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Non‑Hermitian indirect 
exchange interaction 
in a topological insulator coupled 
to a ferromagnetic metal
Mir Vahid Hosseini1* & Mehdi Askari2

We theoretically demonstrate non‑Hermitian indirect interaction between two magnetic impurities 
placed at the interface between a 3D topological insulator and a ferromagnetic metal. The coupling 
of topological insulator and the ferromagnet introduces not only Zeeman exchange field on the 
surface states but also broadening to transfer the charge and spin between the surface states of the 
topological insulator and the metallic states of the ferromagnet. While the former provides bandgap at 
the charge neutrality point, the latter causes non‑Hermiticity. Using the Green’s function method, we 
calculate the range functions of magnetic impurity interactions. We show that the charge decay rate 
provides a coupling between evanescent modes near the bandgap and traveling modes near the band 
edge. However, the spin decay rate induces a stronger coupling than the charge decay rate so that 
higher energy traveling modes can be coupled to lower energy evanescent ones. This results in a non‑
monotonic behavior of the range functions in terms of distance and decay rates in the subgap regime. 
In the over gap regime, depending on the type of decay rate and on the distance, the amplitude of 
spatial oscillations would be damped or promoted.

Non-Hermitian physics has provided an environment in which more realistic physical systems can be  studied1. 
Many realistic systems are not isolated systems, but rather are open  ones2–5 meaning that the probability for them 
is not conserved owing to exchange of energy, particle, and information with external reservoirs. Recently, non-
Hermitian systems have been attracted a lot of  attention6. Several unconventional physical properties have been 
identified by including non-hermiticity in both  classical7–9 and  quantum10–14 regimes which are absent in their 
Hermitian counterparts. Generally, open quantum systems can be described by non-Hermitian Hamiltonians 
which may have complex  eigenvalues15. So, the development of non-Hermiticity to topologically nontrivial band 
 structures16, such as topological  insulators17, topological  superconductors18, and etc., is indeed an interesting 
issue, particularly in condensed matter physics.

Topological  insulators17 have received a lot of attention due to their amazing nontrivial electronic states pro-
tected by time-reversal symmetry. In these materials, while bulk states are gapped, surface states are gapless and 
chiral because of the nontrivial topology originating from the strong spin-orbit  interaction19. Due to chirality, 
the momentum and spin of carriers are locked together. Also, the chiral surface states in topological insulators 
resemble relativistic particles in high energy physics so that particle-like and hole-like states touch each other 
at Dirac points. These features result in magnetoelectric  polarizability20, magnetic monopole  induction21, and 
magnetic-impurity-induced local  gap22,23 in topological insulators. Although the surface states of topological 
insulator are topologically protected, but there are some approaches that make the engineering of these states 
possible. For instance, an energy gap in the topological insulator surface states can be generated by breaking the 
time-reversal symmetry through proximity coupling to a ferromagnetic  metal24 and magnetic  doping25–28. In the 
former case, the escaping of charge carriers from the topological insulator to the ferromagnetic metal makes the 
system non-Hermitian. This can result in the appearance of a non-symmetry-protected non-Hermitian Weyl 
phase characterized by bulk Fermi arc which can be manipulated by magnetization  direction29. While, in the 
latter case, the gap is not robust and can be filled by potential  scattering30. Recently, it has been shown that the 
topological insulator surface states can sustain the magnetic ordering while the bulk states would be spoiled in 
Cr-doped Bi2Se3 thin  film31, indicating that impurity interactions depend on whether magnetic impurities are 
on the surface or in the bulk of system.
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Indirect exchange interaction between magnetic impurities mediated by carriers of host material, known 
as Ruderman–Kittel–Kasuya–Yosida (RKKY)  interaction32–34 has been investigated in systems having definite 
chirality, such as  graphene35–44, 3D topological  insulators45–47, topological crystalline  insulators48,49, and Weyl 
quasi-particles50,51. The effects of superconducting  correlations52, temperature, and Zeeman  field53 on the RKKY 
interaction have also been explored in topological insulators. However, the study is still lacking as far as the 
signature of non-hermiticity in magnetic indirect interaction is concerned. Recently, nonreciprocal exchange 
coupling mediated by magnons, i.e., spin waves, has been studied between two separated ferromagnetic nanow-
ires in a lateral  structure54. So, it is interesting to know that how two magnetic adatoms interact through Dirac 
fermions, i.e., electronic waves, in a non-Hermitian topological insulator.

