
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22476  | https://doi.org/10.1038/s41598-021-01437-6

www.nature.com/scientificreports

Requirement of direct contact 
between chondrocytes 
and macrophages 
for the maturation of regenerative 
cartilage
Kengo Kanda1, Yukiyo Asawa2, Ryoko Inaki3, Yuko Fujihara4, Kazuto Hoshi1,2,4 & 
Atsuhiko Hikita2*

Regenerative cartilage prepared from cultured chondrocytes is generally immature in vitro and 
matures after transplantation. Although many factors, including host cells and humoral factors, have 
been shown to affect cartilage maturation in vivo, the requirement of direct cell–cell contact between 
host and donor cells remains to be verified. In this study, we examined the host cells that promote 
cartilage maturation via cell–cell contact. Based on analysis of the transplanted chondrocytes, we 
examined the contribution of endothelial cells and macrophages. Using a semiclosed device that 
is permeable to tissue fluids while blocking host cells, we selectively transplanted chondrocytes 
and HUVECs or untreated/M1-polarized/M2-polarized RAW264.7 cells. As a result, untreated 
RAW264.7 cells induced cartilage regeneration. Furthermore, an in vitro coculture assay indicated 
communication between chondrocytes and RAW264.7 cells mediated by RNA, suggesting the 
involvement of extracellular vesicles in this process. These findings provide insights for establishing a 
method of in vitro cartilage regeneration.

Cartilage tissue exists in various parts of the body, such as the nose, auricles and joints, maintaining a morpho-
logical outline and enabling the activities of daily life. Cartilage is affected by congenital diseases such as microtia 
and nasal deformity due to cleft lip and palate, injury, and malignant tumours. Because cartilage has a poor ability 
to regenerate due to the lack of blood vessels, cartilage transplantation is a major clinical option to reconstruct 
damaged, deformed or hypoplastic cartilage1. Cartilage autografts are often used for cartilage reconstruction, and 
healthy donor sites are largely damaged2–4. To solve the problem of donor site morbidity, regenerative methods 
of cartilage reconstruction have been developed.

In 1987, Brittberg et al.5 proposed a technique known as autologous chondrocyte implantation (ACI), in which 
chondrocytes are harvested from non-weight bearing sites with minimum invasion, expanded and transplanted 
to the damaged site. Another group reported a two-stage transplantation method, in which cultured chondrocytes 
were injected subcutaneously into the patient’s lower abdomen for maturation, and the matured cartilage tissue 
was harvested and used for nasal reconstruction6. Recently, our group developed implant-type regenerative car-
tilage for the reconstruction of nose deformation caused by a cleft lip and palate7. Auricular chondrocytes from 
a small fragment of autologous ear cartilage were expanded and transplanted with a poly-l-lactic acid scaffold.

In these regenerative methods utilizing chondrocytes, the cells are isolated from cartilage and expanded 
in vitro. During the culture period, the cells dedifferentiate and lose their ability to produce cartilage matrix8. 
Because cartilage tissue mainly matures after transplantation, the extent of cartilage regeneration could be affected 
by the local environment and health of the patients, and the effectiveness of the treatment becomes rather 
uncertain. Yamashita et al.9 developed a method to induce cartilage regeneration in vitro using human induced 
pluripotent stem (iPS) cells, but long-term safety and the very high cost hinder the clinical use of iPS cells10. 
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Therefore, a method to obtain mature cartilage tissue from chondrocytes in vitro is worth developing. To this 
end, factors that induce chondrogenesis in vivo should be identified.

