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Low triiodothyronine levels 
correlate with high B‑type 
natriuretic peptide levels 
in patients with heart failure
Hirotake Takahashi1,2, Yusuke Kashiwagi1,2*, Tomohisa Nagoshi1, Yoshiro Tanaka1, Yuhei Oi1, 
Haruka Kimura1, Kousuke Minai1 & Michihiro Yoshimura1

Thyroid hormone metabolism can be closely associated with cardiovascular disorders. We examined 
the relationship between low triiodothyronine (T3) levels and heart failure status, including B‑type 
natriuretic peptide (BNP) levels, in 625 patients with cardiovascular disorders who underwent 
cardiac catheterization. A multiple regression analysis revealed that the left ventricular ejection 
fraction (LVEF), hemoglobin (Hb) levels, sex (male), free T3 (FT3) levels, and estimated glomerular 
filtration rate (eGFR) were significantly negatively associated with the log BNP value, while age was 
significantly positively associated with the log BNP value (P < 0.001 each). Furthermore, the log BNP 
and age were significantly negatively associated with the FT3 levels, while the Hb and body mass 
index (BMI) were significantly positively associated with the FT3 levels (P < 0.001 each). Theoretically 
constructed structure equation modeling (SEM) revealed an inverse association between FT3 and BNP 
(β = −0.125, P = 0.002), and the same relationship remained in the patient group with normal‑range 
BNP values (β = −0.198, P = 0.008). We demonstrated a significant relationship between high BNP and 
low serum FT3 levels, and this relationship remained significant in patients with normal BNP levels. 
These results indicate that low T3 is associated with high plasma BNP levels rather than worsening of 
hemodynamics.

The synthesis and secretion of thyroid hormone are largely regulated by the hypothalamus-pituitary-thyroid 
 axis1. Under the regulation of thyroid-stimulating hormone (TSH), the thyroid gland synthesizes and secretes 
mainly thyroxine (T4) (approximately 85%) and a smaller percentage of 3,5,3’-triiodothyronine (T3). T4 is 
converted to T3, which is the active form of thyroid hormone, by 5’-monodeiodination in the liver, kidney, and 
skeletal  muscle2,3. T3 and T4 also exert a negative feedback effect that suppresses the synthesis and secretion of 
TSH in the pituitary  gland2,4.

T3 shows various biological effects systemically, including stimulation of tissue thermogenesis, skeletal 
development, modulation of the appetite and food intake, and regulation of the body  weight5–7. The serum 
T3 concentration decreases under conditions of critical illness, such as severe systemic infection, trauma, and 
 starvation8–10. This low T3 syndrome is a beneficial adaptation and protective response that decreases energy 
consumption under pathological  conditions11.

In the heart, T3 plays an important role in modulating myocardial contractility and hemodynamics by regu-
lating the expression of the cardiac gene encoding cardiac  protein12. An altered thyroid hormone metabolism 
closely reflects the pathological condition of cardiovascular  systems13–16. Indeed, a low T3 syndrome has been 
reported in patients with heart failure, and the magnitude of this decrease in T3 is related to the prognosis of 
cardiovascular  disorders17–22. Furthermore, previous studies have reported that the serum T3 level was inversely 
associated with the level of B-type natriuretic peptide (BNP) or N-terminal pro BNP (NT-pro BNP), a biomarker 
of heart failure  severity23–26. However, thyroid hormone reportedly stimulates the release of BNP from both 
cultured atrial and ventricular myocytes in a dose-dependent  manner27. In addition, thyroid hormone may be 
involved in the process of left ventricle (LV) remodeling, even in euthyroid  patients28. For these reasons, the 
relationship between BNP and T3 levels needs to be reconsidered.
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In the present study, we investigated the relationship between BNP and free T3 (FT3) levels in patients with 
cardiovascular disorders, taking into account other clinical factors that have the potential to affect the BNP or 
FT3 levels.

Results
Patient characteristics. Table 1 shows the clinical characteristics of the patients in this study. The average 
FT3 and free T4 (FT4) levels were 2.33 ± 0.32 pg/mL and 1.25 ± 0.23 ng/dL, respectively. The median TSH level 
was 1.43 μIU/mL (interquartile range [IQR] 0.91–2.22 μIU/mL), the median BNP level was 36.0 pg/mL (IQR 
15.9–96.3 pg/mL), and the median LV ejection fraction (LVEF) was 60.8% (IQR 50.6–66.1%).

