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Adaptive neurons compute 
confidence in a decision network
Luozheng Li1,3 & DaHui Wang1,2*

Humans and many animals have the ability to assess the confidence of their decisions. However, 
little is known about the underlying neural substrate and mechanism. In this study we propose a 
computational model consisting of a group of ’confidence neurons’ with adaptation, which are able 
to assess the confidence of decisions by detecting the slope of ramping activities of decision neurons. 
The simulated activities of ’confidence neurons’ in our simple model capture the typical features of 
confidence observed in humans and animals experiments. Our results indicate that confidence could 
be online formed along with the decision formation, and the adaptation properties could be used to 
monitor the formation of confidence during the decision making.

In our daily lives, we often estimate the confidence of our perceptions and decisions. Confidence, a kind of 
metacognitive process, not only reflects the subjective assessment of our  choice1,2, but also implies monitoring 
of our own cognitive  process3–5. Neural correlates to the confidence have been revealed by many experiments, 
for examples, neurons in parietal cortex of monkey represented formation of the decisions and the confidence of 
the  decisions6; single neuron in the human medial temporal lobe represented the retrieval  confidence7 and the 
activities of single neuron in the same area were persistently correlated with decision  confidence8; some neurons 
in the orbitofrontal cortex of rats positively tuned confidence  encoding9; the functional magnetic resonance 
imaging signal in the human ventromedial prefrontal cortex reflected both value comparison and confidence in 
the value comparison  process10; an area in the medial prefrontal cortex called the perigenual anterior cingulate 
cortex signaled  confidence11. Besides the positive correlations between the neural activities and confidence, the 
neural activity can be negatively correlated with confidence. For examples, the activation of the right dorsolat-
eral prefrontal cortex in humans was greater for low-confidence than that for high-confidence12; the firing rates 
of some single neuron or population activities in the orbitofrontal cortex of rats are positively correlated with 
 uncertainty2,5, where uncertainty can be mathematically thought of as the opposite of confidence, i.e. the larger 
uncertainty implies lower confidence, and vice versa. Although many neural correlates have been found, it is still 
unknown how the confidence forms on the neural circuit level during the decision process.

Theoretical models also have also tried to explore the computation of confidence in the brain. One type of 
models think of neural responses as the probability distributions and of confidence as quantifiable by evaluat-
ing the posterior  probability13,14. These models capture statistical characteristics of decision confidence but lack 
neurobiological interpretability. Another type of models define the confidence as the absolute difference between 
the firing rates of neuron population selective to the decision options at decision time, where the firing rates are 
produced either by race  model10 or dynamic attractor  model15. The race model based confidence explains the 
activation of the human ventromedial prefrontal  cortex10 and the dynamic attractor model based confidence 
successfully reproduce the observations in monkey  experiments6 and human confidence in a sequence of per-
ceptual  decisions16 . However, how the neural circuit calculates the absolute difference between neuron pools, 
i.e., how the confidence forms during the decision, is unclear. The third type of models assume that decisions are 
made by many loosely coupled modules, each of which represents a stochastic sample of the sensory evidence 
integral, and the confidence is encoded in the dispersion between  modules17. But, these models do not explain 
how neural system reads out the dispersion between modules. The fourth type of models use one population of 
neurons to monitor the activities of decision neurons and produce the uncertainty  signal18–20. While this type of 
models successfully explains the electrophysiological recording data from the orbitalfrontal cortex of  rats2 and 
the phenomena of change-of  mind21, these models did not directly explain the formation of confidence since 
uncertainty can be thought of as the opposite of confidence.

In the present study, we attempt to directly explain the formation of confidence during the decision process 
based on ann attractor model of decision making. The model consists of a classical decision  module22,23 and 
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a confidence module. The confidence module receives the inputs from decision neurons. The activities of the 
confidence module can represent the confidence observed in experiments. In order for the confidence module to 
calculate the confidence, we introduced the spike frequency adaptation to the confidence neurons. Mathemati-
cally, the adaptation enables the neurons to detect the slope of ramping activities of decision  circuits24. Thus, 
confidence computation and decision making can be implemented in one simple neural circuit.

