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Cancer classification using machine 
learning and HRV analysis: 
preliminary evidence from a pilot 
study
Marta Vigier  1,2*, Benjamin Vigier3, Elisabeth Andritsch1 & Andreas R. Schwerdtfeger2,4

Most cancer patients exhibit autonomic dysfunction with attenuated heart rate variability (HRV) 
levels compared to healthy controls. This research aimed to create and evaluate a machine learning 
(ML) model enabling discrimination between cancer patients and healthy controls based on 5-min-
ECG recordings. We selected 12 HRV features based on previous research and compared the results 
between cancer patients and healthy individuals using Wilcoxon sum-rank test. Recursive Feature 
Elimination (RFE) identified the top five features, averaged over 5 min and employed them as input to 
three different ML. Next, we created an ensemble model based on a stacking method that aggregated 
the predictions from all three base classifiers. All HRV features were significantly different between 
the two groups. SDNN, RMSSD, pNN50%, HRV triangular index, and SD1 were selected by RFE and 
used as an input to three different ML. All three base-classifiers performed above chance level, RF 
being the most efficient with a testing accuracy of 83%. The ensemble model showed a classification 
accuracy of 86% and an AUC of 0.95. The results obtained by ML algorithms suggest HRV parameters 
could be a reliable input for differentiating between cancer patients and healthy controls. Results 
should be interpreted in light of some limitations that call for replication studies with larger sample 
sizes.

Abbreviations
AUC​	� Area under the curve
ECG	� Electrocardiogram
FFT	� Fast Fourier transform
RFE	� Recursive features elimination
RF	� Random forest
HRV	� Heart rate variability
IBI	� Interbeat interval
ML	� Machine learning
XGB	� EXtreme gradient boosting
NB	� Naïve Bayes
LDA	� Linear discrimination analysis

Worldwide, cancer still is the second most prevalent cause of mortality1. Several studies have shown that three 
basic biological mechanisms are involved in tumourigenesis: oxidative stress, inflammation and excessive sympa-
thetic activity2–4. Oxidative stress leads to both DNA damage, the primary cause of tumourigenesis, and uncon-
trolled cell proliferation5. Inflammation enhances cancer cell resistance to stress and apoptosis. Furthermore, 
inflammation contributes to angiogenesis and metastasis and promotes tumourigenesis in the early stages of 
oncogenesis6,7 ⁠ and disease progression in its later stages8. Additionally, the inflammatory microenvironment, 
which plays a role in fighting and eliminating tumours, may also facilitate tumour growth and the production 
of free radicals to further induce oxidative stress. Finally, metastasis development is under the control of the 
sympathetic nervous system by stimulating cancer cell migratory capacity8.
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One common factor influencing all three mechanisms is the vagus nerve as a major constituent of the para-
sympathetic nervous system, indexed by heart rate variability (HRV). Several studies indicate a bidirectional link 
between the vagus nerve and cancer. For example, it has been reported that the vagus nerve may exercise a neu-
romodulatory influence on cancer by slowing tumour development and progression5,9. Specifically, these authors 
inferred that vagal influences might reduce oxidative stress, modulate inflammation, and inhibit sympathetic 
activity. Notably, the information about tumourigenic activity related to tumour-associated proinflammatory 
cytokines is transferred to the brain by the vagus nerve10,11. Studies involving patients with vagotomy confirmed 
the role of the vagus nerve in cancer onset, showing an increased risk of developing lung or colorectal cancer after 
the surgery12,13. On the other hand, Strous et al.14 ⁠ suggested that the same cancer-related mechanisms accom-
panying the development and progression of a malignant tumour may cause vagal dysfunction and decreased 
HRV. Although the origin of the relationship between the vagus nerve and cancer is unclear, the lower HRV was 
unanimously reported in early and advanced cancer patients compared to healthy individuals15,16.

Vagus nerve activity can be quantified by recording an electrocardiogram (ECG) and analysing beat-to-beat 
fluctuations in heart rate. HRV parameters can be described by linear (time- and frequency-domain) and non-
linear measures17.

Time-domain measures of HRV quantify the amount of variance in the RR-intervals, which represents the 
period between successive heartbeats. Time-domain statistics are analysed through parameters such as the 
standard deviation of RR-intervals in a defined time period, the root mean square of successive differences 
(RMSSD) indicating short-term fluctuations in successive RR-intervals, the number or proportion of different 
pairs of successive RR-intervals that differ by more than a fixed time interval18.

