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Reliability optimization of process 
parameters for marine diesel 
engine block hole system 
machining using improved PSO
Honggen Zhou1, Weibin Yang1, Li Sun1*, Xuwen Jing1, Guochao Li1 & Liping Cao2

The processing quality of the block hole system affects the working performance of the marine diesel 
engine block directly. Choosing an appropriate combination of process parameters is a prerequisite to 
improving the accuracy of the block hole system. Uncertain fluctuations of process parameters during 
the machining process would affect the process reliability of the block hole system, resulting in an 
ultra-poor accuracy. For this reason, the RBF method is used to establish the relationship between the 
verticality of the cylinder hole and process parameters, including cutting speed, depth of cut, and feed 
rate. The minimum cylinder hole verticality is taken as the goal and the process reliability constraints 
of the cylinder hole are set based on Monte Carlo, a reliability optimization model of processing 
parameters for cylinder hole is established in this paper. Meanwhile, an improved particle swarm 
algorithm was designed to solve the model, and eventually, the global optimal combination of process 
parameters for the cylinder hole processing of the diesel engine block in the reliability stable region 
was obtained.

The block, which is a large thin-walled structure component, is one of the most important parts of the marine 
diesel engine. The processing of the block holes is a key process in block processing and their quality would affect 
the performance, accuracy, and life of the block directly. The process parameters, such as the cutting speed, the 
feed rate, and soon, play a vital role to ensure the accuracy of holes machining. Therefore, optimizing the process 
parameters according to the processing requirements of the block hole system is of great significance to improve 
the processing quality of the diesel engine block.

It is a common method to optimize the process parameters by exploring the relationship between the process 
parameters and the optimization objective through the experimental design. Awale et al.1 researched the influence 
of high-speed turning parameters on the surface roughness of harden AISI S7 tool steel by signal-to-noise ratio 
analysis method, and the results showed that higher cutting speed and lower feed rate can significantly improve 
the surface quality of hardening AISI S7 tool steel. Campatelli et al.2 conducted milling experiments on AISI 
1050 carbon steel workpiece by NMV1500DC five-axis milling machine, and the process parameters with the 
lowest environmental footprint were obtained based on the response surface method, which are higher cutting 
speed, feed rate, and chip section. Pervaiz et al.3 used Taguchi analysis to design inclined drilling tests of Inconel 
718 under different process parameters, and the test results showed that feed rate has the greatest impact on 
cutting force, while spindle speed has the greatest impact on cutting power and cutting temperature parameter.

The intelligent optimization algorithm has also been effectively applied to the optimization of process param-
eters. Genetic algorithm4,5 and simulated annealing algorithm6,7 take the output of the prediction model as the 
fitness function. Based on the rule algorithm, the optimal combination of process parameters can be solved 
through repeated iterations to meet the required fitness requirements. Particle swarm optimization algorithm8,9 
has become a widely used algorithm in process parameter optimization by its relative real value particle structure 
and faster iteration speed. However, with the progress of intelligent control optimization theory, the defects of 
standard intelligent optimization algorithms are gradually exposed. For example, the convergence speed is slow 
and the precision is low under multiple constraints for genetic algorithm10, and the optimization result of particle 
swarm optimization algorithm is easy to fall into the local optimal solution because of its randomness11. There-
fore, the improvement of intelligent optimization algorithms has become a way to obtain more accurate optimal 
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solutions of process parameter combination. Chu et al.12 proposed a hybrid Taguchi genetic algorithm to solve 
the optimal combination of lathe process parameters with the optimization objectives of material removal rate 
and surface roughness. The experiment results showed that the hybrid Taguchi genetic algorithm has better con-
vergence and robustness than the traditional GA algorithm. Tan et al.13 combined a new chaotic search strategy 
with particle swarm optimization to solve constrained programming problems, and experiments indicated that 
the hybrid algorithm not only has better convergence than other chaotic search algorithms, but also has better 
performance in dealing with high-dimensional problems. An improved artificial bee colony algorithm was pre-
sented to solve the constrained optimization problem14, which used a fixed proportion of direct comparison rules 
to select individuals and introduces the optimal solution information in the reconnaissance bee stage. Finally, 
based on the standard test function, it was proved that the improved artificial bee colony algorithm works better 
than the basic artificial bee colony algorithm for most test functions. There are many types of research on the 
optimization of process parameters, but few people pay attention to the influence of the uncertainty fluctuation 
of process parameters on the processing quality. Tian15 provides a method to establish and evaluate the process 
reliability model of the diesel engine block, but this method can’t control the process reliability of the block from 
the process design itself. Therefore, based on his research, this paper integrates the reliability theory in the process 
of optimization, and the reliability stability region of the block is selected based on the Monte Carlo method. 
The minimum verticality of the diesel engine block cylinder hole is taken as the optimization objective, and the 
Hooke-Jeeves algorithm is combined with the particle swarm optimization algorithm to solve the established 
reliability optimization model. The optimal process parameters of the diesel engine block hole system obtained 
according to the above method can not only satisfy the high machining accuracy of the block hole system, but 
also ensure the reliability of the diesel engine block. To a certain extent, the method in this paper has made a 
contribution to improving the machining process technology and reliability of the diesel engine for marine diesel 
engine manufacturers. In addition, the proposed method in this paper can provide some reference and new ideas 
for the improvement of the manufacturing process of products with small samples.