Results
Model structure. The model consists of two modules: a classical decision circuit and a confidence module 
which includes recurrent connected neurons(as shown in Fig. 1). The decision module has been well discussed 
in previous studies on two-alternative choice  tasks25–27. It consists of two groups of competing neurons (A and 
B), and both groups receive feedforward inputs from upstream neurons and feedback currents from the con-
fidence neurons. The confidence module (C) consists of one group of neurons whose activities reflect the con-
fidence of decisions. Neurons in the confidence module are innervated by both neural groups in the decision 
circuit (A and B) and send feedback projections to the decision module. The confidence evaluates the decisions 
process regardless of the winner among the options and each population of neurons in the decision module has 
the same influence on the confidence module. Thus, each decision neuron projects to the confidence neuron 
with the same synaptic conductance.

Ramping activities in the decision module. We use our model to simulate a simple random dots 
motion task as described in previous decision  models22,23. In the decision module, firing rates of neurons dis-
played the ramping activity during the stimulus presentation before the decision was made (Fig. 2), which is 
consistent with previous  electrophysiological28 and theoretical  studies22,23. The larger value of c stands for the 
stronger evidence or the easier task, leading to steeper ramping activity (as shown in Fig. 2) and shorter deci-
sion time. At the same time, the larger c and shorter decision time imply an easier task where the subject should 

Figure 1.  Model structure. The model consists of a decision layer and a confidence neuron pool. The decision 
layer follows the classical decision  circuit22,23,27. The adaptive confidence neurons receive the feedforward input 
from two competing neuron pools in the decision layer and send the feedback projections to the decision layer.

Figure 2.  Ramping activities of the neurons in the decision layer during decision making. The dashed line 
indicates the decision threshold.
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show higher confidence in the experiment. Thus, the slope of ramping activities can be thought of as a signal 
of confidence in the  decision1. If the downstream neural circuit can detect the slope of ramping activities, the 
confidence signal can be measured.

Activities of confidence neurons. In our model, the confidence neurons are designed to detect the slope 
of ramping activities of decision neurons through an adaptation mechanism. The neurons receive excitatory 
feedforward inputs from the decision layer, as well as inhibitory currents caused by spike frequency adaptation. 
Based on biological evidence, adaptive currents will increase with the firing rates of confidence neurons with a 
time  delay29 (see Eq. 9). Thus, the activities of confidence neurons first increase along with the ramping activities 
of the decision layer and then elicit inhibitions caused by the adaptive current. When the stimulus is easily to be 
discriminated, ramping activities in decision layer have a large slope (see Fig. 2). Because of adaptive current’s 
large time constant ( τa in Eq. 9), the inhibitory adaptive currents(a(t)) cannot keep pace with the increasing 
inputs caused by the decision neurons’ rapid ramping activities ( rin(t) ). As a result, with the integration of time 
(see Eq. 7), the confidence neurons receive weak inhibitory current caused by adaptation and reach a higher fir-
ing rate at the decision moment. In contrast, when a difficult task is given, the inhibitory adaptive current (a(t)) 
can catch up with the inputs from the decision neurons’ ramping up activities ( rin(t) ), which leads to a larger 
inhibitory adaptive current and a lower firing rate at the decision moment.

In the simulations, we defined the decision moment following a previous study’s  convention23: once the ramp-
ing activity of the decision circuit exceeds the decision threshold (25 Hz), the network makes a choice. Figure 3a 
shows exemplary trials of the activities of confidence neurons. The firing rates of confidence neurons ramp up to 
different levels based on the tasks’ difficulty levels (c). Steeper ramping activities of the decision neuron (larger c) 
correspond to a higher firing rate of the confidence neuron at the decision moment. For clarity, we also aligned 
the time of confidence neurons’ firing rates to the decision moment (Fig. 3b ). With more precise time scales, 
we can clearly see that the activities of confidence neurons are negatively correlated with the task difficulty at 
the decision time (Fig. 3b).