Frequency-domain measures quantify the distribution of absolute or relative power into four frequency bands 
established by the Task Force of the European Society of Cardiology and the North American Society of Pacing 
and Electrophysiology (1996): ultra-low-frequency (ULF ≤ 0.003 Hz), very-low-frequency (VLF: 0.0033–0.04 Hz), 
low-frequency (LF: 0.04–0.15 Hz), and high-frequency (HF: 0.15–0.4)19. Frequency-domain measures are ana-
lysed by power spectral density computation using several parametric or nonparametric methods in different 
frequency bands of interest20.

Finally, non-linear measures of HRV quantify the unpredictability of fluctuations in a time series, as the 
HRV signals are non-linear and non-stationary by nature18. Moreover, HRV parameters, when examined using 
chaos theory and non-linear system theory, suggest the non-linear mode of interaction between the mechanisms 
involved in cardiovascular regulation18.

The differences between healthy individuals and cancer patients in time and frequency domain measures 
of HRV have often been reported, ultimately showing a vagal impairment in the latter group16,21. A lower HRV 
in cancer patients indicates autonomic dysfunction, which most cases exhibit16,21,22. This cancer-related altera-
tion is characterised by a sympathovagal imbalance with highly active SNS and impaired PNS functioning23. 
Although not often examined in cancer, the changes in non-linear HRV measures were reported as early signs 
of several diseases24. Therefore, we explored the combination of several linear and non-linear HRV features to 
classify cancer vs non-cancer.

Machine Learning (ML) established an essential role in healthcare and medical research25,26. In cardiovascular 
research, ML has been successfully used in automated ECG analysis for arrhythmia detection and classification, 
ischemia detection, left and right ventricular hypertrophy, bilateral ventricular hypertrophy, and diabetes27–30. 
Several studies classified disorder-affected individuals vs healthy controls based on HRV and machine learning 
algorithms. For example, Aggarwal et al.31 classified healthy vs diabetic rats based on diabetes-related changes in 
HRV, using an artificial neural network (ANN) and support vector machine (SVM). Other researchers created 
a neural network that automatically classified diabetic and healthy individuals based on disease-related HRV 
alterations32.

To the best of our knowledge, only two studies applied machine learning to predict or classify cancer based on 
HRV analysis. Shukla and Aggrawal33 extracted HRV indices from ECG recordings of 104 lung cancer patients 
and 30 healthy individuals. The authors found reduced HRV in cancer patients compared to healthy people. 
Further, the authors reported that the decrease in HRV levels was related to the severity of the disease. They pre-
dicted and classified lung cancer stages using ANN and SVM with 93.09% and 100% accuracy. In a recent study, 
Shukla, and Aggrawal34 analysed the 5-min electrocardiogram of 114 breast cancer patients and 13 age-matched 
healthy individuals. The authors used a Lavenberg–Marquardt algorithm-based artificial neural network and a 
support vector machine that classified two groups based on spectral HRV features with a maximum accuracy 
of 54.2% and 100%, respectively.

This research proposes a new methodology in cancer classification based on HRV and ML, which is different 
from the methods discussed above. To classify cancer vs healthy individuals, we used an ensemble model with 
the stacking method. Specifically, we aimed to examine the capacity of three different ML algorithms to recognise 
patterns in HRV to classify ECGs. Next, we aggregated the predictions from these algorithms to build a meta-
classifier to improve the robustness and classification accuracy. In addition, we applied the Recursive Feature 
Elimination method to select the most relevant HRV features. We also addressed the issue of class imbalance.

We recruited patients with tumours most consistently related to vagal dysfunction (i.e., breast cancer, prostate 
cancer, colorectal cancer, lung cancer, and pancreatic cancer) and within different stages of cancer development. 
Our sample contains five of the six most common types of cancer in Austria35. Thus, patients suffering from these 
types of cancer are often present in general oncology units, similar to where we collected our data. Importantly, 
research reports reduced HRV and a decreased survival rate in different types and stages of disease16,36,37. Also, 
no clear agreement exists among researchers regarding the direction of influence between HRV and cancer and 
the timeline of observed cancer-related changes in HRV. Therefore, we included patients from various cancer 
stages to account for the possible differences in patient’s autonomic activity.
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HRV measures were recorded from cancer patients and healthy individuals. A subset of time, frequency 
domain and non-linear features averaged over 5 min was used as input to the machine learning models created 
to distinguish cancer patients from healthy controls based on HRV analysis.