Establishment of approximate model
Design variables and optimization objectives.  The three-dimensional simplified model of the diesel 
engine block is shown in Fig. 1. During the operation of a marine diesel engine, the piston and the crankshaft 
movement center are in a vertical relationship. The verticality of the cylinder hole to the crankshaft hole axis 
directly affects the reliability of the diesel engine. Therefore, the minimum verticality of the cylinder hole to the 
crankshaft hole is the optimization goal. Process parameters are closely related to the cutting force and cutting 
temperature of the diesel engine block. It is easy to cause machining defects such as diesel engine block machin-
ing deformation with improper cutting force and cutting temperature. These machining defects in the machin-
ing accuracy of diesel engine block will be manifested as out of dimensional tolerance, geometric tolerance, 
and surface quality, which will directly affect the operation of the transmission shaft and other diesel engine 
performance problems. Therefore, the process parameters (cutting speed vc, cutting depth ap, and feed rate f) 
are selected as the variables to be optimized. According to the design parameters of the diesel engine block and 
production experience, the parameter value range setting of design variables is shown in Table 1. Xi

(L)and Xi
(U) 

means the upper and lower limits of design variables.

Experimental design.  The construction of the approximate model depends on the selection of sample 
points. Commonly used experimental design methods include Design of experimental, Orthogonal experimen-

Figure 1.   Three-dimensional simplified model of the diesel engine block.
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tal design, Central composite design, and Latin hypercube sampling. Among them, the Latin hypercube sam-
pling has good uniformity and projection characteristics, which can make all test points as evenly distributed 
in the design space as possible, thereby improving the fitting accuracy of factors and responses16. Therefore, the 
Latin hypercube sampling is used to select the three design variables, and their distribution is shown in Fig. 2. 
In Fig. 2, the black dot represents the collected design variables (vc, f, ap) test points by the Latin hypercube sam-
pling, the red dot represents the projection of the process parameter sample points on the vc-f plane, the blue dot 
represents the projection of the process parameter sample points on the ap-f plane, and the green dot represents 
the projection of the process parameter sample points on the vc-ap plane.

According to the three-dimensional scatter plot, it can be seen that the distribution of sample points in the 
design space is relatively uniform, and each area is occupied by sample points, and the space utilization rate is 
high. Based on the sample points of the Latin hypercube sampling, the cylinder hole machining test was carried 
out, and the test results are shown in Table 2.

Verticality of cylinder hole to the crankshaft hole modeling based on RBF method.  The rela-
tionship between the verticality of the cylinder hole to the crankshaft hole and design variables needs to be deter-
mined through machining tests. The process of optimizing process parameters involves multiple tests, which 
results in serious time consumption and cost. Therefore, approximate model technology is used to build a model 
that meets the accuracy requirements and has a low computational cost to establish the mapping relationship 
between variables and responses. Subsequent optimization work based on this model will greatly reduce the 
optimization cost and speed up the optimization process.