The comparison of clinical data between groups separated by the median level of FT3 (2.33 pg/
mL). To investigate the relationship between the FT3 level and various clinical data, we divided all patients 
into 2 groups by the median level of FT3 (2.33 pg/mL) and compared the two groups. As shown in Table 2, the 
number of male patients was significantly smaller (P < 0.001), the age and TSH level were significantly higher 
(each P < 0.001), and the body mass index (BMI), diastolic blood pressure (DBP), hemoglobin (Hb) level, esti-
mated glomerular filtration rate (eGFR), total bilirubin level, albumin level, and triglyceride level were signifi-
cantly lower in the low-T3 group (FT3 ≤ 2.33 pg/mL) than in the high-T3 group (FT3 > 2.33 pg/mL) (total biliru-
bin level: P = 0.01, and the others: P < 0.001, respectively). Furthermore, although there was no marked difference 
between the groups with regard to the left ventricular ejection fraction (LVEF), left ventricular end-systolic vol-
ume index (LVESVI), or left ventricular end-diastolic volume index (LVEDVI), the BNP level was significantly 
higher in the low-T3 group than in the high-T3 group (P < 0.001).

The correlation of the plasma BNP levels with various clinical factors. Table 3 shows the Spear-
man rank correlation coefficients between the plasma BNP level and various clinical factors. The plasma BNP 
level was significantly and positively correlated with the age, FT4 level, TSH level, LVESVI, and LVEDVI (age: 
r = 0.349, P < 0.001; FT4: r = 0.206, P < 0.001; TSH: r = 0.124, P = 0.002; LVESVI: r = 0.445, P < 0.001; LVEDVI: 
r = 0.341, P < 0.001) and negatively correlated with the sex (male), BMI, DBP, Hb level, eGFR, FT3 level, and 
LVEF (sex: r = −0.216, P < 0.001; BMI: r = −0.168, P < 0.001; DBP: r = −0.204, P < 0.001; Hb: r = −0.298, P < 0.001; 
eGFR: r = −0.312, P < 0.001; FT3: r = −0.280, P < 0.001; LVEF: r = −0.420, P < 0.001).

The correlation of the serum FT3 levels with various clinical factors. Table 4 shows the Spearman 
correlation coefficients between the serum FT3 level and various clinical factors. The serum FT3 level was sig-
nificantly and positively correlated with the sex (male), BMI, DBP, Hb level, eGFR, and FT4 level (sex: r = 0.188, 
P < 0.001; BMI: r = 0.281, P < 0.001; DBP: r = 0.179, P < 0.001; Hb: r = 0.346, P < 0.001; eGFR: r = 0.197, P < 0.001; 
FT4: r = 0.091, P = 0.022) and negatively correlated with the age, TSH level, and BNP level (age: r = −0.290, 
P < 0.001; TSH: r = −0.160, P < 0.001; BNP: r = −0.280, P < 0.001), but LVEF, LVESVI, and LVEDVI were not sig-
nificant.

The multiple regression analysis to determine the factors associated with the plasma BNP and 
serum FT3 levels in the whole group. Based on the statistical comparison of the two groups and results 
of a bivariate analysis, the multiple regression analysis for the BNP level included FT3, sex (male), age, BMI, DBP, 
Hb, eGFR, and LVEF as independent variables. As shown on Table 5, a multiple regression analysis revealed that 
LVEF, Hb, sex (male), FT3, and eGFR were significantly negatively, and age was positively associated with the 
log BNP (sex: P = 0.002, FT3 = 0.003, eGFR: P = 0.008, others: P < 0.001, respectively). In the same manner as the 
analysis for BNP, a multiple regression analysis for the FT3 level included BNP, sex (male), age, BMI, DBP, Hb, 
eGFR, and LVEF as independent variables. As shown on Table 6, a multiple regression analysis revealed that the 
log BNP and age were significantly negatively associated with the FT3 level, while the Hb value and BMI were 
positively associated with the FT3 level (age: P = 0.015, others: P < 0.001, respectively).