Several factors, such as host cells and growth factors, are involved in the redifferentiation of transplanted 
chondrocytes and the maturation of cartilage tissue11–16. Previous papers have reported the interaction between 
transplanted chondrocytes and host cells in vivo. Takebe et al.17 first reported the supportive role of endothe-
lial cells in cartilage regeneration from human ear–derived cartilage progenitor cells (CPCs). The researchers 
indicated that the early interactions of CPCs with endothelial cells triggered the initial expansion of CPCs and 
promoted the self-aggregation of a 3D group of progenitors without a scaffold or exogenous factors. Fujihara 
et al.18,19 showed interactions between transplanted chondrocytes and host macrophages. The researchers indi-
cated that chondrocytes express macrophage migration inhibitory factor (MIF) and fas ligand (FasL), presumably 
in response to cytokines or humoral factors produced by macrophages18. MIF is expressed by chondrocytes and 
promotes the maturation of chondrocytes at an earlier stage, while it impairs the maturation of tissue-engineered 
cartilage in the long term19. The authors also showed that depletion of M1 macrophages in the early phase 
improved chondrogenesis in transplanted regenerative cartilage20. Yamawaki et al.21 examined transplanted 
chondrocytes on coverslips by electron microscopy and indicated that chondrocytes and macrophages were in 
contact in the early phase of cartilage regeneration.

While these studies suggested direct cell–cell contact during chondrogenesis in vivo, humoral factors could 
also affect cartilage regeneration. When cultured with chondrocytes, mesenchymal stem cells (MSCs) improved 
chondrogenesis and suppressed chondrocyte hypertrophy and mineralization22–25. Some reports have indicated 
that the trophic and paracrine effects of MSCs are more important for enhancing the cartilage-forming capacity 
of chondrocytes than the chondrogenic differentiation of MSCs themselves25–28. Indeed, exosomes harvested 
from MSC culture media can also induce cartilage regeneration29.

In this report, we examined the requirement of direct contact between host and donor cells for cartilage 
regeneration in vivo. We used a semiclosed device that could prevent contact with host cells, while humoral fac-
tors, including proteins and ions, could reach chondrocytes. Chondrocytes were seeded on the inner side of this 
device and transplanted to examine cartilage regeneration in the absence of direct contact with host cells. We 
also examined the cells required for cartilage regeneration by selectively adding endothelial cells or macrophages 
to this device before transplantation.

Results
In vivo transplantation of the device with chondrocytes on the outer bottom or inner bot-
tom.  To confirm the involvement of host cells in the chondrogenesis of transplanted chondrocytes, devices 
were prepared using 2 membrane inserts (Fig. 1a). Chondrocytes were seeded on the inner side of the membrane 
(inner bottom group) to prevent direct contact with host cells, while soluble factors were allowed to pass through 
the membrane. For positive controls, chondrocytes were seeded on the outer side of the membrane (outer bot-
tom group). At 4 weeks posttransplantation, cartilage matrix with lacunas was detected in the outer bottom 
group (Fig. 1b). In contrast, no cartilage matrix was formed in the inner bottom group, suggesting the require-
ment of direct contact between host cells and donor chondrocytes for chondrogenesis (Fig. 1b).

Host cells involved in the early stage of cartilage matrix formation.  To identify the host cells 
that are involved in cartilage matrix formation, the cells that were present 1 week after transplantation in the 
outer bottom group were examined histologically. Some capillaries surrounded by flat cells and containing blood 
cells were observed in the bottom layer of transplanted chondrocytes (Fig. 2a,b). F4/80-positive cells were also 
detected in the transplanted chondrocyte layer (Fig. 2c,d). These findings suggest that endothelial cells or mac-
rophages are involved in cartilage matrix formation by transplanted chondrocytes.

F4/80‑positive cells at 2 weeks posttransplantation.  In a previous study, macrophages were observed 
around transplanted chondrocytes at early time points, and these cells disappeared at later stages21. To examine 
the involvement of macrophages in chondrogenesis at later time points, at 2 weeks after transplantation, histo-
logical sections from the outer bottom group were stained with the F4/80 antibody. In contrast to samples at 
1 week posttransplantation (Fig. 2c,d), few F4/80-positive cells were observed in or around the transplanted 
chondrocyte layer (Fig. 2e–g). This result indicates an early contribution of macrophages to cartilage matrix 
formation.

Characterization of F4/80‑positive cells at 1 week posttransplantation.  To investigate the char-
acter of the F4/80-positive cells at 1 week posttransplantation, we doublestained the samples at 1 week posttrans-
plantation with the iNOS antibody as M1 marker or the Arginase I antibody as M2 marker together with the 
F4/80 antibody. Any F4/80-positive cells in the transplanted chondrocyte layer were not detected to be positive 
for iNOS or Arginase I in three fields of view each (representative image: Fig. 2h, positive control: Supplemen-
tary Fig. S1), indicating unpolarized macrophages contribute to the cartilage maturation.