Commonly used approximate models include the response surface model, multiple adaptive regression spline 
model, kriging model, support vector regression model (SVR), and radial basis function model (RBF). Process 
parameter optimization of the diesel engine block hole system is a small sample problem. In the case of limited 
sample size, SVR and RBF can obtain better fitting results. Compared with SVR, RBF has a more prominent fit-
ting effect on nonlinear problems17, so the RBF method is chosen to establish an approximate model of cylinder 
hole verticality.

The basis of the RBF is the function approximation theory, which is a feedforward neural network with strong 
global optimization capabilities18. The RBF is usually composed of an input layer, a hidden radial basis layer, and 
an output linear layer, the network structure of the RBF is shown in Fig. 3. The radial basis function is radially 
symmetric, and the Gaussian function is commonly used:

Table 1.   Parameter range of design variables.

Design variable vc(m/min) ap(mm) f(mm/r)

Xi
(L) 99.852 0.3 0.4

Xi
(U) 166.42 0.5 0.6

Figure 2.   Three-dimensional distribution diagram of sample points of design variables.
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Among them, x is the m-dimensional input vector; ci is the center of the i-th basis function; σi is the variance 
of the i-th basis function; p is the number of perceptual units.

The input layer of the RBF network realizes the nonlinear mapping from x → Gi(x), and the output layer 
realizes the linear mapping from Gi(x) → yR, namely:

(1)Gi(x) = exp(−
||x − ci||

2

2σ 2
i

), i = 1, 2, . . . , p

Table 2.   Sampling test results of Latin hypercube test.

Sample number vc(m/ min) ap(mm) f(mm/r) ⊥(mm)

1 156.546 0.4 0.46 0.0503

2 139.838 0.45 0.51 0.0507

3 143.288 0.35 0.41 0.0495

4 122.052 0.42 0.45 0.0469

5 141.231 0.41 0.51 0.0457

6 118.453 0.46 0.57 0.0531

7 109.77 0.37 0.52 0.0439

8 114.028 0.44 0.48 0.0501

9 150.647 0.45 0.54 0.0521

10 130.538 0.35 0.44 0.048

11 116.903 0.38 0.48 0.047

12 146.499 0.39 0.53 0.0508

13 123.032 0.47 0.4 0.0519

14 134.297 0.41 0.49 0.0445

15 166.325 0.34 0.59 0.0535

16 135.912 0.36 0.46 0.0509

17 127.579 0.32 0.53 0.0477

18 137.862 0.42 0.46 0.0478

19 125.124 0.43 0.56 0.0492

20 131.848 0.5 0.49 0.0533

21 154.121 0.38 0.55 0.0478

22 144.647 0.3 0.52 0.0504

23 100.885 0.4 0.48 0.0492

24 133.862 0.37 0.5 0.0492

25 127.921 0.42 0.55 0.0485

Figure 3.   RBF neural network structure diagram.
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Among them, q is the number of output nodes, wki is the adjustment weight between the k-th output layer 
and the i-th hidden layer nerve.

RBF model prediction results and analysis.  The RBF model is trained through the cylinder hole 
machining test result data, and the test data with sample number 16–25 in Table 2 is used as the test sample to 
verify the prediction accuracy of the trained RBF model. The comparison between the actual value of the cylin-
der hole verticality in the test set and the cylinder hole verticality predicted by the trained RBF model is shown 
in Table 3.

R-squared is used to judge the fit of the model, the mathematical model is expressed as follows:

Among them, m is the number of Validation sample points, yn is the actual value of the sample points,ŷn is 
the predicted value calculated by the approximate model, and y is the average value of the test sample point set. 
When the R2 value is closer to 1, the accuracy of the approximate model is higher.

The root mean square error is used to measure the deviation between the predicted value and the actual 
value. The expression is as follows:

Among them, m is the number of test sample points, yn is the actual value of the test sample points, and ŷn 
is the predicted value of the approximate model. The closer the RMSE value is to 0, the smaller the deviation 
between the predicted value and the actual value.