The concept and results of the proposed path model (A) in the whole group. Based on multiple 
linear regression analyses and the findings of previous  studies29–32, we selected sex (male), age, BMI, LVEF, eGFR, 
and Hb as independent variables and entered them into the path model. The theoretical path model (A) (Fig. 1) 
was proposed by positioning TSH, FT3, and BNP in parallel. The association between two factors was linked 
by two-way arrows. The sex (male), age, BMI, LVEF, eGFR, and Hb were placed in parallel, following arrows to 
TSH, FT3, and BNP, respectively. Paths were drawn from independent to dependent variables, with directional 
arrows for each regression model. As shown in Fig. 1 and Supplementary Table S1, path model (A) revealed that 
the age, BMI, LVEF, and Hb were associated with FT3 (age: standardized regression coefficient [St. β] = −0.109, 
P = 0.011, BMI: St. β = 0.161, P < 0.001, LVEF: St. β = 0.114, P = 0.002, Hb: St. β = 0.244, P =  < 0.001). Path model 
(A) also revealed that sex (male), age, LVEF, and eGFR were associated with BNP (male: St. β = −0.142, P < 0.001, 
age: St. β = 0.107, P = 0.009, LVEF: St. β = −0.409, P < 0.001, eGFR: St. β = −0.117, P = 0.002). In addition, path 
model (A) showed an inverse association between FT3 and BNP (St. β = −0.125 P = 0.002), between TSH and 
FT3 (St. β = −0.114, P = 0.005), and between TSH and BNP (St. β = 0.084, P = 0.036).

The relationship between BNP and FT3 in the normal BNP level group. We defined the patient 
group that demonstrated BNP levels within the normal range as the “normal BNP level group”, and addi-
tional analyses were performed in the normal BNP level group (n = 185). As shown in Fig. 2 and Supplemen-
tary Table S2, path model (B) revealed that the BMI and eGFR were significantly associated with FT3 (BMI: 
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St. β = 0.153, P = 0.034, eGFR: St. β = 0.197, P = 0.010), but LVEF was not significantly associated with FT3 (St. 
β = −0.002, P = 0.978). Path model (B) also revealed that the Hb was the only independent variable associated 
with BNP (St. β = −0.179, P = 0.022). In addition, path model (B) showed no significant association between 
TSH and FT3 or between TSH and BNP but retained a significant inverse association between FT3 and BNP (St. 
β = −0.198, P = 0.008).

Table 1.  The clinical characteristics of the patients (n = 625). SD, standard deviation; BMI, body mass index; 
SBP, systolic blood pressure; DBP, diastolic blood pressure; Hb, hemoglobin; eGFR, estimated glomerular 
filtration rate; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; FT3, free 
triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; BNP, B-type natriuretic peptide; 
LVEF, left ventricular ejection fraction; LVESVI, left ventricular end-systolic volume index; LVEDVI, left 
ventricular end-diastolic volume index; ACCF, American College of Cardiology Foundation; AHA, American 
Heart Association; ACE, angiotensin-converting enzyme; ARB, Angiotensin II Receptor Blocker.

Characteristics Number (%), mean ± SD or median (25th, 75th percentile)

Male (n, %) 541 (86.6)

Age (years) 67 (58, 74)

BMI (kg/m2) 24.2 (22.0, 26.5)

SBP (mmHg) 134 (116, 150)

DBP (mmHg) 70 (62, 79)

Heart rate (beats per minutes) 73 (60, 84)

Hb (g/dL) 14.0 ± 1.74

eGFR (mL/min/1.73  m2) 71.0 (62.1, 83.7)

Total bilirubin (mg/dL) 0.8 (0.6, 1.0)

Albumin (g/dL) 3.94 ± 0.38

Fasting blood sugar (mg/dL) 105 (94, 125)

HbA1c (%) 6.1 (5.7, 6.7)

HDL (mg/dL) 49 (41, 60)

LDL (mg/dL) 93 (76, 113)

Triglyceride (mg/dL) 100 (74, 138)

FT3 (pg/mL) 2.33 ± 0.32

FT4 (ng/dL) 1.25 ± 0.23

TSH (μIU/mL) 1.43 (0.91, 2.22)

BNP (pg/mL) 36.0 (15.9, 96.3)

LVEF (%) 60.8 (50.6, 66.1)

LVESVI (mL/m2) 23.7 (17.9, 34.3)

LVEDVI (mL/m2) 61.8 (49.8, 74.4)