In particular, we investigated the performance of three ML classifiers: Random Forest (RF), Linear Discrimi-
nant Analysis (LDA), and Naive Bayes (NB). Next, we created one ensemble model based on the combination 
of those models using the stacking method and eXtreme Gradient Boosting (XGB) from the Caret package38 
(Version 6.0.88) in R39 (Version 4.1.0).

Our study makes a new contribution to the existing research. Its foremost advantage is to employ an ensem-
ble stacking algorithm that allows to reduce the uncertainties of predictions and to improve the robustness of 
classification.

Methods
Participants.  The data set comprised two cohorts, 77 cancer patients (see Table 1) and 57 healthy controls. 
ECG, age, gender, and medical variables were recorded. The cancer group was age and sex-matched with the 
control group. Exclusion criteria included diabetes, cardiovascular pathologies, pregnancy, and psychiatric dis-
orders. Both cancer patients and healthy individuals were excluded from the study if they were suffering from or 
taking any medication related to psychiatric or cardiac conditions, diabetes, and pregnancy. The average age of 
participants was 50 years old, and around 60% of the participants were women. Most cancer patients (42.86%) 
were diagnosed with breast cancer, 2.6% with prostate cancer, 3.9% with lung cancer, 37.67% with colorectal 
cancer, and 12.97% with pancreatic cancer.

Thirty-two patients were diagnosed with the first cancer stage, seven with the second, twelve with the third, 
and twenty-six with the fourth stage.

When we recorded the ECGs, none of the patients were receiving any cancer treatment. Moreover, we asked 
participants to avoid caffeine, nicotine and alcohol consumption and refrain from physical exercise in the two 
hours preceding the ECG recording.

The ethics committee of the Medical University of Graz approved all the study protocols. The participants 
gave written informed consent before taking part in the study. The procedures used in this study adhere to the 
tenets of the Declaration of Helsinki.

HRV analysis and feature selection.  An ECG was recorded in a sitting position for 5 min, applying a 
chest lead.

In cancer patients, an ECG Holter monitoring was applied (Schiller Holter MedilogAR). Three Ag/AgCl 
electrodes were placed on the distal end of the right clavicle, lower left rib cage chest, and lower abdomen.

Control group recordings were obtained using eMotion Faros 180°, Mega Electronics Ltd. Both devices are 
medically certified, highly accurate, and widely used in research.

For both groups, the signal was sampled at a rate of 1,000 Hz. HRV was analysed offline via Kubios HRV 
Premium software (version 3.3.1)40 following International Guidelines19. The software is device-independent, 
ensuring similar treatment of ECG signal and artifacts41. “Before R-wave time instant extraction, the R-wave is 
interpolated at 2000 Hz to improve the time resolution of the detection”41.

Visual artefact correction was performed on the raw IBI series, and if needed, an automatic correction 
algorithm was applied. 6.7% of the recordings were affected by artefacts. According to Kubios guidelines40, we 
included no recording containing 5% or more artefacts in the analysis. Time-domain HRV features were calcu-
lated directly from the time series of RRIs. Frequency-domain analysis was fast Fourier transform (FFT) based, 
and the non-linear parameters were computed from the detrended RR interval data.

Table 1.   Cancer patients characteristics.

Patients characteristics N 77

Age (in years) 50

Gender

Male 30

Female 47

Cancer type

Breast 33

Colorectal 29

Lung 3

Pancreas 10

Prostate 2

Cancer stage

I 32

II 7

III 12

IV 26
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We decided to select twelve HRV features for two reasons. First, several studies reported impaired autonomic 
activity and significantly decreased vagal functioning based on some time and frequency HRV features in cancer 
patients36,37,42. As a consequence, it seemed important to focus on the HRV features most consistently associated 
with cancer-related alternations. Second, disease-related changes in non-linear HRV indices were used to detect 
some disorders at their early stages43–47. Hence, they might improve cancer classification in the early stages. 
Based on prior knowledge and clinical plausibility, we selected twelve HRV features as described in Table 2. We 
compared the healthy sample with cancer patients by applying the Wilcoxon sum-rank test.