Effects of HUVECs on cartilage matrix formation.  To examine the effect of endothelial cells on carti-
lage matrix formation, different numbers of HUVECs were added to the chondrocytes in the inner bottom group 
just before transplantation. Histological analysis indicated that at 4  weeks after transplantation, no cartilage 
matrix was formed in the presence of any number of HUVECs (Fig. 3a). Furthermore, the tissue size seemed to 
be less than that in the device containing only chondrocytes (Fig. 1b). We compared the thickness and the area of 
the tissues from the device containing chondrocytes alone and chondrocytes plus different numbers of HUVECs 
(Fig. 3b,c). The thickness and area of the tissues in the device containing chondrocytes and different numbers of 
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HUVECs were significantly smaller than those of the tissues in the device containing only chondrocytes (thick-
ness: p < 0.001, area: p < 0.01).

Pretreatment of RAW264.7 cells before transplantation.  Macrophages can be polarized into sev-
eral subgroups. Generally, M1 macrophages are inflammatory, while M2 macrophages suppress inflammation 
and induce tissue repair30,31. To examine the effects of different macrophage subtypes on chondrogenesis, 3 types 
of RAW264.7 cells were prepared and then added to the inner bottom. We compared populations of cells in the 
region where top 10% of untreated RAW264.7 cells positive for CD206 and CD80 were included (defined as 

Figure 1.   (a) Snapwell insert and schematic of the device (inner and outer bottom groups). (b) Histological 
images of the transplanted chondrocytes at 4 weeks posttransplantation(HE: haematoxylin & eosin staining, TB: 
toluidine blue staining). Cartilage matrix was formed only in the outer bottom group.
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CD206high and CD80high, respectively) by flow cytometry (Fig. 4). The results showed that 77.5% of M1-induced 
RAW264.7 cells were CD80high and 45.7% of M2-induced RAW264.7 cells were CD206high, confirming successful 
induction of RAW264.7 cells into each subtype.

Effects of RAW264.7 cells on cartilage matrix formation.  Different numbers of RAW264.7 cells 
(untreated, M1-polarized, M2-polarized) were added to chondrocytes in the inner bottom group just before 
transplantation. Cartilage matrix-like tissue was detected in the group that contained 20 × 104 untreated 
RAW264.7 cells (Fig. 5a). In some other groups, cells seemed to have proliferated, but cartilage-like tissues with 
lacunae were not detected.

To further confirm chondrogenesis, histological sections were examined with toluidine blue staining and 
safranin-O staining, and second harmonic generation (SHG) images were acquired. Metachromasia was shown 
by toluidine blue staining, reddishness was shown by safranin-O staining, and a stronger SHG signal indicated 
cartilage matrix formation in the group that was transplanted with 20 × 104 untreated RAW264.7 cells (Fig. 5b). 
To confirm chondrogenesis, we also compared the thickness, area and positive area of the binarized image 
(Fig. 5c–f). No significant difference was observed in either the thickness or the area [thickness: p = 0.0761, area: 
p = 0.118 (one-way ANOVA)]. However, the positive area of the binarized image was significantly increased in 
the group transplanted with untreated cells compared to those transplanted with M1- or M2-polarized cells 
(untreated vs. M1: p = 0.0263; untreated vs. M2: p = 0.0477). The increased tissue density indicated the genera-
tion of cartilage matrix.

Communication between chondrocyte and RAW264.7 cells.  To confirm the occurrence of sub-
stance transfer from RAW264.7 cells to chondrocytes, fluorescent dye transfer was examined in the coculture 
system. After the adhesion of CM-DiI-stained chondrocytes to the culture slide, SYTO RNASelect-stained 
RAW264.7 cells were added to the same slide. At 3.5 h, SYTO RNASelect-positive points gradually increased 
in cocultured chondrocytes (Fig. 6, white arrows), indicating the occurrence of some communication between 
chondrocytes and RAW264.7 cells.