Typical features of reports by confidence neurons. Activities of confidence neurons may be affected 
by noise in a single trial, so it is necessary to analyze their statistical behaviors. In the simulations, the confidence 
report or neural representation of confidence, rc, is represented by the mean firing rates of confidence neurons 
in the interval of 10ms just before the decision moment. Simulation results reveal that the statistical behaviors 
of rc (Fig. 4) is consistent with the typical features of the general confidence as reported in human and animal 
 experiments1,5,9,30,31 . Firstly, the decision accuracy is positively correlated with the confidence level (based on 
indirect measurement or direct report in experiment) (Fig. 4a). Secondly, by splitting the trials into correct and 
incorrect trials, it can be found that the confidence level of trials with correct decisions will increase as the task 
difficulty decreases, and the opposite results is obtained on the error trials (Fig. 4b).Thirdly, the psychometric 
curve of trials which report high confidence shifts upward (Fig. 4c). In brief, the activities of confidence neurons 
in our circuit model behave like the general confidence observed in experiments, suggesting that the activities of 
confidence neurons in our model could represent and compute the confidence in the decision.

Sensitivity of adaptation on the coding of confidence. Adaptation of confidence neurons plays a key 
role in the confidence computation during the decision process. In our model, neural adaptation is described by 
two parameters (in Eq. 9), A1 , reflecting the strength of the adaptation caused by spikes, and A0 indicating the 
baseline level of adaptation in the resting state. Since different adaptation strength causes different firing rates of 
the confidence neurons at random level ( %c = 0 ), we use ’relative rc’ ( rc − rc(%c = 0) ) instead of rc to denote 
the changes of slopes. To investigate the influence of adaptation parameters on the confidence coding, we cal-
culate ’relative rc’ over the different coherence levels given varied A1 and A0 . In Fig. 5a, we plot the curves with 
different A1 and fixed A0 , and similar curves are shown in in Fig. 5b for different A0 and fixed A1.

(a) Neural activities aligned with the stimulus onset. The
vertical dashed lines indicate the decision moments.

(b) Neural activities aligned with the decision moment.
The horizontal axis shows the time to the decision
moment.

Figure 3.  Activities of confidence neurons during decision making.
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The curves’ slope in Fig. 5a and b reflect the coding capability of confidence neurons. A slope of zero means 
the confidence neurons have the same firing rates given stimuli with different coherence levels, which implies that 
confidence neurons cannot code the decision confidence. Larger slopes indicate larger difference in confidence 
neurons’ firing rates between stimuli with different coherence levels, which means that confidence neurons are 
more sensitive to the changes in confidence. Figure 5c shows the dependence of the slope on parameters A1 
and A0 , where a horizontal dashed line is shown in Fig. 5a and vertical lines are shown in Fig. 5b. These results 

Figure 4.  Simulated confidence. The reported confidence (rc) by confidence neuron is consistent with the 
reported confidence in human experiments. Error bars show the standard error for 10 sessions. (a). The correct 
ratio as an increasing function of confidence. (b). The confidence increases with the strength of evidence for the 
trials whose reports are correct but decreases with the strength of evidence for trials whose reports are incorrect. 
(c). The ratio of correct report of the trials with higher confidence is higher than that with lower confidence 
given the same evidence.

(a) Relative rC with varied A1 (b) Relative rC with varied A0

(c) Coding capacity over adaptation parameters

Figure 5.  The influence of adaptation parameters on confidence representation. (a) The effects of A1; (b) The 
effects of A0; (c) The dependence of coding capacity on adaptation parameters.The error bars in (a) and (b) 
show the standard error of 10 sessions. Different colors in (c) code the average slope of rc.
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indicate that the adaptation modulation is statistically robust, because that a large range of parameters values 
(yellow areas in Fig. 5c) support the confidence coding.