After calculation, the R-square value corresponding to the test sample is 0.904513, and the RMSE value is 
0.00005. The established RBF model is relatively accurate and meets the accuracy requirements of the approxi-
mate model.

Establishment of constraints
The residual stress will affect the fatigue strength and life of the diesel engine block, and its release process will 
deform the cylinder hole of the block, thereby affecting the accuracy and stability of the block. In order to ensure 
the accuracy of the diesel engine block hole system, the surface residual stress of the diesel engine block after 
machining is required to be less than a certain value, and the probability that the residual stress after machining 
is less than a given value is used as the reliability index.

The Third Wave AdvantEdge FEM 7.1 software19 is used to simulate the residual stress after the cylinder hole 
boring. Figure 4 is the curve of the residual stress along with the depth distance after the cylinder hole boring 
output by the Third Wave AdvantEdge FEM 7.1 software post-processing module, when the cutting speed is 
166.46r/min, the cutting depth is 0.4 mm, and the feed rate is 0.4 mm/r. According to Fig. 4 output by the Third 
Wave AdvantEdge FEM 7.1, it can be seen that the residual stress on the surface of the workpiece is mainly tensile 
stress, and the residual stress in the inner layer of the workpiece is mainly compressive stress; the surface residual 

(2)yR =

p∑

i=1

wkiGi(x), k = 1, 2, · · · , q

(3)R2 = 1−

m∑
n=1

(yn − ŷn)
2

m∑
n=1

(yn − y)2

(4)
RMSE =

√√√√√
m∑

n=1

(yn − ŷn)2

m

Table 3.   Comparison of the actual value of cylinder hole verticality and RBF predictive value.

Sample number

Input (process parameters) Output (Verticality of cylinder hole)

vc (m/ min) ap (mm) F (mm/r) Actual value Predictive value Relative error

16 135.912 0.36 0.46 0.0509 0.04937 3.01%

17 127.579 0.32 0.53 0.0477 0.047751 0.11%

18 137.862 0.42 0.46 0.0478 0.0473 1.05%

19 125.124 0.43 0.56 0.0492 0.04913 0.14%

20 131.848 0.5 0.49 0.0533 0.053349 0.09%

21 154.121 0.38 0.55 0.0478 0.04773 0.15%

22 144.647 0.3 0.52 0.0504 0.05043 0.06%

23 100.885 0.4 0.48 0.0492 0.049367 0.34%

24 133.862 0.37 0.5 0.0492 0.04887 0.67%

25 127.921 0.42 0.55 0.0485 0.04847 0.06%
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stress is the largest, and the residual tensile stress decreases rapidly along with the depth of the layer. The residual 
stress transitions to compressive stress at a depth of about 0.3 mm. The compressive residual stress reaches its 
maximum at a depth of 0.5 mm, and then the residual stress slowly tends to 0.

Cutting speed, cutting depth, and feed rate are taken as independent variables, and the residual stress on the 
cylinder hole surface obtained by the Third Wave AdvantEdge FEM 7.1 software simulation is the response value. 
According to the central composite response surface method test plan, 17 sets of residual stress simulation tests 
by the Third Wave AdvantEdge FEM 7.1 are carried out. The test results are shown in Table 4.

Based on the test data, the response surface fitting model is established as shown in (5).

According to the response surface model, the contour plot between the process parameters is drawn, as 
shown in Fig. 5.

It can be seen from the contour diagram that the cutting speed has the greatest influence on the residual stress 
on the surface of the cylinder hole, followed by the cutting depth and the feed rate, and the larger residual stress 
is concentrated at the cutting speed of 130r/min-155r/min.

(5)

σR = −308+ 32.72× vc − 4100× ap − 3200× f−

0.12× v2c + 3300× a2p + 4200× f 2 + 12.84× vc × ap−

6.01× vc × f − 250× ap × f

Figure 4.   The curve of residual stress with depth distance output by the Third Wave AdvantEdge FEM 7.1.

Table 4.   Simulation test results of residual stress obtained by the Third Wave AdvantEdge FEM 7.1.

