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Fused silica with structured and continuous patterns is increasingly demanded in advanced imaging 
and illumination fields because of its excellent properties and functional performance. Atmospheric 
pressure plasma, based on pure chemical etching under atmospheric pressure, is developed as a 
promising fabrication technique for fused silica due to its deterministic high material removal rate, 
controllable removal imprint and no mechanical load. The stable and controllable Gaussian-shape 
removal function makes computer-controlled plasma tool potential to generate complex structures 
with high accuracy, efficiency and flexibility. In the paper, computer-controlled atmospheric pressure 
plasma structuring (APPS) is proposed to fabricate 2D/3D patterns on fused silica optics. The 
capacitively coupled APPS system with a double-layer plasma torch and its discharge characteristics 
are firstly developed. By means of multi-physics simulation and process investigation, the stable and 
controllable Gaussian-shape removal function can be achieved. Two different structuring modes, 
including discrete and continuous APPS, are explored for 2D/3D patterns. A series of structuring 
experiments show that different kinds of 2D patterns (including square lens array, hexagon lens array 
and groove array) as well as complex 3D phase plate patterns have been successfully fabricated, which 
validates the effectiveness of the proposed APPS of 2D/3D patterns on fused silica optics.

Fuse silica with structured and continuous patterns is increasingly applied in high end imaging and illumina-
tion fields, due to its abilities to produce particular functional performance1–5. These structures can be usually 
classified into two dimensional (2D) and three dimensional (3D) patterns. Typical 2D patterns include channel 
array, lens array and pillar array, where the single feature is repeated along lateral directions. For example, lens 
arrays are widely adopted in light source devices and optical interconnects6. 3D patterns have more complex 
features such as continuous diffractive elements, where the features vary along both lateral and vertical direc-
tions. A representative 3D structured optic is continuous phase plate (CPP), which modulates the incident laser 
to realize beam shaping and thus achieving the uniform illumination of target surface7.

Currently, 2D/3D structured optical surfaces are manufactured by different methods such as laser 
machining8,9, micro-milling10, diamond turning11,12, water jet machining13, etc. However, for mechanical machin-
ing techniques, the tool wear and failure issues make them difficult to fabricate preferable optical materials such as 
fused silica14. Laser assisted fabrication causes heat-affected zone, which deteriorates the optic surface integrity15. 
Besides, most technologies above are costly in terms of equipment and of low removal efficiency for most opti-
cal materials8,16. Fused silica structured optics are highly demanded due to its excellent optical, chemical and 
mechanical properties. Fluorine-based atmospheric pressure plasma processing (APPP) has been reported as a 
cost-effective technique to fabricate fused silica optics because of its deterministic high material removal rate. 
Also, it is based on pure chemical reaction between silicon-based materials surface atom and reactive fluorine 
radicals generated by the plasma at atmospheric pressure, which avoids any introduction of damage to the pro-
cessed surface and significantly lowers the processing cost as well. Jourdain et al.17 adopted the reactive atom 
plasma process for figuring of large fused silica optics. An inductively coupled plasma (ICP) torch with De-Laval 
nozzle was applied to generate a Gaussian removal footprint. To reduce the thermal effect, an adapted tool-path 
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strategy was combined with an iterative figuring procedure. More commonly, capacitively coupled plasma is used 
in APPP. Takino et al.18 investigated chemical vaporization machining (CVM) with radio frequency plasma with 
a pipe electrode in an atmospheric environment. The removal rate of plasma CVM was 4 to 1100 times faster 
than that of polishing, while the roughness of the processed surfaces was almost the same as that of the polished 
surfaces. Li et al.19 modelled the APPP discharge process and surface chemical reaction using the multi-physics 
simulation. Gaussian removal profile was mainly determined by the distribution of active F atoms, and the ratio 
of O/CFx was the key factor affecting the surface morphology formation. Comprehensive characterization of 
surface topography indicated the existence of cellular microstructures after APPP, which caused opacification 
phenomenon20. Arnold et al.21 proposed the atmospheric plasma jet machining based manufacturing chain 
(comprising plasma polishing, plasma jet based figuring and correction, and soft polishing) for freeform silica 
optical elements. In addition, a finite element (FE) heat transfer model was used to compensate spatio-temporal 
variations of surface temperature and nonlinear material removal. The form error convergence was improved 
by an iterative correction of the targeted removal according to FE modelling.