Discussion
In this study, we propose a computational model in which the decision confidence can be computed and rep-
resented in a simple neural circuit. We suggest that the representation of confidence can be achieved by neural 
adaptation which provides common negative feedbacks in the neural system. Based on the previous observations 
in  experiments2,5 and theoretical models of decision  making22,23,27, we designed the confidence neurons as one 
neural group whose activities reflect the decisions’ confidence level of the d. Our simulation results confirm that 
the activities of confidence neurons successfully capture the general features of confidence consistently docu-
mented in animals and human behavioral  experiments1,5,30,31. At last, we investigated the influence of adaptation 
parameters on the confidence coding, and demonstrated that the adaptation modulation is statistically robust.

For this study, the following points are worth noting. Firstly, we used one specific group of neurons to com-
pute and represent the confidence during the decision making, which is supported by a number of studies. One 
recent experiment identified that single neuron in the orbitofrontal cortex of rats can encode general decision 
 confidence9. Some neurons in the orbitofrontal cortex of rats reflect uncertainty during decision  making2,5. A 
single neuron in human medial temporal lobe was found signaling the confidence during decision  making7,8. 
Since the confidence was computed by one specific group of neurons, the confidence formation should be 
thought as a secondary neural processing based on the activities of decision neurons and the decisions process. 
Thus, the confidence in our model is in our model is a type of second-order cognition in the perspective of the 
 neurophysiology32. However, in our model, confidence is formed simultaneously formed along with the deci-
sion making, so the post-decision information cannot be considered in a retrospective  way33 and the empirical 
dissociations of error detections are not observed in the model.

Secondly, results of our model are consistent with the experimental observations that choice accuracy and 
confidence reporting are separated  processes5,6,34,suggesting that confidence computation may not be accom-
plished in the decision layer. At the same time, our model is different from the notion that neural system may 
encode the confidence in the form of reaction  time5. Actually, experiments showed that the reaction time cannot 
fully account for confidence  reports1. In our model, the decision confidence was computed in neural circuits 
without extra decoding strategy, which is simpler but biologically plausible.

Thirdly, confidence is negatively related with uncertainty, i.e., higher uncertainty implies lower confident, 
and vice versa. The underling neural mechanism of uncertainty was investigated using a computational model 
consisting of one decision module and one uncertainty monitoring  module18–20. These models not only explain 
the formation of uncertainty but also predict the change-of-mind during the decision  making18 and even after 
the  decision19. The key mechanism of the uncertainty model is that the uncertain neuron pool was inhibited 
by the decision module via a group of inhibitory neurons and received topdown tonic excitation from another 
cortical  area18,19. Although uncertainty was mathematically thought of as the opposite of confidence, the two 
metrics cannot be considered equivalent and the uncertainty cannot be translated into confidence through a 
simple action mapping. Actually, confidence has its own neural correlates and uncertainty has its own neural 
correlates, too. For example, single neuron in human medial temporal lobe positively signals the  confidence7,8, 
and the perigenual anterior cingulate cortex encodes the confidence, while the activities of some neurons in the 
orbitofrontal cortex of rats were positively correlated with uncertainty but not with  confidence2,5. Thus, our brain 
may have complementary neural substrate to monitor the confidence and uncertainty. Lower confidence and 
higher uncertainty may elicit a change-of-mind, while higher confidence and lower uncertainty will result in per-
sistence in the current opinion or action. Besides confidence and uncertainty, our brain has other complementary 
neural circuits to implement the complementary cognitive functions. For examples, unexpected rewards/gains 
and unexpected punishments/losses are respectively represented by phasic activity of dopaminergic  neurons35 
and the lateral habenular  neurons36; concurrent multisensory integration and segregation can be implemented by 
the complementary congruent and opposite  neurons37. In brief, the confidence and uncertainty may have distinct 
but interacting neural circuits and the future computational research should combine these two complementary 
circuits into one model and account for phenomena in confidence and uncertainty.

Fourthly, in the present model, adaptation is spike frequency dependent, which is an adaptation at the single-
neuron level. However, adaptation can happen at the synaptic level, such as short-term depression for instance. 
Figure 6shows the activities of confidence neurons where the synapses from decision module to confidence 
module are short-term depressed. The activities of confidence neurons are negatively correlated with task dif-
ficulty at the decision time, which is similar to the findings presented in Fig. 3. Thus, different types of adaptation 
may have similar results.