Test number

Coding variable Actual variable Response

X1 X2 X3 vc ap f σR (Mpa)

1 − 1 1 0 99.852 0.5 0.5 270

2 1 − 1 0 166.46 0.3 0.5 466

3 0 1 − 1 133.156 0.5 0.4 600

4 0 1 1 133.156 0.5 0.6 642

5 − 1 − 1 0 99.852 0.3 0.5 390

6 0 − 1 1 133.156 0.3 0.6 575

7 − 1 0 − 1 99.852 0.4 0.4 270

8 0 0 0 133.156 0.4 0.5 510

9 1 0 − 1 166.46 0.4 0.4 565

10 0 − 1 − 1 133.156 0.3 0.4 523

11 0 0 0 133.156 0.4 0.5 510

12 − 1 0 1 99.852 0.4 0.6 315

13 1 0 1 166.46 0.4 0.6 530

14 0 0 0 133.156 0.4 0.5 510

15 0 0 0 133.156 0.4 0.5 510

16 1 1 0 166.46 0.5 0.5 517

17 0 0 0 133.156 0.4 0.5 510
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It is assumed that the process parameters meet the normal distribution, and the mean and standard devia-
tion are set as shown in Table 5, N (μ, σ) represents a normal distribution with the mean value of μ and standard 
deviation of σ.

The Monte Carlo method (MCM) is a numerical calculation method that generates random numbers based 
on the probability distribution of the input and realizes distribution propagation by re-sampling them.

Based on the established response surface model, MCM is used to perform 10,000 calculations to count 
the number of unsatisfactory residual stresses on the surface, so that the process reliability of the cylinder hole 
can be obtained. The allowable value of surface residual stress is set to 550Mpa. The standard deviations of the 
three variables remain unchanged and change the variable mean to calculate the corresponding reliability. The 
fluctuation curves of the reliability concerning the three variables are shown in Fig. 6.

According to the fluctuation curve, it can be seen that the influence of cutting speed on block reliability is 
not significant, but the cutting depth and feed rate have a great influence on block reliability, and their fluctua-
tion curves are similar. It is speculated that both cutting depth and feed rate are related to the material cutting 
amount. When the cutting depth and feed rate are small, the chip takes away a lot of heat, which reduces the 
residual stress of the cylinder hole, With the increase of cutting speed and feed rate, the heat carried by the chip 
is limited, and the cutting thermal effect is enhanced, which leads to the continuous increase of residual stress 
on the surface of the cylinder hole the variable interval with relatively stable reliability fluctuation is selected as 
the reliability stability region constraint of the diesel engine block cylinder hole machining, as shown in Table 6, 
where XR

(L) and XR
(U) respectively represent the reliability stability region interval the lower limit and upper limit.

a p

vc

σR

(a) 2D contour plots (ap, vc and σR) 

σR 

(b) 2D contour plots (ap, f and σR ) 

σR

(c) 2D contour plots (vc, f and σR ) 

Figure 5.   2D contour plots of the process parameters.

Table 5.   The distribution parameters of machining parameters.

Distribution vc ap f

N (μ, σ) N (99.852,10) N (0.4,0.01) N (0.5,0.02)
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Figure 6.   Reliability fluctuation curve.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21983  | https://doi.org/10.1038/s41598-021-01567-x

www.nature.com/scientificreports/

Reliability optimization of process parameters
Process parameters optimization model.  The main research in this paper is to minimize the verticality 
of the cylinder bore by optimizing the process parameters. Based on objective function and the reliability stabil-
ity region constraints, an optimization model of the cylinder hole process parameters of the diesel engines block 
can be constructed:

Find vc, ap, f
Min V(vc, ap, f).
99.852 m/min ≤ vc ≤ 124.932 m/min
0.342 mm ≤ ap ≤ 0.402 mm.
0.472 mm/r ≤ f ≤ 0.514 mm/r.
Among them, vc, ap, f are the cutting speed, depth of cut, and feed rate, respectively, and V is the verticality 

of the cylinder hole to the crankshaft hole.