In the present work, we develop the theory of indirect exchange interaction to a non-Hermitian case in such 
a way that magnetic adatoms are placed at the interface of a 3D topological insulator and a ferromagnetic metal. 
The coupling between the topological insulator surface states and the ferromagnetic metal introduces non-
Hermitian terms, i.e., charge and spin decay rates, being responsible for transferring charge and spin between 
the two subsystems. Employing Green’s function method, we find that the resulting interaction is comprised of 
in-plane spin-frustrated interactions being along and perpendicular to the line connecting the two magnetic 
impurities, Dzyaloshinsky-Moriya interaction, and out-of-plane Ising interaction. We also show that, in the 
presence of charge decay rate, the traveling modes near the band edge can couple to the evanescent modes near 
the bandgap edge such that the amplitude of range functions increases and then decreases as a function of charge 
decay rate at intermediate distances. While, in the presence of spin decay rate, the coupling between both types 
of modes is so strong that the modes far away from the band edge or bandgap can be coupled together so that the 
amplitude of range functions oscillates explicitly as a function of spin decay rate even at intermediate distances. 
Correspondingly, the spatial dependence of the range functions would be affected due to decay rates: In the 
subgap regime, in addition to the exponentially decaying behavior of the envelope function of range functions, 
there are sign changes versus distance for the finite value of the decay rates. In the over gap regime, the charge 
decay rate damps the usual spatially oscillatory behavior of the range functions, whereas the spin decay rate 
damps the oscillations at small distances but promotes them at large distances. Furthermore, we analytically 
obtain asymptotic expressions for the range functions in the short-range and long-range limits.

The paper is organized as follows. In “Model and theory”, we introduce the model and extract the types 
of magnetic impurity interactions mediated by interface electrons of ferromagnetic metal/tpological insulator 
heterostructure in the presence of charge and spin decay rates. In “Numerical results”, we numerically evaluate 
the obtained range functions and study their dependence on various related parameters. Analytical expressions 
of the range functions are derived in “Analytical results”. Finally, we summarize and conclude in “Summary”.

Model and theory
We consider a ferromagnetic metal on top of a 3D topological insulator, as shown in Fig. 1. The interface of 
junction containing magnetic impurities is placed on the xy-plane. To describe the surface states of topological 
insulator in the presence of a proximity-coupled ferromagnet, we use the following low-energy effective non-
Hermitian  Hamiltonian24,55

where M is the proximity-induced exchange field breaking time-reversal symmetry due to the metallic ferromag-
net. vF is the Fermi velocity. Also, σx,y,z and σ0 are the Pauli matrices and identity matrix, respectively, acting on 
the spin space. Ŵ0 = (Ŵ↑ + Ŵ↓)/2 and Ŵz = (Ŵ↑ − Ŵ↓)/2 , providing the non-Hermitian terms in Eq. (1), are the 
charge and spin broadenings, respectively, with the spin dependent decay rates Ŵ↑(↓) . In fact, the non-Hermitian 