Next, we used the Recursive Feature Elimination (RFE) method to obtain optimal performance for the classi-
fiers and chose the best combination of features from our prior knowledge-based choice. RFE is a wrapper-type 
feature selection algorithm, that applies a backward selection process to find the most advantageous sequence 
of features. The first step for RFE is to construct a model based on all features and estimate the importance of 
each feature in the model. Then, it rank-orders the features and eliminates those with the lowest importance 
iteratively based on model evaluation metrics48. In this research, we used the random forest algorithm wrapped 
by RFE and applied it to select HRV features.

Model development.  Model development was carried out with five HRV features selected by RFE and the 
outcome was a dichotomous variable with two levels: patient and control. We standardised the data using the 
following options from Caret’s pre-process function: BoxCox, center and scale. The BoxCox method allows for 
correcting the skewness of the data. Centering involves subtracting mean from values, while scaling enables to 
divide values by standard deviation.

Our model development consisted of two steps. First, we chose three base models that incorporated various 
underlying algorithms. Second, we created an ensemble based on the stacking method to improve the accuracy 
and robustness of classification. Stacking is a well-established and powerful ensemble machine learning tech-
nique. In the stacked ensemble model, a meta-classifier is trained using the predictions of the base classifiers 
to make an optimal combination of the predictions. The stacking method integrates base learners’ strengths to 
attain more robust performance, reduce estimation uncertainties and improve prediction accuracy49.

In the present research, HRV features were supplied into the base models, producing the predictions used by 
the meta-classifier, which classified the input data into “cancer “or “patient” categories.

We applied the three following machine learning algorithms to classify cancer and healthy individuals: Linear 
Discriminant Analysis (LDA), Naïve Bayes (Nb), and Random Forest (RF). All the ML methods are included 
in the Caret R package.

LDA is a classification method that searches for a linear combination of variables that best divides two classes. 
Nb classifier is a probabilistic machine learning model based on the Bayes theorem used for the classification 
task. RF is a machine learning classification algorithm that builds a decision tree model48.

We implemented tenfold cross-validation with five repeats to assess three diverse classification models avail-
able in the Caret package using 60% of the dataset for training. This method randomly splits the dataset into ten 
segments where one segment represents the validation set, and the remaining nine parts are employed to build 
the training set. This operation is repeated ten times. Each time one part is removed, and thus we obtain a dif-
ferent part of the data for validation. The average result of the ten parts consists of the final prediction result48. 
We used 40% of the entire dataset as an independent testing set for the final model evaluation.

The training set contained 35 control and 47 cancer individuals. To deal with the class imbalance, we employed 
an up-sampling technique offered by the Caret package. This method randomly replicates the instances in the 
minority class by sampling with replacement to have the same size.

We used the default tuning hyper-parameter optimisation approach in the R package Caret, a grid search 
assessing three different sets of values for the hyper-parameters and selecting the best performing values for the 
final model.

Table 2.   HRV features.

HRV features Type Description

Mean RR (ms) Time-domain The average of RR intervals during a period of time

SDNN (ms) Time-domain Standard deviation of NN intervals

RMSSD (ms) Time-domain Root mean square of successive RR interval differences

pNN50% Time-domain Percentage of successive RR intervals that differ by more than 50 ms

HRV triangular index Time-domain The integral of the sample density distribution of RR intervals divided by the maximum of 
the density distribution

TINN (ms) Time-domain Baseline width of the RR interval histogram

LF power % Frequency-domain Includes the frequency range between 0.04 Hz and 0.15 Hz

HF power % Frequency-domain Includes the frequency range between 0.16 Hz and 0.4 Hz

Total Power (ms) Frequency-domain Reflects the overall autonomic activity

SD1 Non-linear Poincaré plot standard deviation perpendicular to the line of identity

SD2 Non-linear Poincaré plot standard deviation along the line of identity

Sample Entropy Non-linear Measures the regularity and complexity of a time series
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To evaluate if any improvement in the performance of base-classifiers was possible, we created an ensemble 
model based on the stacking method. The stacked meta-model comprised the predictions of all three base clas-
sifiers. We applied Extreme Gradient Boosting as an ensemble algorithm to create the stacked model.

We used the following R packages to build the stacked ensemble model: Caret (Version 6.0.8)38 and 
caretEnsemble50 (Version 2.0.1).

We evaluated the models’ performance using metrics including accuracy, sensitivity (true-positive rate), 
specificity (true negative rate), Cohen’s Kappa coefficient and ROC. A confusion matrix was created for the 
stacked ensemble model.

