. An additional option for con-
trolling the polariton state in this geometry is by manipulating the azimuthal distribution of the polarization of 
the optical pump.

Methods
Generalized Gross–Pitaevskii equation with a spin-resolved reservoir. The polariton condensate 
is described by gGPE for the spinor �Φ⟩ = [Φ+(t, �),Φ−(t, �)]

T , where Φ±(t, �) are the wave functions of the left- 
and right-circularly polarized polaritons:

where the operator

is responsible for the kinetic energy of polaritons taking into account the TE-TM splitting. 
�̂ = (k̂x , k̂y) = (−i𝜕x ,−i𝜕y) is the wave vector operator.

The potential energy operator is given by

where Vc(r) is the cylindrical stationary potential. The second term in (10) is responsible for repulsive interaction 
of polaritons within the condensate and polaritons with the reservoir of incoherent excitons. The interaction 
is spin-selective. �1 and �2 are the interaction constants of polaritons with the same and opposite spins, respec-
tively. �R1 and �R2 are the polariton-reservoir interaction constants. nR±(t, �) are the particle densities in two spin 
components of the reservoir.

The last term in (8) describes the balance of gain and loss in the polariton condensate. The operator

is responsible for the stimulated inflow of particles from the reservoir with the rate R. γ is the polariton decay rate.

The reservoir of incoherent excitons. The polariton state is fed from the spin-resolved reservoir 
described by the spinor �nR⟩ = [nR+(t, �), nR−(t, �)]

T obeying the following rate equation:

where |P� describes the spin-resolved non-resonant optical pump:

Polarization of the pump is partially lost during relaxation of photoexcited excitons to the reservoir state. η 
is the fraction of the pump with the lost polarization which equally pumps both spin components of the reser-
voir. p± describe polarization of the optical pump, p+ + p− = 1 . Another option to characterize the polariza-
tion of the pump used in the main text is the single parameter p linked to p± as follows: p+ = 0.5(1+ p) and 
p− = 0.5(1− p) . P(r) is responsible for the spatial distribution of the pump taken in the Gaussian form:

shifted from the center of the pillar by �p = (xp, yp) ( �p = (rp, �p) in polar coordinates). wp is the width of 
the pump. We represent the pump P(�) as a combination of the azimuthally symmetric component and the 
symmetry-breaking addition as P(r) = Ps(r)+ δP(r) , where Ps(r) = P(�)|

�p→(0,0) . �R is the reservoir decay 
rate. The operator R̂out describes an outflow of particles from the reservoir. It is obtained from R̂in by replac-
ing nR±(t, �) → |Φ±(t, �)|2.

We eliminate the reservoir from Eq. (12) taking it in the form

Reduction to 1D. We split radial and azimuthal components of the polariton wave function representing 
it as follows: |�� = ϒ(r) exp(−iErt/�)|�� , where �Ψ⟩ = [Ψ+(t, �),Ψ−(t, �)]

T is the azimuthal wave function 

(8)i��Φ⟩ =
�
T̂ + V̂

�
�Φ⟩ + i�

2

�
R̂in − 𝛾�̌�0

�
�Φ⟩,

(9)T̂ =
�2k̂2

2M
�̌�0 +

�Δ

2

[
(k̂2

x
− k̂2

y
)�̌�x + 2k̂x k̂y�̌�y

]

(10)V̂ = Vc(r)σ̌0 +
∑

j=±

[

α1|�j(t, r)|
2 + α2|�−j(t, r)|

2 +αR1nR j(t, r)+ αR2nR (−j)(t, r)
]

σ̌j ,

(11)R̂in = R
[
nR+(t, �)�̌�+ + nR−(t, �)�̌�−

]

(12)𝜕t �nR⟩ = �P⟩ − (𝛾R�̌�0 + R̂out)�nR⟩,

(13)�P⟩ = P(�)

�
1

2
�

�
1
1

�
+ (1 − �)

�
p+
p−

��
=

1

2
P(�)

�
1 + p − �p
1 − p + �p

�
.

(14)P(�) ∝ exp

[
−
(x − xp)

2 + (y − yp)
2

2w2
p

]
,

(15)�nR⟩ =
�P⟩

𝛾R + R̂out

≈
1

𝛾R

�
1 −

1

𝛾R
R̂out

�
�P⟩.
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component, Υ(r) is the radial wave function component. We limit ourselves to the lowest radial mode obeying 
the equation

Averaging Eq. (8) over Υ(r) we obtain the following equation for the azimuthal wave function component:

where the Hamiltonians Ĥ0 and Ĥint are given by (1) and (2), respectively. The operator Î is responsible for the 
balance of the gain and loss in the azimuthal direction. It repeats the structure of the part of the Hamiltonian Ĥint 
for the interaction of polaritons with the same spins, and it can be obtained from it by replacing U±

1,2
(�) → I±

1,2
(�) 

and U±
3
(�) → 0 . The functions U±

j
(�) and I±j (θ) are given as follows: 

In (18c) the indices “±” and the numeric indices are independent of each other.

Projected gGPE. For the next step, we use the decomposition  (3) for the wave function to represent it 
as a linear combination of vortex states characterized by winding numbers m. We also decompose the coef-
ficients U±

j
(�) and I±

j
(�) as follows: 

Substituting (3) and (19) into (17), we arrive at the following system of the first-order differential equations 
for the coefficients �±

m
(t):

The population and OAM per particle are found as follows: 

Approximation of the interaction component of the energy functional. The polariton conden-
sate tends to minimize its energy during its evolution described by Eq. (17). Reaching a steady state, it occu-
pies the energy minimum and acquires OAM corresponding to it. To reveal how the interaction energy of the 
polariton condensate characterized by the Hamiltonian Ĥint changes with the orbital angular momentum, ℓ , we 
supplement the evolution of the condensate with its rotation around the centre of the micropillar. It is described 
by the term �𝜔rotL̂�̌�0 added to the linear Hamiltonian (1). The supplemental rotation makes the condensate 
increase or decrease its orbital angular momentum which is reflected in the change of the interaction energy. 

(16)ErΥ(r) =

[
−

ℏ2

2M

(
�2
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r
�r

)
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2
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]
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We solve the Gross–Pitaevskii equation  (17) with the varying rotational frequency �rot (which can be both 
negative and positive describing rotation in opposite directions) and trace the change of the interaction energy, 
��|Ĥint|�� , and OAM, ℓ . The parametric dependence of ��|Ĥint|�� on ℓ is shown in Fig. 5 by red dots around 
two minima corresponding to no supplemental rotation ( �rot = 0 ). For the simulations we take the radial pump 
shift rp = 1.1 μm and the linearly polarized pump ( p = 0 ). The obtained dependence can be perfectly fitted by 
the function Eint(�) ∝ cos(��) around the minima, see the black curve in Fig. 5.

Values of the parameters. We take the following values of the parameters of the model for simulations. 
The effective mass of polaritons is M = 5 × 10−5me , where me is the free electron mass. The polariton and res-
ervoir decay rates are � = 0.02 ps−1 and �R = 0.025 ps−1 , respectively. The scattering rate is ℏR = 0.05meV μm2 . 
The nonlinearity coefficients are �1 = �R1∕2 = 3 μeV μm2 , �2 = �R2∕2 = −0.1�1 . The TE-TM splitting constant 
is ℏΔ = 150 μeV μm2 . The pump width is wp = 2 μm . The diameter of the pillar is 25 μm . The nonpolarized frac-
tion is � = 0.7.
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