(1)H0(k) = −iŴ0σ0 + vF(kyσx − kxσy)− (M + iŴz)σz ,

Figure 1.  (Color online) Heterostructure consisting of a 3D topological insulator coupled to a ferromagnetic 
metal. There are two magnetic impurities at the interface that are separated by a distance R. The system is also 
influenced by the Zeeman exchange field and spin dependent decay rates Ŵ↑ and Ŵ↓.
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terms originate from the coupling of the ferromagnet to the topological insulator surface states through surface 
self-energies to include the effect of the semi-infinite ferromagnetic  metal24. In order to take into account the 
metallic bands of ferromagnet considerably, we have assumed that the metallic bands are centered at Dirac point, 
i.e., E=0. Also, low-energy approximation has been applied on the metallic bands of ferromagnet similar to those 
of the topological insulator. This causes that the non-Hermitian terms take constant  values24. For convenience, 
throughout the paper, we set ℏ = 1 and, without loss of generality, we assume Ŵ0,Ŵz ≥ 0 . Diagonalizing Eq. (1), 
yields spectra as

where l = −(+) is the band index and ζ = (vFk)
2 +M2 − Ŵ2

z with k =
√

k2x + k2y .
Obviously, the spectra, Eq. (2), have real and imaginary parts. In Fig. 2, the real and imaginary parts of spectra 

as a function of k are represented by solid and dashed lines, respectively. M lifts the Dirac point degeneracy being 
responsible for opening the bandgap of width 2M. For Ŵ0 = Ŵz = 0 , the imaginary part disappears and the real 
part reduces to the usual gapped Dirac spectrum (see Fig. 2a). Ŵ0 indicates the energy level of the imaginary part 
(see Fig. 2b). Whereas Ŵz splits the imaginary energy states by breaking their band degeneracy (see Fig. 2c,d).

We consider a pair of magnetic impurities, S1 and S2 located at positions R1 and R2 , respectively, at the inter-
face. The interaction between the impurity magnetic moments and the itinerant fermions is modeled as a local 
potential at the impurity sites

where Jj is the coupling strength between the impurities and the surface state fermions. Due to the lack of 
reflection symmetry with respect to the plane of interface, we assume the interaction to be anisotropic such that 
Jx = Jy �= Jz . Employing perturbation theory and treating Hint as a perturbation to H0 , up to second order of 
perturbation and at zero temperature, the indirect exchange interaction between the two magnetic impurities 
mediated by host fermions can be expressed  by32–34,56

where ε+ = ε + i0+ , Tr represents the trace over the spin degree of freedom, Im means imaginary part, Ef  is the 
Fermi energy measured from charge neutrality point, i.e., E = 0 , and R = R2 − R1 . The Green’s function in the 
energy-coordinate representation G(R, ε+) can be obtained from the Fourier transform,

with

(2)ε(k) =l

�
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�

ζ 2 + (2MŴz)2√
2

+ i



l

�
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,
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JjS
j
iσ

jδ(r − Ri),

(4)HRKKY = − 1

π

∑
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Im

∫ Ef

−∞
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k
2σ
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(5)G(R, ε+) =
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d2k

(2π)2
eik·RG(k, ε+),

(6)G(k, ε+) = [ε+ −H0(k)]−1
,

Figure 2.  (Color online) Dispersion relation of the system surface states for (a) Ŵ0 = 0 and Ŵz = 0 , (b) Ŵ0 = 1 
and Ŵz = 0 (c) Ŵ0 = 0 and Ŵz = 1 , and (d) Ŵ0 = 1 and Ŵz = 1 , with M = 3 . The solid and dashed lines indicate 
the real and imaginary parts of spectra, respectively. The bandgap width is 2M.
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where G(k, ε+) is the momentum space Green’s function.
Using Eq. (1) and plugging Eq. (6) into Eq. (5), we carry out Fourier transform and obtain the real-space 

Green’s function as

where

and

with n̂ = R/R a unit vector on the xy-plane along the line connecting the two localized impurities and H(1)
n (x) 

the first kind Hankel function of order n. It is worthwhile mentioning that the form of Λ implies the wave vector 
as well as Fermi momentum can be a complex quantity not only in the subgap regime but also in the over gap 
regime, unlike other gapped systems. Note that the z component of Green’s function, i.e., Gz , originates from the 
exchange field M and Ŵz explicitly. Substituting Eq. (7) into Eq. (4), the resulting indirect exchange interaction 
can be written as

where ρ̂ = ẑ × n̂ is an in-plane unit vector perpendicular to n̂ . Here, the range functions are defined by