Ethics approval.  Approval was obtained from the ethics committee of Medical University of Graz. The 
procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Results
HRV analysis.  HRV variables were compared between cancer and healthy individuals using Wilcoxon sum-
rank test. We observed significantly lower values (and for most of the measures, considerably lower SDs) in 
cancer patients as compared to healthy controls. The results for both groups are summarised in Table 3.

Feature selection.  We ran the recursive feature elimination algorithm using 12 prior knowledge-based 
selected features and individuals’ health status (healthy/cancer) as an outcome variable. The five most important 
features were selected and all other measures were eliminated.

Table 4 shows the results of RFE with the five most important features. Figure 1 represents density plots for 
the five top HRV features selected by RFE. None of these features shows a significant overlap suggesting that all 
might constitute relevant input for classification.

Model performance.  Performance of base‑classifiers.  The results shown in Table 5, Figs. 2 and 3 indicate 
the performance metrics of three base classifiers on the training set with ten-fold cross-validation. They suggest 
that the algorithm of Naive Bayes performed the worst on the classification task, showing an accuracy of 79%. 
The algorithm of Linear Discriminant Analysis performed slightly better, with an accuracy of 80%. The algo-
rithm of random forest performed best, with 85% of accuracy.

The correlation between predictions of models was moderate, ranging from 0.35 to 0.51 (see Fig. 4). Thus 
suggesting that every classifier might perform better at learning different data patterns. In addition, all three base 
classifiers displayed promising performances while classifying cancer vs healthy individuals based on HRV analy-
sis. Thus, we integrated all models to build a meta-classifier and analyse if the classification accuracy improved.

Table 3.   HRV features comparison between cancer and control individuals.

HRV features Cancer (M/SD) Control (M/SD) W p

Mean RR (ms) 717.91/93.18 832.9/108.9 5119 < 0.001

SDNN (ms) 21.4/7.57 35.37/14.76 5289 < 0.001

RMSSD (ms) 13.87/4.49 29.26/16.47 5332 < 0.001

pNN50% 0.62/0.87 7.82/12.15 5345 < 0.001

HRV triangular index 5.5/1.73 8.95/3.57 5503.5 < 0.001

TINN (ms) 126.69/57.68 194.6/101.61 4625 0.013

LF power % 69.27/12.22 60.91/17.85 5160 < 0.001

HF power % 16.69/9.17 28.92/18.2 5522 < 0.001

Total power (ms) 440.23/357.83 1294/1231.43 5425 < 0.001

SD1 9.81/3.18 20.72/11.66 5332 < 0.001

SD2 28/10.55 45.03/18.6 5290 < 0.001

Sample entropy 1.37/0.34 1.58/0.32 4811 0.002

Table 4.   Results of recursive features elimination algorithm applied to 12 prior knowledge-based selected 
HRV features.

Variables Accuracy Kappa Accuracy SD Kappa SD Selected

4 0.8 0.58 0.1 0.21

8 0.83 0.64 0.1 0.2 *

12 0.82 0.62 0.1 0.21

Top 5 out of 8 RMSSD, SD1, SDNN, pNN50, HRV.triangular.index
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Figure 1.   Density plots for the five most important HRV features selected by the RFE method. The density plots 
illustrate the distribution of the top features between control individuals (pink) and cancer patients (blue).

Table 5.   Prediction performance of base classifiers and stacked ensemble.

Classifier Accuracy Kappa ROC Sensitivity Specificity

LDA 0.798 0.6 0.91 0.88 0.74

NB 0.790 0.58 0.89 0.67 0.89

RF 0.849 0.7 0.91 0.83 0.86

Ensemble 0.93 0.86 0.96 0.85 0.92

Figure 2.   Accuracy and Kappa statistics for different classifiers.
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Performance of meta‑classifier.  In a final step, after training and evaluating models created using the 
individual ML algorithms, we devised a stacked model aggregating the predictions of the base classifiers. This 
meta-model was trained using Extreme Gradient Boosting. The stacked model produced an accuracy of 0.929 
and Kappa of 0.859 with ROC = 0.956, sensitivity of 0.846, and specificity of 0.924, thus outperforming all base 
learners (see Table 5). On the test set (unseen data), the model had an accuracy of 0.865 and a Kappa of 0.719 
(see Fig. 5), sensitivity of 0.773 and specificity of 0.933.