Most of the aforementioned studies mainly aim for material investigation and form error correction using 
APPP techniques. The tool influence function was obtained experimentally and iterative figuring was needed to 
converge the surface error to specification. However, little detailed research has been carried out on fabrication 
of different patterned surfaces using APPP. The stable and controllable Gaussian-shape removal function makes 
computer-controlled APPP potential to fabricate 2D/3D patterns with high accuracy, efficiency and flexibility.

This paper presents the development of computer-controlled atmospheric pressure plasma structuring (APPS) 
method for 2D/3D patterns on fused silica optics. Firstly, a capacitively coupled APPS system is introduced. By 
means of finite element simulation and process investigation, the discharge, flow field and removal characteristics 
are then presented. Two different structuring modes, including discrete and continuous APPS, are respectively 
explored for 2D/3D patterns generation. Surface generation principle and simulation of different structuring 
modes are presented in detail. Finally, a series of experiments are carried out to validate the effectiveness of the 
proposed computer-controlled APPS for 2D/3D patterns on fused silica optics.

APPS system, characteristics and process investigation
APPS system and plasma torch.  The overall APPS system consists of a plasma torch, a gas supply mod-
ule and motion workbench, which has been described in our previous work22. The plasma (He and O2) is gener-
ated by radio frequency RF power which forms a chemical reactor; the reactant gas (CF4) fed into the reactor is 
decomposed to reactive radicals (F) by the collision with plasma electrons. These reactive radicals diffuse to the 
fused silica surface, and the material removal is accomplished as the reaction product is volatile. The balanced 
chemical reaction equation is SiO2 + CF4 → SiF4 ↑ +CO2 ↑.

Based on our experiments, it is found that the plasma flame tends to be interfered by the external environment 
such as the exhaust system and surrounding air environment, which would affect the stability of the plasma. In 
this work, a double-layer plasma torch is designed to shield the external airflow from the plasma. A schematic 
diagram of a single-layer and double-layer plasma torch is shown in Fig. 1.The new double-layer plasma torch 
consists of the base, clamp, ceramic inner nozzle, ceramic outer nozzle, and aluminum electrode. The plasma 
torch adopts a double-layer coaxial structure. The inner layer is connected with the plasma gas He, the reaction 
gas CF4 and the catalytic gas O2. And the outer layer is provided with the shielding gas N2 to protect the plasma 
flame during the processing. The plasma torch is effectively cooled by circulating water and air.

Figure 1.   Schematic diagram of a single-layer and double-layer plasma torch.
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Discharge characteristics.  The plasma torch designed in this work is based on dielectric barrier discharge 
(DBD) principle. In the field of atmospheric plasma processing, it is desirable to obtain a dielectric barrier uni-
form discharge, which is essentially a glow discharge rather than filament discharge. After ignition, atmospheric 
pressure glow discharge presents in two modes: alpha α mode and beta β mode. In the alpha α mode, electrons 
are excited throughout the discharge region; in the beta β mode, most of the input power is consumed in the 
plasma sheath near the electrodes and is not used to excite the plasma. For the two modes, only the alpha α mode 
can produce a stable and uniform plasma, while the beta β mode is easily converted into an unstable filament 
discharge which is not suitable for APPS.

In order to experimentally analyze the discharge characteristics of the plasma torch, a current probe (Tek-
tronix P6021) and a high voltage probe (Tektronix P6015A 1000X) are adopted to simultaneously detect the 
current and voltage of the plasma torch discharge. The sampled data is collected using an oscilloscope (Agilent 
InfiniiVision DSO-X 2022A Technologies) with sampling frequency 2GSa/s and bandwidth 100 MHz.

The experimental results are shown in Fig. 2. Figure 2a,b show that the phase of the current waveform leads 
the phase of voltage waveform about 100° and does not change much with time, indicating that the electric load 
is capacitive and stable. It can be seen from Fig. 2c that the calculated Lissajous figure has a smooth transition 
at both ends, and there are multiple curve steps on the left and right sides, indicating that the discharge of the 
plasma torch belongs to atmospheric pressure glow discharge. As illustrated in Fig. 2d, at the beginning of igni-
tion, as the input power increases, the voltage and current increase linearly until the plasma begins to discharge 
(when the power is around 50 W). At this time, the input power continues to increase, and the voltage remains 
basically unchanged with the increase of the current, showing that the discharge mode of the plasma torch 
belongs to the alpha α mode.