Fifthly, one may think that confidence could be represented by the summation of firing rates of the decision 
module ( rA + rB ) or by total inputs into the decision module ( IA + IB + Inoise ), since the confidence neurons in 
our model receive excitatory inputs from two groups of neurons of decision module. However, we found that total 
firing rates of the decision module ( rA + rB ) and total inputs into the decision module ( IA + IB + Inoise ) cannot 
capture the typical feature of confidence reported in human and animal experiments (Fig. 7a,b), suggesting that 
confidence computation is a non-trivial process. Furthermore, we found that the absolute difference in firing 
rates of decision neurons (|rA − rB|) at the decision time can capture the typical feature of confidence (Fig. 7c) as 
reported in previous  studies10,15,but the sensitivity is not as good as that of our model due to the smaller dynamic 
range of the firing rate of the loser population at the decision moment.

At last, while it is beneficial that our model is simple, it shouldn’t be overly simple. Our model has some limita-
tions The model’s key mechanism is the detection of the slope of decision neurons’ ramping activity. If the ramp-
ing activities of decision neurons disappeared or were disturbed by some factors, the proposed mechanism may 
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become invalid. Moreover, confidence was formed simultaneously along with the decision making, additional 
elements such as uncertainty implicated circuit should be introduced into the model to simulate the complex 
decision tasks and reveal the underlying mechanism of change-of-mind and the post-decision evaluations of 
the decisions.

Methods
Dynamics of the decision circuit. The spiking neuron  model22and reduced mean-field  model23 were pro-
posed in the previous theoretical studies to explain the mechanisms underlying binary decisions. The spiking 
neuron model is more biological while the mean-filed model is concise and convenient for theoretical analysis. 
Both types of model successfully replicated the majority of the psychophysical and physiological results in the 
monkey  experiments23,27. In this study, we adopt the mean-field model to describe the neural dynamics in the 
decision circuit. As described in previous  work22,23,27, the dynamics of neurons in the decision module can be 
described by the slow dynamics of N-methyl-D-aspartic acid(NMDA) receptors:

where Si is the gating variable of NMDA, i is A or B, standing for the group label. τNMDA is the decay time constant 
of NMDA. � is a constant that controls the strength of the gain of Si caused by firing rates. ri represents the firing 
rates of the two neural population. The dynamics of ri are given by:

where φ(x) is the input-output function of the single neuron, describing the relation between synaptic input 
current and neural firing rate. Isyn,i represents the synaptic currents of the neural group i(A or B). Jii and Jij are 
the strength of recurrent connections and cross inhibition, respectively. I0 is the background input without bias, 

(1)
dSi

dt
=−

Si

τNMDA
+ (1− Si)γ ri ,

(2)ri =φ(Isyn,i),

(3)Isyn,i =JiiSi − JijSj + I0 + Iext,i + JfcrC + Inoise,i ,

(a) Firing rates of confidence neurons aligned with the
stimulus onset. The vertical dashed lines indicate the
decision moment.

(b) Firing rates of confidence neurons aligned with the
decision moment.

Figure 6.  Activities of confidence neurons during decision making given synaptic short-term depression.

(a) Total firing rates in decision layer as
confidence representations

(b) Total external inputs to decision module
as confidence representations

(c) The absolute difference between the firing
rates of decision neurons as confidence
representations

Figure 7.  Performance of confidence representation variants.
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while Ii is the stimulus to the population i with varied strength. Jfc is the synaptic strength of the feedback con-
nections from the confidence neurons(C). Inoise,i is a noise term.

As in the previous  studies23, the function φ(x) is chosen as:

where cE is the gain factor, Ith is the threshold current, and gE is a noise factor determining the nonlinearity of 
the function.