The confusion matrix for the meta-classifier presents the performance of this model on the testing set (Fig. 5). 
The outcome variable has two values (patient and control). The column with control values shows that 17 control 
data points were correctly classified by the model, whereas two were incorrectly classified as belonging to the 
opposite class (patients). In the case of patients, the model correctly recognised 28 cases and wrongly assigned 
five patients to the control class.

The ensemble model achieved an area under the receiver operating characteristics (ROC) curve (AUC) of 
0.945 (95% CI 0.8916–0.9993), see Fig. 6.

Figure 3.   ROC, sensitivity and specificity for different classifiers.

Figure 4.   Correlation between the results of base classifiers.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22292  | https://doi.org/10.1038/s41598-021-01779-1

www.nature.com/scientificreports/

Discussion
This pilot study evaluated the possibility of machine learning-based discrimination between cancer patients and 
healthy controls based on five-minute-ECG recordings. In the first step, comparing HRV parameters (linear and 
non-linear features) between cancer patients and healthy controls suggested significant differences in all HRV 
parameters constituting an input for the machine learning in this research. These findings align with several 
studies16,21 documenting decreased levels of HRV in cancer patients compared to healthy populations. Specifi-
cally, a systematic review22 including 19 studies conducted in 2018 concludes that decreased HRV illustrates a 
disease-related autonomic dysfunction in cancer patients.

Importantly, the performance of three well-established machine learning algorithms achieved satisfactory 
results ranging from 79 to 85% accuracy. The RF performed best compared to the other ML algorithms in this 
study. The differences in accuracy between the base classifiers were, however, modest. There was a slight variation 
in accuracy between the best (RF) and worst (NB) performing algorithms (0.059).

To improve the robustness and accuracy of the classification model, we created a stacked learner that included 
the predictions of all three individual ML models. The accuracy of the stacked model was 8% higher compared 

Figure 5.   Confusion matrix showing the meta-classifier results for the testing dataset.
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to the RF model. Therefore, we conclude that in this study, a slight improvement in accuracy was achieved by 
stacking multiple classification models.

On the testing set, the meta-learner’s performance was still satisfactory. However, the model’s sensitivity was 
pretty moderate (77%). Thus, one should exert caution while excluding cancer based on this classification model. 
At the same time, the meta-classifier performed very well in terms of specificity (93%). It could be, therefore, 
speculated that our model might be accurate while used to confirm a suspected cancer diagnosis. The model’s 
high specificity might imply low chances of getting positive results in non-cancer individuals. Considering this 
model’s moderate sensitivity, it might be used as a complementary tool in oncology and applied when, based on 
other tests, there is a suspicion of cancer.

Both sensitivity and specificity of the meta-classifier are greater than 70%, which seems to be a reasonable 
trade-off51. Nevertheless, at this stage of the research, it is uncertain if the results might be generalised for differ-
ent algorithms beyond the ML used in this analysis. Our meta-classifier did not notably outperform the results 
from the best base classifier. Notwithstanding, using an ensemble model based on different ML algorithms may 
prevent reduced performance and prediction uncertainty.

Despite the moderate improvement in classification accuracy of the ensemble model, it should be noted that 
the performance of our model proved satisfactory as compared with previous research, showing 86% accuracy, 
93% specificity and 77% sensitivity while classifying cancer vs healthy individuals on unseen data.

Only two studies employed machine learning and HRV analysis to classify healthy individuals vs cancer 
patients. Shukla and Aggrawal33 predicted and classified lung cancer stages using ANN and SVM with 93.09% and 
100% accuracy. The same authors34 applied a Lavenberg–Marquardt algorithm-based artificial neural network 
(ANN) and support vector machine (SVM) to classify cancer vs healthy individuals based on spectral features 
of HRV, with maximum accuracy of 54.2% and 100%, respectively.

Some differences between these studies and the present work are worth mentioning. First, the studies are 
different in terms of statistical analysis. We created a stacked ensemble model while the authors of the research 
mentioned above applied single ML algorithms.

Moreover, our study did not focus on classifying between different cancer stages. Further, we decided to 
recruit patients with different cancer types most consistently related to vagal dysfunction (i.e., breast cancer, 
prostate cancer, colorectal cancer, lung cancer, and pancreatic cancer).

In contrast, previous research selected one type of cancer. Although similar in sample size with our research, 
both studies applied ML on highly imbalanced data without accounting for it. Finally, we applied the Recursive 
Feature Elimination method of feature selection.