Underlying main cardiovascular disease (n, %)

Ischemic heart disease 506 (81)

Cardiomyopathy 52 (8.3)

Valvular disease 18 (2.9)

Arrhythmia 10 (1.6)

Macrovascular disease 2 (0.3)

Congenital heart disease 1 (0.2)

Other diseases 36 (5.8)

ACCF/AHA Stage of heart failure (n, %)

Stage A 17 (2.7)

Stage B 462 (73.9)

Stage C 142 (22.7)

Stage D 4 (0.6)

Medications (n, %)

Antiplatelet agent 491 (78.6)

ACE inhibitor 185 (29.6)

ARB 245 (39.2)

Beta-blocker 320 (51.2)

Diuretics 149 (23.8)



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21865  | https://doi.org/10.1038/s41598-021-01454-5

www.nature.com/scientificreports/

Discussion
The present study showed that a decrease in the LVEF was significantly associated with a low serum T3 level, and 
there was a significant relationship between high BNP levels and low serum FT3 levels. Of note, in the normal 
BNP level group, the relationship between a high BNP level and low serum T3 level remained significant, while 

Table 2.  A comparison of the clinical data between groups separated by the median level of FT3 (2.33 pg/mL). 
FT3, free triiodothyronine; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
Hb, hemoglobin; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein cholesterol; 
LDL, low-density lipoprotein cholesterol; FT4, free thyroxine; TSH, thyroid-stimulating hormone; LVEF, left 
ventricular ejection fraction; LVESVI, left ventricular end-systolic volume index; LVEDVI, left ventricular end-
diastolic volume index.

FT3 ≤ 2.33 (pg/mL) (n = 314) FT3 > 2.33 (pg/mL) (n = 311) P value

Male (%) 80.6 92.6 < 0.001

Age (years) 70 (62, 76) 63 (56, 71) < 0.001

BMI (kg/m2) 23.4 (21.5, 25.7) 24.9 (22.8, 27.4) < 0.001

SBP (mmHg) 134 (118, 150) 134 (114, 150) 0.754

DBP (mmHg) 68 (61, 76) 72 (63, 81) < 0.001

Heart rate (beats per minutes) 74 (61, 85) 71 (60, 83) 0.549

Hb (g/dL) 13.5 ± 1.84 14.4 ± 1.49 < 0.001

eGFR (mL/min/1.73  m2) 68.8 (59.5, 80.0) 74.4 (65.4, 88.5) < 0.001

Total bilirubin (mg/dL) 0.8 (0.6, 0.9) 0.8 (0.6, 1.0) 0.010

Albumin (g/dL) 3.84 ± 0.42 4.03 ± 0.32 < 0.001

Fasting blood sugar (mg/dL) 105 (94, 126) 105 (94, 123) 0.404

HbA1c (%) 6.1 (5.7, 6.8) 6.0 (5.7, 6.7) 0.503

HDL (mg/dL) 52 (41, 62) 48 (41, 58) 0.051

LDL (mg/dL) 95 (76, 114) 92 (75, 110) 0.566

Triglyceride (mg/dL) 91 (66, 130) 110 (85, 147) < 0.001

FT4 (ng/dL) 1.24 ± 0.24 1.27 ± 0.22 0.102

TSH (μIU/mL) 1.57 (0.98, 2.47) 1.29 (0.83, 2.02) < 0.001

BNP (pg/mL) 52.1 (21.4, 139.7) 25.7 (12.0, 64.0) < 0.001

LVEF (%) 60.1 (48.1, 66.1) 61.5 (52.9, 66.0) 0.093

LVESVI (mL/m2) 24.2 (18.2, 35.4) 23.3 (17.7, 32.6) 0.104

LVEDVI (mL/m2) 62.2 (50.9, 75.9) 61.2 (49.3, 73.9) 0.170

Table 3.  Spearman’s rank correlation coefficients between the BNP level and various clinical factors (n = 625). 
BNP, B-type natriuretic peptide; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; Hb, hemoglobin; eGFR, estimated glomerular filtration rate; FT3, free triiodothyronine; FT4, free 
thyroxine; TSH, thyroid-stimulating hormone; LVEF, left ventricular ejection fraction; LVESVI, left ventricular 
end-systolic volume index; LVEDVI, left ventricular end-diastolic volume index.