Simulation of flow field and molar ratio spatial distributions.  In order to explore the gases dis-
tribution during APPS and verify the design of the new plasma torch, the flow filed and species distribution is 
simulated using finite element analysis in COMSOL Multiphysics software. The simulation model of the APPS 
plasma torch is illustrated in Fig. 3. In order to simplify the calculation process, a two-dimensional axisymmetric 
model is established. Since the flow direction of the gas changes sharply at the tip of the electrode, denser meshes 
are generated in this region, as shown in Fig. 3b.

Boundary conditions are configured as follows. For flow field simulation, the inlet boundary condition is 
set as the mass flow inlet and the outlet boundary condition is set as the pressure outlet (relative pressure is 
zero). Other boundaries are set as wall by default. When fluid flow is coupled with mass transfer, it is important 
to suppress reflow, which ensures mass conservation as well as fast and robust convergence. As for the solver 
configuration, the flow field simulation model selects a steady-state incompressible single-phase flow model. 
The flow field distribution of the gas is obtained by solving the Navier–Stokes equation. The input parameters 
in the simulation are listed in Table 1.

Figure 2.   Discharge characteristics of the APPS torch.
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The flow field distribution of the gas is obtained and the result is shown in Fig. 4. The maximum gas flow 
rate is 1 m/s. The Reynolds number of the gas is about 169, which means that it is reasonable to use the laminar 
flow model in the single-phase flow. After the gas flows out of the nozzle, the velocity direction changes to the 
horizontal direction that is the radial direction of the plasma torch. Out of the nozzle range, the flow field begins 
to diverge and the flow rate decreases.

To simulate the spatial distribution of the various gas components, the Transport of Concentrated Species 
(TCS) model in COMSOL Multiphysics software is used. The inlet boundary condition of the plasma torch is set 
as Mole fractions-inflow, and the outlet boundary condition is set as Open boundary. The spatial distribution of 
the various particles (He, CF4, O2 and N2) is obtained by solving the Maxwell–Stefan equation. The calculated 
molar ratio distribution of He, CF4, O2 and N2 gas components is shown in Fig. 5. It can be seen that the gas 
molecules are uniformly distributed in the plasma discharge region, which is the same as the mole fraction of 
the gas at the inlet. In addition, the outer protective gas N2 does not affect the active particle distribution in the 
plasma region.

Process investigation on removal function.  Atmospheric processing plasma is a complex physical and 
chemical process, and its material removal rate is affected by many factors, such as plasma gas flow, reactant 
gas flow, RF power applied, etc. In this section, the single-factor method is used to analyze the effects of pro-
cess parameters on removal characteristics of the designed double nozzle plasma torch. Preliminary process 
investigation is based on groove machining (scanning removal function) by atmospheric plasma with different 

Figure 3.   Simulation model of APPS plasma torch and its mesh generation.

Table 1.   Input parameters in the simulation.

Input parameters He CF4 O2 N2

Flow rate 670 (sccm) 113.6 (sccm) 20 (sccm) 1000 (sccm)

Molar mass Mi (1/mol) 4.003 88.01 32 28.02

Dynamic viscosity μi (× 10−5 Pa s) 1.89 1.763 2.019 1.74

Figure 4.   Flow filed simulation result.
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processing parameters. The schematic of static removal function and scanning removal function (for groove) of 
APPS is shown in Fig. 6.

Unless otherwise specified, the groove scanning speed is 1 mm/s, and the sample used in the experiment is 
100 × 100 × 3 mm fused silica and the shielding gas N2 flow rate is set as 1000 sccm. The machined groove geom-
etry (cross-section profile) is measured by a stylus profilometer (Taylor Hobson Form Talysurf PGI 1240). Fig-
ure 7 shows the typical removal function profile, which is mathematically fitted by Gaussian function in Eq. (1).

In APPS, the removal rate and the full width at half maximum (FWHM) are generally used to describe the 
processing capability of the removal function. The removal rate is defined as the depth of removal per unit time 
(defined as Eq. (2)), and the FWHM is defined as the width in the horizontal direction at half of the removal 
depth R/2 (defined as Eq. (3)). The volume removal rate is used to estimate the efficiency of plasma processing 
(defined as Eq. (4)).

(1)r
(

x, y
)

= R · e−
x2+y2

2σ2

Figure 5.   Molar ratio spatial distributions of He, CF4, O2 and N2.