Particle swarm single‑objective optimization algorithm based on hooke‑jeeves algo-
rithm.  Hooke‑Jeeves algorithm description..  Hooke-Jeeves is a direct search method. Its core idea is to find 
out the optimal descent direction of the function by calculating and comparing the value of the function to solve 
the target optimization problem20. The search steps are as follows:

Step1: The initial point x(1) ϵ Rn and initial step size δ is given, acceleration factor α ≥ 1, reduction rate β ϵ (0,1), 
accuracy ε > 0. y(1) = x(1), k = 1, j = 1 are set;

Step2: If f(y(j) + δej) < f(y(j)), then y(j+1) = y(j) + δej, and Step4 is going to be executed; otherwise, Step 3 is going 
to be executed;

Step3: If f(y(j)-δej) < f(y(j)), then y(j+1) = y(j)-δej, and Step4 is going to be executed; otherwise, y(j+1) = y(j), step 4 
is going to be executed;

Step4: If j < n, then j: = j + 1, step 2 is going to be executed; otherwise, Step5 is going to be executed;
Step5: If f(y(n+1)) < f(x(k)), then Step6 is going to be executed; otherwise, Step7 is going to be executed;
Step6: x(k+1) = y(n+1), y(1) = x(k+1) + α(x(k+1)-x(k)), k: = k + 1, and j = 1,then Step2 is going to be executed;
Step7: If δ ≤ ε, the iteration should stop and the point x(k) is get. Otherwise, δ: = βδ, y(1) = x(k), x(k+1) = x(k), 

k: = k + 1, and j = 1, then Step2 is going to be executed.
According to the search step of the Hooke-Jeeves method, it can be seen that the search efficiency is greatly 

affected by the position of the initial point. For different initial points, the optimization accuracy and optimiza-
tion speed will fluctuate greatly. Therefore, in order to ensure that it can efficiently search for the best, we should 
ensure that it has a better initial position.

Improved particle swarm optimization algorithm based on hooke‑jeeves algorithm.  The particle swarm opti-
mization algorithm (PSO) is derived from the study of bird predation behavior. It uses a particle to simulate 
individual birds. Each particle is regarded as a searching individual in the search space. The current position of 
the particle is a candidate solution for the optimization problem. The flight process is the process of searching 
for individuals. Particles have two attributes: speed and position. Speed represents the speed of movement, and 
position represents the direction of movement. The optimal solution searched for by each particle is called the 
individual extreme value. The optimal individual extremum in the particle swarm is the global optimal solution 
to the optimization problem that is sought. The speed and position are constantly updated to iterate, and finally, 
the optimal solution that reaches the termination condition is obtained. The calculation formula for the update 
speed Vid and position Xid is as follows:

where ω is the inertia factor, C1 and C2 are the individual learning factor and the environmental learning factor 
respectively, and their value range is [0,4] generally, rand() is the random number on [0,1], Pid represents the 
d-th dimension of the individual extremum of the i-th variable and Pgd represents the d-th dimension of the 
global optimal solution.

The flying speed of the particles in the particle swarm optimization algorithm affects the global convergence 
of the algorithm. A larger speed can ensure that the particles quickly fly to the vicinity of the optimal solution, 
but they will fall into the dilemma of local optimality21. Therefore, this paper combines the Hooke-Jeeves algo-
rithm with the particle swarm optimization algorithm. First, the particle swarm optimization algorithm is used 
to locate the area where the target extremum is located in the design space, and then the Hooke-Jeeves algorithm 
is used to accurately search the area, and finally, the best design result is obtained. The steps are shown in Fig. 7.

(6)Vid = ωVid + C1rand()(Pid − Xid)+ C2rand()(Pgd − Xid)

(7)Xid = Xid + Vid

Table 6.   Reliability stability region.

Design variable vc(m/min) ap(mm) f(mm/r)

XR
(L) 99.852 0.342 0.472

XR
(U) 124.932 0.402 0.514
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Algorithm parameter setting.  In order to prove the superiority of the improved particle swarm opti-
mization algorithm based on the Hooke-Jeeves algorithm (HJ-PSO) in solving parameter optimization prob-
lems, the algorithm is compared with the particle swarm algorithm. The particle swarm optimization algo-
rithm parameters are set as: inertia factor ω = 0.9, individual learning factor, and environmental learning factor 
C1 = C2 = 0.9, the number of max iterations is 20, the number of particles is 10, and the maximum flight speed 
is 100. The parameters of HJ-PSO are set as follows: initial step size δ = 0.5, reduction rate β = 0.5, acceleration 
factor α = 1, accuracy ε = 10–6, other parameters are the same as the particle swarm algorithm, and its parameter 
settings are shown in Table 7.