r P

Male − 0.216 < 0.001

Age 0.349 < 0.001

BMI − 0.168 < 0.001

SBP − 0.032 0.427

DBP − 0.204 < 0.001

Heart rate 0.154 0.083

Hb − 0.298 < 0.001

eGFR − 0.312 < 0.001

FT3 − 0.280 < 0.001

FT4 0.206 < 0.001

TSH 0.124 0.002

LVEF − 0.420 < 0.001

LVESVI 0.445 < 0.001

LVEDVI 0.341 < 0.001
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the LVEF was not significantly correlated with the serum FT3 level. However, whether a high BNP level led to 
the development of a low T3 level or vice versa remains unclear.

In the present study, a low FT3 level was significantly associated with an increase in the BNP level in patients 
with heart failure. Some previous reports have shown that a decrease in T3 is significantly related to an increase 
in BNP in patients with heart  failure23–26. In humans, peripheral thyroid hormone metabolism is regulated by 
three iodothyronine deiodinases: D1, D2, and D3. D3 is present in the brain, skin, placenta, pregnant uterus, and 
various fetal tissues and catalyzes the conversion of T4 to reverse T3 (rT3) and the conversion of T3 to 3,3’-dii-
odothyronine (3,3’-T2), both of which are biologically inactive. Under pathological conditions, such as cancer, 

Table 4.  Spearman’s rank correlation coefficients between the FT3 level and various clinical factors (n = 625). 
FT3, free triiodothyronine; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
Hb, hemoglobin; eGFR, estimated glomerular filtration rate; FT4, free thyroxine; TSH, thyroid-stimulating 
hormone; BNP, B-type natriuretic peptide; LVEF, left ventricular ejection fraction; LVESVI, left ventricular 
end-systolic volume index; LVEDVI, left ventricular end-diastolic volume index.

r P

Male 0.188 < 0.001

Age − 0.290 < 0.001

BMI 0.281 < 0.001

SBP 0.000 0.996

DBP 0.179 < 0.001

Heart rate − 0.071 0.429

Hb 0.346 < 0.001

eGFR 0.197 < 0.001

FT4 0.091 0.022

TSH − 0.160 < 0.001

BNP − 0.280 < 0.001

LVEF 0.060 0.136

LVESVI − 0.050 0.215

LVEDVI − 0.044 0.269

Table 5.  Results of the multiple regression analysis to identify the clinical factors influencing log BNP 
(n = 625). BNP, B-type natriuretic peptide;  R2, adjusted coefficient of determination; CI, confidence 
interval; VIF, variance inflation factor; LVEF, left ventricular ejection fraction; Hb, hemoglobin; FT3, free 
triiodothyronine; eGFR, estimated glomerular filtration rate.

R2 = 0.436

Nonstandard coefficient

Standard regression coefficients t value P value 95% CI VIFRegression coefficient SE

LVEF − 0.050 0.003 − 0.493 − 15.795 < 0.001 − 0.056 to − 0.043 1.064

Age 0.025 0.004 0.219 6.139 < 0.001 0.017 to 0.032 1.386

Hb − 0.114 0.026 − 0.155 − 4.341 < 0.001 − 0.166 to − 0.062 1.388

Male − 0.387 0.121 − 0.103 − 3.185 0.002 − 0.625 to − 0.148 1.149

FT3 − 0.395 0.132 − 0.099 − 2.985 0.003 − 0.654 to − 0.135 1.196

eGFR − 0.007 0.003 − 0.089 − 2.664 0.008 − 0.012 to − 0.002 1.215

Table 6.  Results of the multiple regression analysis to identify the clinical factors influencing FT3 (n = 625). 
FT3, free triiodothyronine;  R2, adjusted coefficient of determination; CI, confidence interval; VIF, variance 
inflation factor; Hb, hemoglobin; BNP, B-type natriuretic peptide; BMI, body mass index.