Additionally, to examine the contribution of extracellular vesicles (EVs) to communication, RAW264.7 cells 
were stained with both CM-DiI and SYTO RNASelect and cocultured with unstained chondrocytes. At 4 h, SYTO 
RNASelect-positive points were outlined by CM-DiI (Fig. 7a). This result indicated that some EVs contribute to 
communication. At 24 h, chondrocytes contained some cytoplasmic SYTO RNASelect-positive points (Fig. 7b), 
indicating the accumulation of the RNA transferred from RAW264.7 cells.

To further examine the mode of communication, we prepared 3 coculture groups of unstained chondrocytes 
and RAW264.7 cells labelled with both CM-DiI and SYTO RNASelect: (1) direct coculture, (2) indirect coculture 
with inserts, and (3) direct coculture with EV inhibitors (Fig. 7c). In group (3), we used 2 inhibitors to determine 
which subgroup of EVs contributed to communication. GW4869 was used to inhibit exosome generation and 
release, and Y27632 was used to inhibit microvesicle (MV) production.

Moreover, we compared the number of SYTO RNASelect-positive points within chondrocytes (Fig. 7d). The 
significant difference between groups (1) and (2) indicated that even though the membrane pore size (0.4 µm) 
was much larger than EVs, the distance between chondrocytes and RAW264.7 cells imposed by the Snapwell 
insert membrane inhibited communication [(1) vs. (2): p < 0.001]. This result can explain the lack of maturation 
in the inner bottom group in the in vivo experiment (Fig. 1b). Y27632 most effectively suppressed the uptake of 
SYTO RNASelect [(1) vs. (3) Y27632: p < 0.001; (2) vs. (3) Y27632: p = 0.0659], and GW4869 was less effective at 
suppressing uptake [(1) vs. (3) GW4869, (3) GW4869 vs. (3) Y27632, (2) vs. (3) GW4869: p < 0.001]. This result 
indicates that MVs play a large role in communication, and exosomes contribute to some degree.

Discussion
Many factors affect transplanted cartilage regeneration, including host cells and humoral factors, such as induc-
tive growth factors. In this report, we focused on host cells that trigger the redifferentiation of monolayer-cultured 
chondrocytes through direct cell–cell contact. Host cells such as endothelial cells, macrophages and MSCs have 
been reported to help the maturation of chondrocytes17–29, and endothelial cells and macrophages have been 
reported to directly communicate with chondrocytes. By analysing transplanted chondrocyte maturation in vivo, 
we confirmed the presence of endothelial cells and macrophages, in addition to transplanted chondrocytes. We 
hypothesized that endothelial cells or macrophages communicated with chondrocytes, combined each type of 

Figure 2.   (a–d) Histological images of the outer bottom group at 1 week posttransplantation. Asterisks 
indicate the transplanted chondrocyte layer. (a) HE staining. (b) An enlarged view of the area indicated by the 
black rectangle in (a). Capillaries are indicated by red arrowheads with enlarged views at the corners. (c,d) 
An immunofluorescent image of the same sample as in (a). Asterisks indicate the transplanted chondrocyte 
layer. Alexa 594: F4/80, DAPI: nucleus. (d) An enlarged view of the area indicated by the yellow rectangle 
in (c). F4/80-positive cells (yellow triangle) were observed among the transplanted chondrocytes. (e–g) 
Immunofluorescent images of the outer bottom group sample at 2 weeks posttransplantation. Alexa 594: 
F4/80, DAPI: nucleus. Asterisks indicate the transplanted chondrocyte layer, and white circles indicate the host 
cell layer. (f,g) Enlarged views of areas indicated by yellow rectangles in (e). F4/80-positive cells were rarely 
observed in either the transplanted chondrocyte layer or the host layer. (h) Immunofluorescent images of the 
outer bottom group sample at 1 week posttransplantation. Asterisks indicate the transplanted chondrocyte layer. 
(upper row) Alexa 488: iNOS, Alexa 594: F4/80, DAPI: nucleus. (lower row) Alexa 488: Arginase I, Alexa 594: 
F4/80, DAPI: nucleus.