On the right-hand side of Eq. (12), the first and the second terms, describing the spin-frustrated interaction, 
cause an in-plane collinear magnetic ordering with spin orientation along and perpendicular to the line connect-
ing the two impurities, respectively. The third term, referred to as Dzyaloshinsky–Moriya interaction, favors an 
in-plane non-collinear magnetic spin ordering. The last term, known as Ising interaction, depending on its sign 
imposes out-of-plane (anti) parallel alignment of the impurity spins. Remarkably, from Eqs. (13)–(16), one finds 
that F3 can be related to the chiral feature of surface states. While the other range functions are affected directly 
by the ferromagnet. Note, moreover, that both F1 and F2 ( F4 ) depend(s) only on the in-plane (out-of-plane) 
coupling Jx ( Jz ) due to the collinear characteristic of the corresponding interactions. But F3 depends on both Jx 
and Jz resulting from the non-collinear feature of in-plane Dzyaloshinsky–Moriya interaction. Furthermore, at 
zero spin-imbalance, i.e., M = 0 and Ŵz = 0 , we have F1 = F4 providing isotropic Heisenberg interaction. The 
integrals of Eqs. (13)–(16) cannot be performed to obtain exact analytical range functions, so, in the following, 
we first evaluate them numerically and then we use some approximations to get analytical expressions for the 
range functions in two extreme limits of the model.

Numerical results
Given the interest to study indirect exchange interaction in topological insulators, for the sake of completeness, 
we will present the results in the absence of non-Hermitian terms which might have been derived previously in 
 literature45,52,53,57. Without loss of generality, we assume Ef > 0 , set a lattice constant a = 1 as the length unit, 
and take vf /a = 1 as the energy unit in the numerical evaluation of the range functions.

(7)G(±R, ε+) =G0σ0 ± GI (σ × n̂) · ẑ + Gzσz ,
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Zero charge and spin transfer case, Ŵ
0
= 0 and Ŵ

z
= 0. Figure 3 shows F1 , F2 , F3 , and F4 , as func-

tions of the Fermi energy Ef  and impurity distance R with M = 3 , in the absence of non-Hermitian terms. The 
horizontal dash line indicates the boundary between two regimes Ef > M and Ef < M , i.e., over gap and subgap 
regimes. As usual, for Ef > M , the range functions oscillate in terms of both Ef  and R45,52,57. With the increase 
of Fermi energy, the amplitude of spatial oscillations increases, but the period of oscillations decreases, origi-
nating from the increase of the Fermi  surface45,52. On the other hand, for Ef < M , the range functions remain 
unchanged versus Ef  , whereas the spatial dependence of them tends to zero  exponentially45,53,57, due to the 
absence of Fermi surface.

In Fig. 4, the M and R dependence of the range functions are depicted with Ef = 3 . In the over gap regime, 
with increasing M, the amplitude of spatial oscillations decreases but the period of oscillations increases. Also, 
interestingly, with the further increase of M, near the band edge, the amplitude of range function begins to 
oscillate as a function of M57. In the subgap regime, as already mentioned, there is no free carriers. However, 
the indirect exchange interaction can be mediated through virtual interband transitions of electrons which is 
known as Bloembergen–Rowland  mechanism58–60. Note also that from both Figs. 3 and 4, one can see that there 
is a relatively sharp boundary between the two  regimes45,52,53,57.

Non zero charge transfer case, Ŵ
0
 = 0 and Ŵ

z
= 0. Now, let us include the charge transfer between 

the ferromagnet and the topological insulator, i.e., Ŵz = 0 . In Fig. 5, the range functions in terms of Ef  and 
Ŵ0 with intermediate distance are shown. For the region Ef > M , the oscillations become damped because of 
escaping the host free carriers weakening indirect exchange interaction. In the case of Ef < M , for small Ŵ0 , the 
behavior of the range functions is the same as before. But, interestingly, as Ŵ0 increases, a part of the oscillatory 
behavior of the over gap regime crosses the boundary (indicated by dashed line) disturbing that of the subgap 
regime. As a result, the sharp boundary between the two regimes becomes spoiled for large enough Ŵ0 . Such 
behavior can be interpreted as follows. When the imaginary energy states reside deep inside the bandgap, they 
are out of the reach to play a significant role. But, as Ŵ0 increases, the corresponding imaginary energy states shift 
towards the band edge. The available imaginary energy states near the bandgap edge promote virtual transitions 
of electrons between the imaginary energy states and the band edge. This would couple the propagating modes 
near the band edge to the evanescent ones near the bandgap edge enhancing indirect exchange interaction medi-