Dynamics of confidence neurons. We considered a group of neurons that receive inputs from the deci-
sion circuit. The group is named ’confidence neurons’ since we can read out the confidence of decision according 
to its activities. The dynamics of the confidence neurons are similar to neurons in the decision module, except 
for the adaptation currents,

where rC is the firing rate of the confidence neuron, and τr the time constant of the firing rate, usually 2− 5ms . 
φC describes the input-output function of the confidence neurons, which is simplified as:

 Isyn,C is the synaptic currents, and SC is the gating variable of NMDA. JC denotes the strength of the recurrent 
connection between confidence neurons. r

in
= r

A
+ r

B
 , indicates the inputs from the decision layer. Jdc is the 

connection strength from the decision layer to the confidence neurons. Adaptation currents are denoted by a 
and controlled by the constant Ja.

Adaptation is very common in the nervous system. Previous studies revealed that many cellular mechanisms 
can contribute to the neural adaptation. These mechanisms can be divided into two  classes38,39: the spike-triggered 
mechanisms, e.g., the calcium-activated potassium current, and the subthreshold voltage-dependent mecha-
nisms, e.g., the voltage-gated potassium current. Here we model adaptation currents based on these two general 
mechanisms and the adaptation current of the confidence neuron is given by:

where τa is the time constant of adaptation and reflects the slow dynamics of calcium currents. Parameter A1 
denotes the strength of adaptation caused by spikes, while A0 is the strength of subthreshold adaptation.

Short‑term depression as adaptation. To demonstrate that adaptation is a general mechanism for con-
fidence computation, we used synaptic short-term depression (STD) as an alternative for the spike frequency 
adaptation. The dynamics of confidence neurons can be rewritten as:

where x is the normalized depression variable, denoting the fraction of resources that remain available after 
neurotransmitter depletion. The dynamics of x follow previous  studies40,41:

where τd is the time constant of STD. U0 is a strength constant, standing for the fraction of available resources 
ready for use.

Simulation protocol
We simulate the general two-alternative forced choice in a decision-making task with reaction-time style. Many 
similar experiments were performed with  monkeys28 and  humans1.

(4)φ(I) =
cEI − Ith

1− exp[−gE(cEI− Ith)]
,

(5)
drC

dt
=−

rC

τr
+ φC(Isyn,C),

(6)
dSC

dt
=

−SC

τNMDA
+ γ (1− SC)rC ,

(7)Isyn,C =JCSC + Jdcrin + I0c − Jaa+ Inoise,C ,

(8)φC(I) = max(cEI− Ith,C, 0.5),

(9)
da

dt
=−

a

τa
+ A1rC + A0,

(10)
drC

dt
=−

rC

τr
+ φC(Isyn,C),

(11)
dSC

dt
=

−SC

τNMDA
+ γ (1− SC)rC ,

(12)Isyn,C =JCSCx + Jdcrin + I0c + Inoise,C ,

(13)
dx

dt
=
(1− x)

τd
− U0xrC ,
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The second order Runge–Kutta method with an time step of 0.05 ms is applied for numerical simulations. 
Parameters in the simulations are chosen as shown in Table  1 without specification.

In a single trial, we simulate the model for a fixed time period T = 1500ms . The network receives only unbi-
ased background inputs from t = −200ms to 0ms . Biased stimulus is onset at t = 0ms , and the decision circuit 
receives external inputs from t = 0ms to t = 1000ms , The stimulus is set as biased inputs as  in23:

where c stands for the task difficulty, which is the coherence level in a dot-motion  task28, larger c value corre-
sponds to an easier trials. Jext is the average synaptic coupling with AMPAR receptors, µ0 stands for the absolute 
stimulus strength. Decisions are made when the firing rates of the two competing neural groups reaches a 
threshold ( θ = 25Hz).

To compare with the experimental results, we calculated the average value of rC across an interval of 10 ms 
before the decision time as the indicator of confidence. To investigate the statistic features of activities of the 
confidence neurons, we employ 10 sessions, with 500 trials each. For the simulations of each value of the adapta-
tion parameters, we also employ 10 sessions, with 500 trials each.