Figure 6.   Schematic of (a) static removal function and (b) scanning removal function (groove).
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where R is removal depth, a is removal rate and σ is standard deviation of Gaussian function.

The effect of processing time on removal function.  The relationship between the material removal rate and the 
processing time directly affects the complexity and accuracy of the APPS algorithm. Linear relationship between 
the material removal and the processing time is highly preferred. Therefore, the processing time is used as a vari-
able to investigate the variation of the removal rate with time.

In this experiment, 10 grooves are fabricated on a fused silica substrate. For each groove, the scanning speed is 
1 mm/s and the scanning length is 60 mm (reciprocating three times). Thus, the total processing time is 60 min. 
The other processing parameters are shown in Table 2, and the experimental results are shown in Fig. 8. It can 
be seen that within 0–30 min, the removal rate and the FWHM increase with time. After 30 min, the removal 
function tends to be stable, and the removal rate and the FWHM are constant. The nonlinear phenomenon is 
attributed to the warm up of the power system and the fact that electrode and processed surface region does 
not reach thermal equilibrium. At the beginning of the processing, the temperature of the electrode surface is 

(2)a =
R

t

(3)FWHM = 2
√
2 ln 2σ

(4)Vk =
∫∫

ae
− x2+y2

2σ2 dxdy =
2π
∫

0

+∞
∫

0

ae
− r2

2σ2 rdθdr = 2πaσ 2 =
π

4 ln 2
aFWHM2

Figure 7.   Typical removal profile by APPS.

Table 2.   Processing time as processing variable.

He flow (sccm) CF4 flow (sccm) O2 flow (sccm) Distance (mm) Power (W)

670 113.6 20 2 100

Figure 8.   Effect of processing time on removal rate and FWHM.
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relatively low. As the time goes on, it gradually increases and then reaches the equilibrium state. Therefore, the 
discharge gradually becomes stable, leading to the saturation of the removal rate.Therefore, it is necessary to 
stabilize the plasma torch for more than 30 min before the actual processing.

The effect of He flow rate on removal function.  The main role of the inert gas He is to produce a stable plasma 
discharge that provides an environment for the excitation of active F atoms. The energy of helium atomic He(23S) 
is 19.8 eV, which is higher than the first ionization energy of most gas molecules. Uniform dielectric barrier dis-
charge of He can be easily generated in atmospheric pressure. In addition, the He flow accounts for the majority 
of the inner mixed gas, and is an important factor in determining the velocity distribution, the concentration 
and distribution of the active F atom. The processing parameters listed in Table 3 are used to analyze the effect 
of He flow rate on the removal function.

The experimental results are shown in Fig. 9. As the He flow rate increases, the FWHM increases, while the 
peak removal rate decreases. In Fig. 9b, as the He flow increases, the volume removal rate first increases and 
then decreases. When the He flow rate is 1700 sccm, the maximum value reaches 0.37 mm3/min. Based on the 
chemical reaction characteristics and the Le Châtelier’s principle, with the increase of He flow rate, the concentra-
tion of active F atoms gradually decreases, so the peak removal rate decreases. However, the distribution range 
and the total amount of active F atoms gradually increase. As a result, the FWHM and volume removal rate will 
increase. When the He flow increases to a certain range, the number of active F atoms reaches saturation, but the 
concentration still decreases, and the volume removal rate begins to drop. Therefore, in the actual processing, 
He flow rate is selected according to the processing efficiency and resolution requirements.

The effect of CF4 flow rate on removal function.  The reaction gas in the APPS system is CF4, and its main role is 
to generate a large amount of active F atoms through electron collision reaction and to react with the fused silica, 
thereby achieving the material removal. The processing parameters listed in Table 4 are used to investigate the 
effect of CF4 flow rate on the removal function.

The experimental results are shown in Fig. 10. As the flow rate of CF4 increases, the concentration of active F 
atoms gradually increases, and thus the removal rate increases. However, the FWHM and volume removal rate 
of the removal function gradually reduces. This may be due to the fact that CF4 itself is an insulating gas and 
does not generate discharge. Therefore, as the flow rate of CF4 further increases, the plasma discharge region 
gradually shrinks, and thus FWHM of the removal function decreases. It can be seen from the Eq. (4) that the 

Table 3.   He flow rate as processing variable.