Figure 7.   Optimization step diagram of improved particle swarm algorithm based on Hooke-Jeeves algorithm.

Table 7.   HJ− PSO algorithm parameters.

Maximum iterations of PSO 10

Maximum iterations of Hooke–Jeeves 10

Inertia factor ω 0.9

Individual learning factor C1 0.9

Environmental learning factor C2 0.9

Number of particles M 10

Maximum flight speed Vmax 100

Initial step δ 0.5

Reduction rate β 0.5

Acceleration factor α 1

Accuracy ε 10–6
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Analysis of optimization results.  PSO and HJ-PSO is used to solve the optimization model respectively. 
All the algorithms run independently 20 times, and the average value and variance of the objective function 
optimization results of each algorithm are shown in Table 8.

According to the mean comparison of the optimization results, it can be seen that under the same number 
of iterations, HJ-PSO gets better optimization results than PSO algorithm when searching the global optimal 
value. In addition, the comparison of standard deviation shows that the stability of HJ-PSO is significantly bet-
ter than that of PSO.

The number of iterations is set to 100, and HJ-PSO is used to solve the optimal combination of process 
parameters for the verticality machining of the cylinder hole. The solving process is shown in Fig. 8.

As can be seen from the figure that the HJ-PSO algorithm converges when the number of iterations reaches 
about 35, and the corresponding objective function value is 0.04294.

Verification test.  The optimal combination of process parameters can be obtained by improving the particle 
swarm algorithm as follows: cutting speed is 99.852 m/min, cutting depth is 0.352 mm, and feed is 0.508 mm/r. 
The obtained combination of process parameters is used to perform a verification test. The verticality of the 
cylinder hole measured by the verticality measuring instrument is 0.0436, which is less than the minimum ver-
ticality in the historical data. The cylinder hole of the workpiece is shown in Fig. 9. However, the error between 
the optimization result value and true value is 1.53%, and it is considered as the influence of process system error.

Conclusions
In this paper, based on the reliability theory, the improved particle swarm optimization algorithm is used to 
optimize the processing parameters of the cylinder hole of the diesel engine block. The optimal combination of 
process parameters obtained based on this method can guide the process engineer to improve the process of the 
diesel engine block or other similar products. As follows are the important conclusions in this paper.

(1)	 The cutting speed has the greatest influence on the surface residual stress of the cylinder hole, followed by 
the cutting depth and feed rate.

(2)	 The reliability of the cylinder hole machining process fluctuates greatly with the change of cutting depth 
and feed rate, less with the change of cutting speed.

(3)	 Compared with the general particle swarm optimization algorithm, the efficiency and results of the 
improved particle swarm optimization algorithm are improved.

(4)	 Through the improved particle swarm optimization algorithm based on the Hooke-Jeeves algorithm, the 
optimal combination of processing parameters of cylinder hole is obtained as follows: the cutting speed is 
99.852 m/min, the cutting depth is 0.352 mm, the feed rate is 0.508 mm/r. Based on the optimal combina-
tion of processing parameters of the cylinder hole, the actual processing of the block can be guided.

Table 8.   Comparison of optimization results.

PSO HJ-PSO

Mean value 0.04336 0.04302

Standard deviation 5.262E-4 4.956E-5

Figure 8.   Solving process of HJ-PSO.
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Compared with Reference15, which only evaluates the process reliability of diesel engine block, this paper not 
only expounds on the evaluation of process reliability of diesel engine block, but also obtains the optimal combi-
nation of process parameters that meet the requirements of process reliability through optimization algorithm, 
which can guide the production of diesel engine block more effectively. However, the process of the diesel engine 
block is complex, so the study in this paper only focuses on the process parameters of the process. In the future, 
the quality transfer relationship between the multiple processes of the block can be studied, and more accurate 
optimization results can be obtained.
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