Received: 25 May 2021; Accepted: 29 October 2021

References
 1. Sanders, J. I., Hangya, B. & Kepecs, A. Signatures of a statistical computation in the human sense of confidence. Neuron 90, 499–506 

(2016).
 2. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision con-

fidence. Nature 455, 227–231 (2008).
 3. Charles, L., Van Opstal, F., Marti, S. & Dehaene, S. Distinct brain mechanisms for conscious versus subliminal error detection. 

Neuroimage 73, 80–94 (2013).
 4. Flavell, J. H. Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. Am. Psychol. 34, 906 (1979).
 5. Lak, A. et al. Orbitofrontal cortex is required for optimal waiting based on decision confidence. Neuron 84, 190–201 (2014).
 6. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 

759–764 (2009).
 7. Rutishauser, U. et al. Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat. Neurosci. 

18, 1041–1050 (2015).
 8. Unruh-Pinheiro, A. et al. Single-neuron correlates of decision confidence in the human medial temporal lobe. Curr. Biol. 30, 

4722–4732 (2020).
 9. Masset, P., Ott, T., Lak, A., Hirokawa, J. & Kepecs, A. Behavior-and modality-general representation of confidence in orbitofrontal 

cortex. Cell 1, 112–126 (2020).

(14)Iext = Jextµ0

(

1±
c

100%

)

,

Table 1.  Parameters used in the model.

Parameter Value

τNMDA , time constant of NMDA receptors 0.1 s

τa , time constant of adaptation 0.25 s

τr , time constant of firing rate 0.002 s

τd , time constant of STD 1 s

� , decision threshold 25 Hz

� , NMDA gain factor per spike 0.641

Jii , synaptic strength within neural groups 0.2609 nA

Jij , synaptic strength between neural groups 0.0497 nA

JC , synaptic strength between confidence neurons 0.15 nA

Jfc , feedback synaptic strength from confidence neurons 0.0002 nA

Jext , external input synaptic strength to decision layer 0.15 nA

Jdc , feedforward synaptic strength 0.015 nA/Hz

Ja , gain of adaptive currents to confidence neuron 0.001

cE , slope of the F-I function of decision neurons 270/(VnC)

Ith , firing threshold of decision neurons 108 Hz

gE , noise factor of decision neurons 0.154 s

Ith,C , threshold of confidence neurons 108 Hz

A1 , strength of adaptation caused by spikes, 0.05 nA

A0 , strength of subthreshold adaptation 0.03 nA Hz

µ0 , average external inputs 30 Hz

U0 , release probabilities in STD 0.0001

I0 , background inputs in decision layer 0.3255 nA

I0c , background inputs in confidence neurons 0.2 nA



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22190  | https://doi.org/10.1038/s41598-021-01523-9

www.nature.com/scientificreports/

 10. De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based choice. Nat. Neurosci. 16, 105 (2013).
 11. Bang, D. & Fleming, S. Distinct encoding of decision confidence in human medial prefrontal cortex. Proc. Natl. Acad. Sci. USA 

115, 6082–6087 (2018).
 12. Fleck, M. S., Daselaar, S. M., Dobbins, I. G. & Cabeza, R. Role of prefrontal and anterior cingulate regions in decision-making 

processes shared by memory and nonmemory tasks. Cereb. Cortex 16, 1623–1630 (2006).
 13. Beck, J. M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).
 14. Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal perception and learning: From behavior to neural representations. 

Trends Cogn. Sci. 14, 119–130 (2010).
 15. Wei, Z. & Wang, X.-J. Confidence estimation as a stochastic process in a neurodynamical system of decision making. J. Neurophysiol. 