He flow (sccm) CF4 flow (sccm) O2 flow (sccm) Distance (mm) Power (W)

340, 670, 1010, 1350, 1680, 2020 113.6 20 2 100

Figure 9.   Effect of He flow rate on removal rate and FWHM.

Table 4.   CF4 flow rate as processing variable.

He flow (sccm) CF4 flow (sccm) O2 flow (sccm) Distance (mm) Power (W)

670 63.64, 79.55, 95.45, 103.41, 111.36, 127.27 20 2 100



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22392  | https://doi.org/10.1038/s41598-021-01592-w

www.nature.com/scientificreports/

effect of the FWHM contributes more to the volume removal rate than the removal rate. As a result, the volume 
removal rate reduces.

The effect of RF power on removal function.  The RF power determines the amount of energy input into the 
plasma system and is an important parameter affecting the plasma excitation intensity as the plasma discharge is 
driven by RF electric field. When the input RF power applies, electric energy is transferred to the electrons, and 
the heavy particles exchange energy efficiently only by colliding with the neutral gas molecules. The processing 
parameters listed in Table 5 are used to investigate the effect of RF power on the removal function.

The experimental results are shown in Fig. 11. It can be seen that the removal rate and the FWHM both 
increase approximately linearly as the input power increases. This is because more electrons are excited and 
accelerated, causing a more intense collision reaction with heavy particles, which in turn produces more active F 
atoms. The concentration and distribution range are both increased, so the removal rate and the FWHM increase 
accordingly. However, when the input RF power is too high, the He glow discharge at atmospheric pressure, tends 
to convert into arc discharge, which would damage the electrode and be unacceptable for APPS. Therefore, the 
input RF power needs to be carefully controlled within an appropriate range.

Figure 10.   Effect of CF4 flow rate on removal rate and FWHM.

Table 5.   RF power as processing variable.

He flow (sccm) CF4 flow (sccm) O2 flow (sccm) Distance (mm) Power (W)

670 111.36 20 2 70, 80, 90, 100, 110, 120

Figure 11.   Effect of RF power on removal rate and FWHM.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22392  | https://doi.org/10.1038/s41598-021-01592-w

www.nature.com/scientificreports/

Discrete and continuous APPS modes
With the controllable Gaussian-shape removal function, APPP is able to structure 2D/3D patterns with high 
accuracy, efficiency and flexibility. Two different structuring modes, including discrete and continuous APPS, 
are respectively proposed for 2D/3D pattern generation. Surface generation principle and experiments of the 
two structuring modes are also presented in the following section.

Discrete APPS of 2D patterns.  Typical 2D patterns include groove array, lens array and pillar array, etc., 
where the single feature is repeatedly distributed along lateral directions in 2D plane. In this work, the controlla-
ble APPP removal function is used to generate a single feature on the fused silica substrate. By means of control-
ling the dwell position grid or trajectory, the single feature, such as spot and groove, can be replicated to generate 
2D patterns. In this mode, APPS grid is not relevant to the grid of surface points. Normally, the distribution 
of dwell position/scanning line is discrete on the processed surface. 2D structured surface is thus generated by 
the imprint of APPP removal function according to the design pattern. The features can be overlapped or non-
overlapped with each other. The schematic of APPS of different 2D patterns is illustrated in Fig. 12.

Simulation of discrete APPS is also carried out to predict the generation of 2D patterned surface, including 
square lens array, hexagon lens array, and groove array. For the removal function used in the simulation, the 
removal rate is 19.69 μm/min, and the FWHM is 3.28 mm. For the 4 × 4 square lens array, the spacing is set as 
4 mm; for the hexagon distributed lens array, the spacing is set as 6 mm; for the groove array, the spacing between 
each groove is set as 12 mm, and the scanning velocity is set as 1 mm/min. The surface generation results of 
different patterns are illustrated in Fig. 13.

To verify the discrete APPS mode, the experimental structuring of 2D patterns (including lens array and 
groove array) was performed according to the discussion above. The fabricated 2D patterns on the fused silica 
substrate was measured by a Zygo phase shifting interferometer and the results are shown in Fig. 14. From experi-
mental results, different kinds of 2D patterns, including square lens array, hexagon lens array and groove array, 
were successfully fabricated on fused silica by means of discrete APPS and agreed well with the simulation results.

Figure 12.   Schematic of discrete APPS of different 2D patterns.