R2 = 0.190

Nonstandard coefficient

Standard regression coefficients t value P value 95% CI VIFRegression coefficient SE

Hb 0.038 0.008 0.209 5.072 < 0.001 0.024 to 0.053 1.285

Log BNP − 0.043 0.010 − 0.172 − 4.386 < 0.001 − .0.062 to − 0.024 1.175

BMI 0.013 0.003 0.158 4.114 < 0.001 0.007 to 0.020 1.127

Age − 0.003 0.001 − 0.100 − 2.436 0.015 − 0.005 to − 0.001 1.292
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chronic inflammation, and critical illness, D3 is activated, the conversion of T3 to 3,3`-T2 is accelerated, and 
the serum T3 level consequently  decreases33–35. In particular, the remarkable activation of D3 and a decrease in 
the serum T3 level are observed in patients with cardiovascular  disorders34,36,37. However, in the present study, 
low FT3 levels associated with an increase in BNP were observed even in patients with normal BNP levels, thus 
indicating that low T3 is associated with high plasma BNP levels rather than worsening of hemodynamics. 
Perhaps a low T3 level might accelerate an increase in the BNP level. An unknown factor related to low T3 (e.g. 
thyroid hormone metabolites) might cause an increase in the BNP level. Further experiments will be needed to 
clarify what this unknown factor is.

In addition, Pinelli et al. showed an inverse correlation between FT3 and log NT-proBNP in non-cardiac 
patients, but it was a small-sample study (n = 52)38. In our study, 625 patients were involved, and high BNP levels 
were inversely correlated with low serum FT3 levels in patients with heart failure according to structural equation 
models (SEM), a relationship that was retained even in cases with normal BNP levels.

Several limitations associated with the present study warrant mention. First, this study was a retrospective 
one conducted at a single university hospital. Second, this study included patients with various cardiovascular 
diseases, and not all patients had apparent structural heart disease. Some patients in Stage A according to the 
Guidelines of Heart  Failure39,40 were also included. Third, in the present study, the cardiac function of most 
patients was preserved, and the number of patients with heart failure with mid-range ejection fraction (HFmrEF) 
(n = 76) or heart failure with reduced ejection fraction (HFrEF) (n = 74) was small. Therefore, it was difficult 
to analyze the relationship between BNP and FT3 levels accurately in patients with HFmrEF or HFrEF. Based 
on an analysis of this current dataset, although the results were feasible in the patients with a preserved cardiac 
function, the results cannot be applied to those with HFmrEF or HFrEF. Finally, although we briefly checked 
the cardiac function of each patient by echocardiography before cardiac catheterization, we did not regularly 
register the precise echocardiography data and were thus unable to analyze the echocardiography data in detail 
in the present study.
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Figure 1.  Path model (A) (the whole BNP group). The path model theoretically proposed to clarify the 
contribution of sex (male), age, BMI, LVEF, eGFR, or Hb to TSH, FT3 or BNP. The analysis was performed 
on all cases. Each path has a coefficient representing the standardized coefficient of a regressing independent 
variable on a dependent variable of the relevant path. These variables represent the standardized regression 
coefficients (direct effect) and squared multiple correlations (in narrow italics) as well as the correlations among 
exogenous variables (green). BMI, body mass index; LVEF, left ventricular ejection fraction; eGFR, estimated 
glomerular filtration rate; Hb, hemoglobin; TSH, thyroid-stimulating hormone; FT3, free triiodothyronine; BNP, 
B-type natriuretic peptide.
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In conclusion, there was a significant relationship between high plasma BNP levels and low serum FT3 levels 
in patients with heart failure, and this relationship was maintained even in cases with normal BNP levels. These 
findings indicate that low T3 is associated with high plasma BNP levels rather than worsening of hemodynamics.

Methods
Patient population. The study population consisted of 712 patients who were consecutively admitted to 
our institution with cardiovascular disorders and who underwent elective cardiac catheterization from Sep-
tember 2017 to February 2021. We excluded patients who underwent dialysis (n = 60). In addition, we excluded 
patients with already-known thyroid disorders and/or who were treated with thyroid medications (n = 27). 
Finally, we analyzed 625 patients in the present study (Supplementary Figure).

This study was conducted in accordance with the principles expressed in the Declaration of Helsinki and 
approved by the medical ethics committee of Jikei University School of Medicine [24–355(7121)]. All methods 
were carried out in accordance with relevant guideline and regulations. The Ethics Committee waived the need 
for informed written consent, since it was a retrospective study. Instead of obtaining informed consent from each 
patient, we posted a notice about the study design and contact information at a public location in our institution 
according to our routine ethical regulations.