114, 99–113 (2015).
 16. Berlemont, K., Martin, J. R., Sackur, J. & Nadal, J. Nonlinear neural network dynamics accounts for human confidence in a sequence 

of perceptual decisions. Sci. Rep. 10, 7940 (2020).
 17. Paz, L., Insabato, A., Zylberberg, A., Deco, G. & Sigman, M. Confidence through consensus: A neural mechanism for uncertainty 

monitoring. Sci. Rep. 6, 21830 (2016).
 18. Atiya, N. A., Rañó, I., Prasad, G. & Wong-Lin, K. A neural circuit model of decision uncertainty and change-of-mind. Nat. Com-

mun. 10, 1–12 (2019).
 19. Atiya, N. A., Huys, Q. J., Dolan, R. J. & Fleming, S. M. Explaining distortions in metacognition with an attractor network model 

of decision uncertainty. PLoS Comput. Biol. 17, e1009201 (2021).
 20. Atiya, N., Huys, Q., Dolan, R. & Fleming, S. Explaining distortions in metacognition with an attractor network model of decision 

uncertainty. PLoS Comput. Biol. 1, e1009201 (2021).
 21. Resulaj, R., Kiani, A., Wolpert, D. M. & Shadlen, M. N. Changes of mind in decision-making. Nature 461, 263–266 (2009).
 22. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).
 23. Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 

(2006).
 24. Wei, W. & Wang, X. Downstream effect of ramping neuronal activity through synapses with short-term plasticity. Neural Comput. 

28, 652–666 (2016).
 25. Cutsuridis, V., Kahramanoglou, I., Smyrnis, N., Evdokimidis, I. & Perantonis, S. A biophysical neural accumulator model of deci-

sion making in an antisaccade task. Adv. Comput. Intell. Learn. Neurocomput. 70, 1390–1402 (2007).
 26. Martí, D., Deco, G., Giudice, P. D. & Mattia, M. Reward-biased probabilistic decision-making: Mean-field predictions and spiking 

simulations. Neurocomputing 69, 1175–1178 (2006).
 27. Wang, X.-J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).
 28. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination 

reaction time task. J. Neurosci. 22, 9475–9489 (2002).
 29. Benda, J. & Herz, A. A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564 (2003).
 30. Lak, A., Nomoto, K., Keramati, M., Sakagami, M. & Kepecs, A. Midbrain dopamine neurons signal belief in choice accuracy during 

a perceptual decision. Curr. Biol. 27, 821–832 (2017).
 31. Navajas, J. et al. The idiosyncratic nature of confidence. Nat. Hum. Behav. 1, 810–818 (2017).
 32. Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. 

Psychol. Rev. 124, 91 (2017).
 33. Siedlecka, M., Paulewicz, B. & Wierzchoń, M. But i was so sure! metacognitive judgments are less accurate given prospectively 

than retrospectively. Front. Psychol. 7, 218 (2016).
 34. Higham, P. A. No special k! a signal detection framework for the strategic regulation of memory accuracy. J. Exp. Psychol. Gen. 

136, 1 (2007).
 35. Schultz, W., Dayan, P. & Montague, P. A neural substrate of prediction and reward. Science 275(5306), 1593–1599 (1997).
 36. Hikosaka, O. The habenula: From stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11(7), 503–13 (2010).
 37. Zhang, W. et al. Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. 

ELife 8, 1–10 (2019).
 38. Benda, J. & Herz, A. V. A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564 (2003).
 39. Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neuro-

physiol. 94, 3637–3642 (2005).
 40. Markram, Y., Wang, Hand & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. 

Acad. Sci. 95, 5323–5328 (1998).
 41. Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).

Acknowledgements
This work was supported by National Key R&D Program of China [grant numbers: 2019YFA0709503] and 
National Natural Science Foundation of China[grant numbers: 3217070175].The authors thank Dr. KongFatt 
Wong-lin for helpful discussion.

Author contributions
D.W. and L.L contributed to the model design. L.L performed the simulations and data fitting. D.W. and L.L 
wrote and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22190  | https://doi.org/10.1038/s41598-021-01523-9

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Adaptive neurons compute confidence in a decision network
	Results
	Model structure. 
	Ramping activities in the decision module. 
	Activities of confidence neurons. 
	Typical features of reports by confidence neurons. 
	Sensitivity of adaptation on the coding of confidence. 

	Discussion
	Methods
	Dynamics of the decision circuit. 
	Dynamics of confidence neurons. 
	Short-term depression as adaptation. 

	Simulation protocol
	References
	Acknowledgements