▸



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22476  | https://doi.org/10.1038/s41598-021-01437-6

www.nature.com/scientificreports/



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22476  | https://doi.org/10.1038/s41598-021-01437-6

www.nature.com/scientificreports/

cell with chondrocytes in vivo, and examined the maturation of chondrocytes. However, other cell types such as 
MSCs and cells of hematopoietic lineage may also affect the chondrogenesis. To elucidate the process of cartilage 
maturation in vivo, these cell types should be analysed in future studies.

In contrast to the result of Takebe et al.17 HUVECs did not cause chondrocytes to mature in our model. 
Takebe et al. precultured a mixture of CPCs and HUVECs, and the mixture formed 3D vascularized condensed 
progenitors. They transplanted this 3D condensation in vivo and concluded that HUVECs supported chondro-
cyte maturation. HUVECs were added to monolayer-cultured chondrocytes just before transplantation in the 
present study. Our results do not contradict the supportive effects of endothelial cells on chondrogenesis in a 
3D context but suggest that the host cells that induce in vivo maturation of monolayer-cultured chondrocytes 
are not endothelial cells. In contrast to our expectations, the addition of HUVECs to the device seemed to sup-
press the tissue formation. Although additional studies are needed to describe the cell population and viability 
posttransplantation, the doubled cell numbers compared with the transplantation of chondrocytes alone may 
have caused low proliferation or cell death, which led to reduced tissue size.

In the case of RAW264.7 cells, we prepared untreated, M1- and M2-polarized cells, anticipating the advan-
tage of M2-polarized cells for cartilage regeneration30,31. Fujihara et al.18,20 reported that the early macrophage 
population is supposed to be shifted to M1, and the depletion of M1 macrophages promotes chondrogenesis. 
In our study, unpolarized macrophages were detected around chondrocytes seeded on the outer membrane 
at 1 week but not 2 weeks, and untreated RAW264.7 cells worked more effectively than M1- or M2-polarized 
RAW264.7 cells when transplanted with chondrocytes. This finding suggests that unpolarized macrophages 
trigger the very early stage of chondrocyte maturation. Our fluorescent dye transfer assay also supported this 
early effect by indicating very early communication between chondrocytes and RAW264.7 cells in vitro. Taken 
together with past studies, our results indicate that each polarized macrophage subtype plays different roles in 
maturation stages. Further analysis is required to clarify whether untreated RAW264.7 cells work as they are or 
whether these cells polarize into other states in vivo after transplantation.

The device used in this study is open to tissue fluids and closed to cells because of the membrane pore size, 
which means that only the cell enclosed in the device with chondrocytes can communicate directly (or in very 
close proximity) with chondrocytes. Our results indicate that direct communication between chondrocytes and 
macrophages is necessary for cartilage maturation. Yamawaki et al.21 presented TEM images of in vivo trans-
planted chondrocytes, in which macrophage-like cells were indicated to have cell–cell contact with chondrocytes 
in the first week. Between those two cells, small structures resembling EVs were observed around the contact site. 
These structures resemble the EVs observed around macrophages, as shown by TEM in another report32. EVs 
are thought to facilitate intercellular communication by transferring nucleic acids such as mRNAs and miRNAs, 
their fragments and proteins between cells to induce biological responses in recipient cells depending on the 
cargo33,34. To clarify the occurrence of communication between chondrocytes and RAW264.7 cells, we focused 
on RNA transfer. We observed early communication within several hours between these cells. We also observed 
RAW264.7 RNA outlined by the plasma membrane component of RAW264.7 cells, suggesting that EVs bud-
ded from the plasma membrane of RAW264.7 cells. This finding suggests that EVs are involved in intercellular 

Figure 2.   (continued)
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communication between RAW264.7 cells and chondrocytes. According to the International Society of EVs, 
three main subgroups of EVs have been classified based on size, membrane composition, and the mechanism of 
formation35. In this study, the EV-like structure we observed could be MVs based on their sizes, and they were 
much smaller than the membrane pores of the Snapwell insert and could pass through the membrane. Moreover, 
analysis of chondrocyte uptake of RAW264.7 cell RNA indicated that MVs contribute much more to this com-
munication than exosomes. However, further investigations are needed to examine other features of MVs, such 
as membrane markers and their mechanisms of formation.