Figure 3.  (Color online) (a) F1 , (b) F2 , (c) F3 , and (d) F4 as functions of R and Ef  with M = 3 , Γ
0
= 0 , and 

Γz = 0 . The horizontal dashed line indicates Ef = M.

Figure 4.  (Color online) (a) F1 , (b) F2 , (c) F3 , and (d) F4 as functions of R and M with Ef = 3 , Γ
0
= 0 , and 

Γz = 0 . The horizontal dashed line indicates Ef = M.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22206  | https://doi.org/10.1038/s41598-021-01591-x

www.nature.com/scientificreports/

ated by Bloembergen–Rowland mechanism at such energies, i.e., Ef ≈ M . This feature can be seen mathemati-
cally in the next section.

For illustrative purposes, in Fig. 6, we have plotted F1 , F2 , F3 , and F4 versus Ŵ0 for the subgap regime with 
relatively long-range (Fig. 6a) and short-range (Fig. 6b) distances. One can clearly observe that all the range 
functions behave non-monotonically in the long-range case, as shown in Fig. 6a. We should note that we also 
examined larger R and the same behavior was found. Furthermore, as plotted in Fig. 6b, in the short-range case, 
except for the Dzyaloshinsky–Moriya interaction, which remains non-monotonic, the other interactions versus 
Ŵ0 vanish monotonically. Moreover, in both plots for large Ŵ0 , the escape of free carriers is more dominated than 
the transition from the valence band to the conduction band. So, the range functions tend to vanish. It has been 
well-studied that in the subgap regime, even for out-of-plane spin-polarized helical spectra, the Dzyaloshin-
sky–Moriya interaction is  negligible57 due to vanishingly small in-plane spin-polarized states at the edge of band. 
But, in the present case, interestingly, the finite values of Ŵ0 promote the Dzyaloshinsky–Moriya interaction.

On the other hand, the dependence of range functions on Ŵ0 in the over gap regime is depicted in Fig. 7. The 
long-range and short-range behavior are shown in Fig. 7a,b, respectively. As expected, both figures show that the 
magnitudes of range functions decrease as Ŵ0 increases and the non-trivial feature related to the non-hermiticity 

Figure 5.  (Color online) (a) F1 , (b) F2 , (c) F3 , and (d) F4 as functions of Ŵ0 and Ef  with M = 3 , R = 0.5 , and 
Γz = 0 . The horizontal dashed line indicates Ef = M.

Figure 6.  (Color online) Dependence of the range functions on Ŵ0 for (a) R = 1 and (b) R = 0.1 cases in the 
subgap regime with Ef = 2.5 , M = 3 , and Γz = 0.
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vanishes. This is because the energy levels of traveling mode and evanescent mode are not of the same order of 
magnitude, preventing the coupling between the two modes. However, the decay rate of long-range behavior 
is larger than that of the short-range one. This can be attributed to the considerable possibility of escaping of 
carriers when the distance between the magnetic impurities becomes large enough.