Figure 13.   Simulation of discrete APPS of 2D patterns (a) Square lens array (b) Hexagon lens array (c) Groove 
array.
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Continuous APPS of 3D patterns.  Continuous APPS mode can be used for the generation of 3D pat-
terns, where the features can vary along both lateral and vertical directions in 3D space. Besides the positioning 
and trajectory control, dwell time of plasma torch is added as another process parameter to control the surface 
generation. In this mode, APPS dwell time grid is equal to the grid of surface points. The structuring process is 
considered as continuous in terms of scanning trajectory with varying dwell time. Preferably, the raster scanning 
is adopted in consideration of motion control accuracy and data processing consistency. A schematic of continu-
ous APPS mode is illustrated in Fig. 15.

Figure 14.   Discrete APPS experiment results: (a) Square lens array (b) Hexagon lens array (c) Groove array.
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Mathematically, the desired removal distribution is the convolution ( ⊗ ) between the removal function and 
control dwell time matrix. It can be expressed by the mathematical model as shown in the following equation,

where TR(x, y) is target removal distribution for 3D patterns, r(x, y) is APPS removal function and dT(x, y) is 
the dwell time matrix. Therefore, for given removal function of plasma torch, arbitrary 3D continuous patterns 
can be generated on the substrate by means of controlling the APPS dwell time. If the continuous pattern data is 
known and the removal function is experimentally obtained, the dwell time matrix is solved by linear equation 
method (also known as deconvolution process) with high accuracy.

Simulation of continuous APPS is performed on a representative 3D structured surface, continuous 
phase plate (CPP), where the 3D features vary along both lateral and vertical directions. The surface size is 
80 mm × 80 mm and the PV value is 5.22 μm. For the removal function used in the simulation, the removal rate 
is 19.69 μm/min and the FWHM is 3.28 mm. In addition, residue error is calculated as the difference between 
the design data and simulated removal (convolution of removal function and solved dwell time). The simula-
tion results, including dwell time and residue error, are shown in Fig. 16. The residue error in the simulation 
is negligible (as the PV and RMS values of the error are 3.2 nm and 0.15 nm, respectively), which verifies the 
continuous APPS model.

To verify the continuous APPS to fabricate 3D patterns, the experimental structuring of a CPP was performed 
based on the simulation results as discussed above. The structured CPP sample was then measured in a trans-
mission configuration by Zygo phase shifting interferometer. The result is shown in Fig. 17. The area in the red 
square is the structured pattern in a single process. The design data and measurement are compared in terms of 
surface height, respectively shown in Fig. 18a, b. It can be seen that the structuring result is in good agreement 
with the CPP design. The total machining time is about 100 min. The deviation is mainly located at the surface 
boarder due to the machining edge effect and the residual initial surface error. The root mean square of surface 
deviation is 0.546 μm as shown in Fig. 18c. The experimental results indicate the potential of the continuous 
APPS mode to fabricate 3D complex patterns on fused silica optics.

To evaluate the optical performance of the structured CPP pattern, the far field focal spot was obtained at 
testing wavelength of 351 nm. The focal spot and its cross-section profile are shown in Fig. 19. The focal spot 
size is about 250 μm. The flat top region at the central spot indicates the CPP pattern generated by APPS can 
modulate the incident laser to realize beam shaping and thus achieve the uniform illumination of the target 
surface, which could meet the desired functionality.

(5)TR(x, y) = r(x, y)⊗ dT(x, y)

Figure 15.   Schematic of continuous APPS mode.

Figure 16.   Simulation of continuous APPS of 3D CPP pattern.
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Figure 17.   Zygo interferometer transmission measurement.

Figure 18.   Continuous APPS experiment results of a 3D CPP pattern.

Figure 19.   Optical performance evaluation: far field focal spot.
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Conclusions
This paper has presented the 2D/3D patterns generation by means of computer-controlled APPS on fused silica 
optics. The capacitively coupled APPS system with a double-layer plasma torch was developed and its discharge 
characteristics were investigated. Through multi-physics simulation and process investigation, the stable and 
controllable Gaussian-shape removal function was achieved. Two different structuring modes, including discrete 
and continuous APPS, were explored for 2D/3D patterns, and validated through both simulation and practical 
experiments. A series of structuring experiments have shown that different kinds of 2D patterns (including square 
lens array, hexagon lens array and groove array) and complex 3D CPP patterns have been successfully fabricated, 
which validates the effectiveness of the computer-controlled APPS of 2D/3D patterns on fused silica optics.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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