In conclusion, we indicated the necessity of direct contact between transplanted chondrocytes and host 
macrophages for cartilage differentiation. In the early stage of maturation, unpolarized macrophages affected 
cartilage maturation most effectively relative to other types of macrophages. Moreover, we showed that RNA 
transfer between chondrocytes and macrophages occurred by EVs in vitro, which indicates some early effect of 
macrophages on chondrocytes. These results provide new insight for engineering regenerative cartilage in vitro.

Methods
Cell preparation.  All procedures were approved by the Research Ethics Committee of the University of 
Tokyo Hospital (permission number 2573). Human auricular cartilage was obtained with informed consent dur-
ing ear reconstruction surgeries for microtia at Nagata Microtia and Reconstructive Plastic Surgery Clinic. After 
the soft tissues and perichondria were removed, the auricular cartilage was cut into small pieces and digested 
in 0.3% collagenase for 18 h at 37 °C. After being filtered through a cell strainer (100 μm pore size, BD Fal-
con), the solution was centrifuged at 1500 rpm for 5 min to collect chondrocytes. Two hundred thousand cells 
were seeded onto 100 mm collagen type I-coated dishes (AGC Techno Glass Co., Ltd.) and cultured with Dul-
becco’s modified Eagle’s medium/nutrient mixture F-12 (DMEM/F12; Sigma-Aldrich Co.) supplemented with 
5% human serum (Sigma-Aldrich Co.), 100 ng/mL FGF-2 (Kaken Pharmaceutical Co, Ltd.), 5 μg/mL insulin 
(Novo Nordisk Pharma Ltd.) and 1% penicillin/streptomycin (Sigma-Aldrich Co.) (cartilage growth medium: 
HFI) at 37 °C in a humidified atmosphere containing 5% CO2 for 10 days until the cells reached confluence. 
The cells were collected using trypsin–EDTA (Sigma-Aldrich Co.) and stored with CELLBANKER (Nippon 
Zenyaku Kogyo Co., Ltd.) at − 80 °C. The HUVEC line and RAW264.7 cell line were purchased from Lonza and 
ATCC, respectively. For the in vivo coculture assay, RAW264.7 cells were cultured until 70% confluent in growth 
medium consisting of DMEM/F12 (Sigma-Aldrich Co.) supplemented with 10% foetal bovine serum (Gibco) 
and 1% penicillin/streptomycin (Sigma-Aldrich Co.) and were induced to polarize. For M1 or M2 polarization, 
LPS (50 ng/mL; Wako) and GM-CSF (20 ng/mL; Fujifilm) or IL-4 (20 ng/mL; Fujifilm) and M-CSF (50 ng/mL; 
Wako), respectively, were added to the growth medium, and the cells were cultured for 24 h at 37 °C in a humidi-
fied atmosphere containing 5% CO2. For the untreated group, cells were cultured in growth medium for 24 h.

To confirm the polarization, the suspension of RAW264.7 cells was diluted to 1 × 107 cells/ml with FACS stain-
ing buffer (BioLegend, San Diego, USA), and the following antibodies were added: anti-mouse CD11b PerCP-
Cyanine 5.5 (0.25 μg/test; 45–0112-82, eBioscience) as a macrophage marker, anti-mouse CD80 APC (0.06 μg/
test; 17–0801-82, eBioscience) as an M1 macrophage marker, and anti-mouse 206 PE (0.25 μg/test; 12–2061-82, 
eBioscience) as an M2 macrophage marker. The cells were incubated with antibodies for 20 min at 4 °C in the 
dark, after which they were washed and stained with DAPI (BD Pharmingen, USA) to assess viability. Fluores-
cence was analysed with a Becton Dickinson LSR Fortessa cell analyser using BD Diva software. Compensation 
measurements were performed for single stains using compensation beads (eBiosciences). The samples stained 
with IgG isotype antibodies [rat IgG2b K isotype control PerCP-cyanine 5.5 (0.125 µg/test; 45-4031-80, eBio-
science), Armenian hamster IgG isotype control APC (0.03 µg/test; 17-4888-82, eBioscience), and rat IgG2b K 
isotype control PE (0.06 µg/test; 12-4031-82, eBioscience)] were used as the negative controls.