The spatial dependence of range functions with different values of Ŵ0 is shown in Figs. 8 and 9 for the subgap 
and the over gap regimes, respectively. In the subgap regime, close to the bandgap edge ( Ef = 2.5 and M = 3 ), the 
range functions fall off deviating from the exponential decay so that the sign change can take place, in contrast to 
the Hermitian  ones45,57,59,60. The rate of decay depends on the Ŵ0 . As a consequence, unlike the Hermitian indirect 
exchange interaction where the spin orientation could be either ferromagnetic or aniferromagnetic ordering in 
the subgap regime, independent of R, in the non-Hermitian case, it is possible to change the spin orientation 
for one time as R increases. However, in such regime, away from the bandgap edge, the range functions decay 
exponentially, (not shown) similar to the previous  studies45,57,59,60. In the over gap regime ( Ef = 5 and M = 3 ), 

Figure 7.  (Color online) Dependence of the range functions on Ŵ0 for (a) R = 1 and (b) R = 0.1 cases in the 
over gap regime with Ef = 8 , M = 3 , and Γz = 0.

Figure 8.  (Color online) R dependence of the range functions (a) F1 , (b) F2 , (c) F3 , and (d) F4 for different 
values of Ŵ0 and Ŵz = 0 in the subgap regime Ef = 2.5 and M = 3.
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the range functions exhibit a damped oscillatory behavior. As already mentioned, the amplitudes of oscillations 
decrease with increasing Ŵ0 . Also, the period of oscillations decreases steaming from increasing the real part of 
Fermi momentum due to Ŵ0.

Non zero spin transfer case, Ŵ
0
= 0 and Ŵ

z
 = 0. Now, we consider the spin transfer between the fer-

romagnet and the topological insulator, i.e., Ŵ0 = 0 . In Fig. 10, the dependence of the range functions on Ŵz and 
on Ef  is shown. Surprisingly, in addition to traveling states close the band edge, the higher energy spin states shift 
toward the evanescent states as Ŵz increases at the intermediate distances. Because of spin-split imaginary states 
above and below the Dirac point (See Fig. 2c), virtual electron-hole excitations would be promoted resulting in 
a strong coupling between the two types of modes. Such strong coupling causes the periodicity in terms of Ŵz to 
be inherited from the periodicity of Fermi energy.

In the subgap regime, the long-range and short-range behaviors of the range functions as a function of Ŵz 
are shown in Fig. 11a,b, respectively. The range functions exhibit oscillatory behavior with the same period in 
the long-range case (see Fig. 11a). For the short-range case, while the range functions are almost constant when 
Ŵz is small (see Fig. 11b), they begin to oscillate versus the spin decay rate as Ŵz exceeds some certain value.

Furthermore, the long-range and short-range behaviors of the range functions versus Ŵz in the over gap 
regime are shown in Fig. 12a,b, respectively. In the long-range case, the amplitudes of range functions decease 
(see the main panel of Fig. 12a), and then with further increase of Ŵz , the range functions reveal oscillations 
with small amplitudes (see the inset of Fig. 12a). Also, as shown in Fig. 12b, the short distance behavior of range 
functions in the over gap regime is similar to that of range functions in the subgap regime (see Fig. 11b). In this 
case, the amplitudes of range functions are slightly enhanced compared with those in the subgap case.

Owing to coupling of the evanescent modes with the traveling modes, in the subgap regime, the range func-
tions decay and at the same time, interestingly, oscillate in space as shown in Fig. 13. As Ŵz increases, the ampli-
tudes of oscillations increase whereas the periods of oscillations decrease. As a consequence, the non-Hermitian 
term Ŵz can enhanced the interactions and can provide several possibilities for ferromagnetic-antiferromagnetic 
transition in space which are in sharp contrast to the Hermitian indirect exchange interaction. In the over gap 

Figure 9.  (Color online) R dependence of the range functions (a) F1 , (b) F2 , (c) F3 , and (d) F4 for different 
values of Ŵ0 and Ŵz = 0 in the over gap regime Ef = 5 and M = 3.

Figure 10.  (Color online) (a) F1 , (b) F2 , (c) F3 , and (d) F4 versus Ŵz and Ef  with M = 3 , R = 0.5 , and Γ
0
= 0 . 

The horizontal dashed line indicates Ef = M.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22206  | https://doi.org/10.1038/s41598-021-01591-x

www.nature.com/scientificreports/

Figure 11.  (Color online) Dependence of the range functions on Ŵz for (a) R = 1.5 and (b) R = 0.1 in the 
subgap regime with Ef = 2 , M = 3 , and Γ

0
= 0.