Data collection. The clinical characteristics of patients were retrospectively collected from their medical 
records. Blood samples were collected just before cardiac catheterization with the patient in a fasting condition. 
The LVEF, LVESVI, and LVEDVI were measured at the time of left ventriculography. Biochemical analyses of 
the plasma and serum were performed in our hospital’s central laboratory during the study period. To measure 
the plasma BNP level, blood samples were collected in tubes containing ethylenediaminetetraacetic acid (EDTA) 
and then immediately centrifuged at 3000  rpm for 5  min at 14  °C. Thereafter, the plasma BNP levels were 
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Figure 2.  Path model (B) (the normal BNP level group). The path model theoretically proposed to clarify the 
contribution of sex (male), age, BMI, LVEF, eGFR, or Hb to TSH, FT3 or BNP. The analysis was performed 
only on patients in whom the BNP levels were within the normal range (BNP ≤ 18.4 pg/mL). Each path has 
a coefficient representing the standardized coefficient of a regressing independent variable on a dependent 
variable of the relevant path. These variables represent the standardized regression coefficients (direct effect) and 
squared multiple correlations (in narrow italics) as well as the correlations among exogenous variables (green). 
BMI, body mass index; LVEF, left ventricular ejection fraction; eGFR, estimated glomerular filtration rate; Hb, 
hemoglobin; TSH, thyroid-stimulating hormone; FT3, free triiodothyronine; BNP, B-type natriuretic peptide.
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immediately measured by a chemiluminescent enzyme immunoassay (CLEIA) with an AIA-CL2400 (TOSOH 
Corporation, Tokyo, Japan) as described in the previous  report41. The normal range of plasma BNP level was 
set at ≤ 18.4 pg/mL. The serum FT3, FT4, and TSH levels were measured by the CLEIA method using a CL 
AIA-PACK FT3 TEST CUP, CL AIA-PACK FT4 TEST CUP, and CL AIA-PACK TSH TEST CUP, respectively 
(TOSOH Corporation).

Statistical analyses. Data are expressed as the mean ± standard deviation (SD) or as the median (25th, 
75th percentile) for significantly skewed variables. For continuous variables, differences between the two groups 
were evaluated either by an unpaired Student’s t-test or the Mann -Whitney rank-sum test. For discrete variables, 
which were expressed as counts and percentages, any differences between the two groups were analyzed by the 
chi-square test, unless the expected values in any cells were less than 5, in which case Fisher’s exact test was used. 
Correlations between the clinical parameters and the BNP or FT3 levels were assessed using Spearman’s rank 
correlation coefficient. First, to exclude the effect of other factors in clarifying the relationship between BNP and 
FT3, a step-wise multiple linear regression analysis was performed with BNP as the dependent variable. The 
independent variables were selected based on theoretical grounds, the results of the statistical comparison of 
two groups and a bivariate analysis. Similarly, a step-wise multiple regression analysis was repeated with FT3 as 
the dependent variable using the same independent variables. All statistical analyses were performed using the 
SPSS Statistics software program (version 27.0; SPSS Inc., Chicago, IL, USA). P values of < 0.05 were considered 
to indicate statistical significance.

In addition, a path model based on a SEM was used to investigate the relationships between the BNP and 
FT3 levels. The path model defined some hierarchical regression models among clinical factors and the BNP 
and FT3 levels. A path analysis was performed using the IBM SPSS AMOS software program (version 27; Amos 
Development Corporation, Meadville, PA, USA). The SEM that were obtained were tested and confirmed at a 
significance level of P < 0.05.

The following points should be noted regarding SEM: First, SEM is an effective analytical method for confirm-
ing hypotheses, but analysts need to consider sufficient hypotheses before and after building a path model. By 
maximizing the analyst’s knowledge, the hypothesis approaches the appropriate model. In other words, it takes 
trial and error to create a proper path diagram. Second, "causality" is an issue that needs to be addressed. Strictly 
speaking, in order to build a causal relationship, it is necessary to discuss the pre-occurrence priority in terms 
of the temporal priority in which the causal relationship occurs. Care must be taken to conclude that there was 
an exact causal relationship without such consideration. If the temporal relationship is unclear, it should simply 
be called a relationship. In the present study, we planned to devise an optimal path diagram in consideration of 
these points. However, we may need to look at other path diagrams in the future.
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