All methods were performed in accordance with the relevant guidelines and regulations.

Preparation of the closed device and transplantation.  Frozen stocks of P0 chondrocytes were 
thawed, cultured with HFI, and passaged using trypsin–EDTA. Fifty thousand P2 chondrocytes were seeded on 
the inner side or the outer side of a 12 mm Snapwell insert with a 0.4 µm pore polyester membrane (Corning) 
and cultured in HFI until confluent, at which time the cell number reached approximately 2 × 105. To prepare 
a closed environment for the seeded chondrocytes, the membrane of the Snapwell insert seeded with cells was 
adhered to another insert without cells using the instant adhesive Aron Alpha. For coculture assays, 20 × 104, 
10 × 104, or 5 × 104 HUVECs or RAW264.7 cells were added before adhesion of the 2 inserts. The device was 
transplanted into the back subdermal space of 6-week-old male Balb/c-nu/nu mice (CLEA Japan, Inc.) with 
the cell-seeded membrane facing the muscle side. One device was transplanted in each mouse (n = 3). At cer-
tain time points, the device and the tissue directly below the device were collected and analysed histologically. 
Protocols for animal experiments were approved by the Institutional Animal Care and Use Committee of the 
University of Tokyo (#P19-073). All methods were performed in accordance with the relevant guidelines and 
regulations. The authors complied with the ARRIVE guidelines.

Histological analysis.  Each sample was fixed with 4% paraformaldehyde overnight, and 5 μm-thick paraf-
fin-embedded sections were prepared. The sections were generally stained with haematoxylin and eosin. Tolui-
dine blue staining and safranine-O staining were also performed to examine the cartilage matrix. For immuno-
fluorescence analysis with the F4/80 antibody (ab6640, Abcam), after antigen retrieval and blocking with 10% 
BSA in PBS, the sections were incubated with primary antibody (1:100 dilution) for 1 h at 37 °C and fluores-
cent secondary antibodies (1:200 dilution) for 30 min at room temperature. The coverslips were subsequently 
mounted using mounting medium containing DAPI. For the double staining with the F4/80 and the iNOS 
antibody (PA3-030A, Thermo Fisher Scientific), after antigen retrieval and blocking with 10% BSA in PBS-T, the 
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sections were incubated with primary antibody (F4/80; 1:100 dilution, iNOS; 1:250 dilution) over night at 4 °C 
and fluorescent secondary antibodies (1:500 dilution) for 30 min at room temperature. For the double staining 
with the F4/80 and the Arginase I antibody (sc-20150, Santa Cruz Biotechnology), after antigen retrieval and 

Figure 3.   (a) Histological images of the chondrocyte + HUVEC inner bottom group (4 weeks 
posttransplantation, HE staining). Cartilage matrix was not observed in any group. (b,c) Statistical analysis 
of the thickness and area of chondrocytes alone and chondrocytes + HUVECs in the bottom group. The data 
are shown as the means ± S.D. n = 3. (b) Comparison of the thickness. *p < 0.001. (c) Comparison of the area. 
*p = 0.00105, **p = 0.00244, ***p = 0.00190.
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Figure 4.   Confirmation of RAW264.7 cell polarization by flow cytometry.
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a