Figure 12.  (Color online) Dependence of the range functions on Ŵz for (a) R = 1 and (b) R = 0.1 cases in the 
over gap regime with Ef = 5 , M = 3 , and Γ

0
= 0.
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regime, as shown in Fig. 14, similar to Fig. 9, the period of oscillations decreases, as Ŵz increases. In contrast, the 
range functions strongly oscillate at small R whereas the spatial oscillations become more damped than those of 
Ŵz = 0 case at large R. As a result, the long-range interactions in the over gap regime turn into the short-range 
ones due to Ŵz.

Mixed charge and spin transfer case, Ŵ
0
 = 0 and Ŵ

z
 = 0. Now, we include both Ŵ0 and Ŵz in order to 

investigate their mutual effects. In Figs. 15 and 16, the range functions are plotted in the plane ( Ŵ0 , Ef  ) and ( Ŵz , 
Ef  ) with Ŵz = 1 and Ŵ0 = 1.5 , respectively. Comparing these figures with Figs. 5 and 10, one finds that the pat-
terns of range functions are disturbed so that for given values of Ef  and Ŵ0 ( Ŵz ) there are very sharp sign changes 
at certain values of Ŵz ( Ŵ0 ) in the over gap regime resulting in the parallel-antiparallel transition of magnetic spin 
alignment. As one can see from Fig. 15, these sign changes are restricted below certain values of Ŵ0 . But Fig. 16 
shows that the sign changes can be happened at large Ŵz when Ef  increases. In addition, the abrupt sign changes 
of the over gap regime is extended to the subgap regime with smoother behavior. As a result, unlike the cases 
where only one of the decay rates is present and the main change takes place in the subgap regime, the presence 
of both types of the decay rates would substantially affect the over gap regime. This arises from the asymmetric 
spin-splitting of imaginary states (see Fig. 2d).

Analytical results
In this section, we obtain approximate analytic expressions for the indirect exchange coupling and exhibit their 
dominant dependence on the parameters. To do so, we consider the two extreme limits of the model, namely, 
short distance and long distance behaviors. Since most of the features, discussed above, are pronounced close to 
the bandgap edge, in the following, we restrict ourself to the case Ef ≈ M to obtain relatively short expressions.

Non zero charge transfer case, Ŵ
0
 = 0 and Ŵ

z
= 0. In the long-range limit, x → ∞ , inserting the 

asymptotic expression of Hankel  functions62 into Eqs. (13)–(16). For M ≫ Ŵ0 , we can use the small variable 

Figure 13.  (Color online) R dependence of the range functions (a) F1 , (b) F2 , (c) F3 , and (d) F4 for different 
values of Ŵz and Γ

0
= 0 in the subgap regime Ef = 2 and M = 3.

Figure 14.  (Color online) R dependence of the range functions (a) F1 , (b) F2 , (c) F3 , and (d) F4 for different 
values of Ŵz and Γ

0
= 0 in the over gap regime Ef = 5 and M = 3.
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expansions of the integrals and expand the integrands up to second order. After performing the integrals, the 
dominant terms can be reduced to

where α =
√
MŴ0 . In the equations above, there is an exponential factor depending on the R, Ŵ0 , and M imply-

ing that, in addition to the distance and gap, the charge decay rate causes the exponential decaying. Also, F1 , F2 , 
and F3 are proportional to Ŵ0 , Ŵ2

0 , and 
√
MŴ0 , respectively, causing the non-monotonic behavior of the range 

function versus Ŵ0 . The range function of Ising interaction, F4 , is proportional to M as it must be. The presence 
of cosine and sine functions is responsible for the sign change of the range functions. Note, interestingly, that 
the range functions fall off exponentially, as already discussed, but at the same time, show the power-law decay 
R2 , in contrast to the previous  studies45,53,57. Note that the exponential and harmonic functions originate from 
the wavefunction of evanescent and traveling modes, respectively. The product of the two functions, depend-
ing on the decay rate, reveals the coupling of the evanescent and traveling modes, as already mentioned above.