Therefore, the findings of this pilot study could constitute a preliminary framework for developing cancer 
classifications techniques based on HRV analysis and ML. It should be noted, though, that further research is 
necessary to evaluate the algorithm’s sensitivity for different cancer stages. In this study, most of the patients 
were ascribed to stage 1 and stage 4, respectively. Thus, more research, including patients with different cancer 
stages, is needed.

While the findings of this early pilot study illustrate a satisfactory performance of machine learning algorithms 
to classify cancer vs healthy individuals from HRV measures, several limitations should be noted.

Figure 6.   Receiver operating characteristic curve for the meta-classifier model on the testing dataset. The 
horizontal axis represents the false-positive rate (1-Specificity). The vertical axis represents the true-positive rate 
(Sensitivity).



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22292  | https://doi.org/10.1038/s41598-021-01779-1

www.nature.com/scientificreports/

First, the sample size was relatively small due to clinical routines and the time needed for acquiring HRV data, 
and the recording time was not standardised. The ECG was recorded at the same location for each patient cohort; 
however, the measurements took place at a different time of the day for all the participants. Hence, circadian 
rhythms could have increased variance in the measures. Future research should aim to standardise the time of 
recordings to control for circadian rhythms. Also, sleep alterations can cause a change in HRV features52. Thus, 
future research should evaluate the cancer patients’ sleep patterns via standard questionnaires.

Second, we used two different devices to record cancer patients’ and healthy individuals’ ECG, which might 
have introduced some differences. However, in both devices, the signal was sampled at the same rate, avoiding 
differences in the accuracy of HRV estimation. Both devices are medically certified, highly accurate, and widely 
used in research. Moreover, we based our analysis on HRV values calculated in and exported from Kubios soft-
ware, assuring similar treatment of ECG signal and artifacts41.

Third, in this study, we focused on certain cancers most consistently associated with HRV dysfunction2,42,53,54. 
Future studies should aim for larger and more diverse samples of cancer patients and healthy controls, which 
might help to probe the robustness of cancer detection based on HRV analysis.

Fourth, it should be highlighted that although cancer patients and healthy controls were age and gender-
matched, other potential confounds, like physical activity, smoking, body weight, etc.55 could have contributed 
to the differences between groups. As far as such differences are representative for the group of cancer patients 
and reflect common risk factors for cancer (e.g., a higher number of smokers, lower levels of physical activity, 
obesity)56, the classification based on ML remains valid.

Fifth, despite a diverse selection of ML algorithms, there is a possibility that better results could have been 
achieved with other ML algorithms.

Sixth, although we used the default hyper-parameters provided by the Caret package, tuning might improve 
classification performance.

Additionally, the choice of the algorithm applied in the stacking ensemble might impact the results. Future 
work should focus on exploring different stacking algorithms (i.e., generalised linear model). Finally, although 
a comparison of different diseases (e.g., diabetes, cardiovascular pathologies, mental disorders) associated with 
aberrations in HRV was beyond the scope of this research (see, e.g.57 for a review of HRV in severe clinical con-
ditions reflecting brain–heart interaction), future research should aim to identify distinct patterns of HRV for 
each of these conditions and attempt a multi-class classification based on HRV analysis and machine learning 
techniques.

Conclusion
In this pilot study, we demonstrated preliminary results illustrating machine learning-based cancer classifica-
tion vs healthy individuals, using linear and non-linear HRV measures. In line with the previous research on 
HRV in cancer patients2,4,16,58 the findings confirm significant differences in autonomic function compared to 
healthy controls. Furthermore, we demonstrated that ML algorithms could classify healthy vs cancer individuals 
based on ECG with acceptable accuracy, sensitivity, and specificity compared to previous studies. We also found 
that we could create a meta-classifier that performed slightly better than underlying base-classifiers by using 
a stacking method. Random Forest led to the highest predictive accuracy, and Naïve Bayes performed worst 
compared to the other algorithms. The stacked model accuracy was about 8% higher than the best individual 
model. Ensemble model performance on unseen data was satisfactory (accuracy of 86%), showing a moderate 
sensitivity (77%) and high specificity (93%). Notably, the moderate sensitivity of this model suggests that ruling 
out cancer based on this classification method should be done with caution. At the same time, the meta-classifier 
performed very well in terms of specificity, suggesting high performance when aiming to confirm a suspected 
cancer diagnosis. Future studies may shed light on how ML and HRV analysis could be of practical value as a 
supplementary tool in oncology.
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