On the other hand, in the short distance case, for Ŵ0 ≫ M , we can expand the integrands of Eqs. (13)–(16) 
as a power series of M. After integration, we obtain the dominant terms
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2π2v2FR

2
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vF cos

(

2αR

vF

)

,
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e
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(20)F4≃− J2z
4π2v2FR

2
Me
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(

2αR
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)

,

Figure 15.  (Color online) (a) F1 , (b) F2 , (c) F3 , and (d) F4 versus Ŵ0 and Ef  with Ŵz = 1 , M = 3 , and R = 0.5 . 
The horizontal dashed line indicates Ef = M.

Figure 16.  (Color online) (a) F1 , (b) F2 , (c) F3 , and (d) F4 versus Ŵz and Ef  with Ŵ0 = 1.5 , M = 3 and R = 0.5 . 
The horizontal dashed line indicates Ef = M.
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where x = Ŵ0
R
vF

 and

are the Meijer G-functions and K1(x) is the modified Bessel function of the first kind. Using the asymptotic 
expressions for the M1(x) , M2(x) , M3(x) , and K1(x) in the limit x → 061,62, one finds

Here, � is the Euler–Mascheroni constant. One can see that the dominant terms decay as a power law of R−3 . 
Note that the presence of parameters M and Ŵ0 only modifies the F1 , F2,and F4 . But non zero values of F3 is due 
to these parameters (see also Eq. (23)).

Non zero spin transfer case, Ŵ
0
= 0 and Ŵ

z
 = 0. In the long-range limit, x → ∞ , similar to the previ-

ous subsection for M ≫ Ŵz , one gets

where α′ =
√
MŴz  . Similarly, one can see that the exponential decay is accompanied with the oscillatory behav-

ior. Following similar steps to those in the previous subsection, in the short distance case for M ≫ Ŵz , Eqs. 
(13)–(16) can be obtained approximately in terms of the Meijer G-functions as
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where y = (M + iŴz)
R
vF

 and

In the limit y → 0 , the asymptotic expressions of M′
1(y) , M

′
2(y) , M

′
3(y) , and K1(x) can be  used61,62 yielding,

One can see that, in this case, the gap and the spin decay rate modify the range functions except for F3 . Again, 
at such distances, the range functions fall off as R−3.

Summary
In conclusion, we have explored the effects of non-Hermiticity on the indirect exchange interaction mediated by 
the surface states of the topological insulator that is in contact with the ferromagnetic metal. The non-Hermiticity 
arises as a result of coupling between the topological insulator and the ferromagnetic metal, inducing loss and 
gain of quasi-particles. It turns out that the charge (spin) decay rate can weakly (strongly) couple the traveling 
modes to the evanescent modes.

In the subgap regime, when the Fermi energy lies close to the bandgap edge, all the range functions change 
non-monotonically with the distance between magnetic impurities as well as with the charge decay rate, and 
then tend to zero as the charge decay rate increases. In the over gap regime, the oscillatory behavior dependence 
of the range functions on distance is damped by the charge decay rate at both long- and short-distance limits.

Most interestingly, in the presence of spin decay rate, in the subgap regime, the interaction terms oscillate as 
a function of distance with exponential envelope. While in the over gap regime, the spin decay rate decreases 
(increases) the amplitude of oscillations at long (short) distances.

Usually, in the Hermitian indirect exchange interaction, for given parameters such as distance and Fermi 
energy, it is difficult to quench all types of interaction simultaneously. But for the non-Hermitian indirect 
exchange interaction, as already discussed, at the large value of charge decay rate, it is possible to turn off all 
the types of interaction independent of the other parameters. Remarkably, the spin decay rate can enhance the 
indirect exchange interaction and change the spin impurity alignment. These features would provide more con-
trol to manipulate spin impurity interaction which are key requirements in potential applications, for instance, 
quantum spin memory as well as quantum computations.
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