b

Figure 5.   (a) Histological images of the chondrocyte + RAW264.7 inner bottom group (4 weeks posttransplantation, HE staining). 
Cartilage-like tissue was observed in the group that was transplanted with 20 × 104 untreated RAW264.7 cells. (b) Cartilage matrix staining 
and SHG images of chondrocytes + RAW264.7 cells in the inner bottom group (20 × 104 RAW264.7 cells, 4 weeks posttransplantation, 
TB: toluidine blue staining, SO: safranin-O staining). Cartilage matrix was observed in the untreated group. (c–e) The thickness, area 
and percentage of the positive area in the binarized image of the chondrocyte + RAW264.7 inner bottom group (20 × 104 RAW264.7 cells, 
4 weeks posttransplantation). The data are shown as the means ± S.D. n = 3. (c) Comparison of the thickness. (d) Comparison of the area. (e) 
Comparison of the percentage of the binarized positive area. *p = 0.0477, **p = 0.0264. (f) Binarized images of the chondrocyte + RAW264.7 
inner bottom group (4 weeks posttransplantation, HE staining).
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Figure 5.   (continued)
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Figure 6.   In vitro communication between chondrocytes and RAW264.7 cells. Green spots (indicating 
RNA from RAW264.7 cells) appeared gradually in chondrocytes. Red (CM-DiI): chondrocyte, green (SYTO 
RNASelect): RNA from RAW264.7 cells.
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Figure 7.   Tracking the cell membrane components during in vitro communication between chondrocytes 
and RAW264.7 cells. Red (CM-DiI): cell membrane of RAW264.7 cells, green (SYTO RNASelect): RNA from 
RAW264.7 cells. (a,b) Yellow asterisks indicate RAW264.7 cells, and yellow circles indicate chondrocytes. (a) 
Fluorescence images of cells after 4 h of coculture. SYTO RNASelect-positive points were outlined by CM-DiI 
(white arrow). (b) Fluorescence images of cells after 24 h of coculture. Chondrocytes contained RNA from 
RAW264.7 cells (white arrow). (c) Fluorescence images of four groups after 4 and 24 h of coculture. (d) SYTO 
RNASelect-positive points count per chondrocyte. The data are shown as the means ± S.D. *p < 0.001. n = 3.
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Figure 7.   (continued)
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blocking with 10% BSA in PBS, the sections were incubated with primary antibody (F4/80; 1:100 dilution, Argi-
nase I; 1:50 dilution) for 1 h at 37 °C and fluorescent secondary antibodies (1:200 dilution) for 30 min at room 
temperature. As positive controls for iNOS and Arginase I staining, histological sections of mouse liver were 
stained by the same procedures.

For SHG images, we used a multiphoton confocal microscopy system (A1R + MP, Nikon), an excitation laser 
(Mai Tai eHP, wavelengths: 690–1040 nm; repetition rate: 80 MHz; pulse width: 70 fs, Spectra-Physics, Tokyo, 
Japan) and a water-immersion objective lens (CFI75 Apo 25 × W MP, numerical aperture: 1.1, Nikon). The excita-
tion wavelength was 950 nm. The thickness and area of the HE samples were measured by cellSense (Olympus). 
In addition, HE samples were binarized by the same parameter by ImageJ36, and we compared the positive area 
to the entire area before binarization was performed.

Coculture and fluorescent dye transfer assay.  P2 chondrocytes were trypsinized, suspended in 25 μM 
CM-DiI (V22888, Invitrogen) diluted in DMEM/F12 supplemented with 1% penicillin/streptomycin, and incu-
bated for 30 min at 37 °C. The cells were washed twice and suspended in the same medium. RAW264.7 cells 
were labelled with 5 μM SYTO RNASelect (S32703, Invitrogen) in the same manner, which specifically binds to 
RNA. The labelled chondrocytes were transferred to a BioCoat Collagen I Culture Slide (Corning). After 4 h, the 
labelled chondrocytes adhered to the slide, and the labelled RAW264.7 cells were added. Fluorescent dye transfer 
was monitored over time with BZ-X800 and BZ-X800 analysis applications (KEYENCE Corp.).

To examine intercellular communication mediated by EVs, we tracked the RNA and plasma membrane 
components simultaneously. As described previously, we double-labelled RAW264.7 cells with 5 µM SYTO 
RNASelect and 25 µM CM-DiI. Following the unlabelled chondrocytes were allowed to adhere for 4 h, double-
labelled RAW264.7 cells were added and cocultured for 4 h and 24 h. The samples were fixed with 4% paraform-
aldehyde for 15 min at 4 °C, mounted with mounting medium containing DAPI and analysed with BZ-X800 
and BZ-X800 analysis applications (KEYENCE Corp.).

To examine the mode of communication between chondrocytes and RAW264.7 cells in more detail, we 
established 3 in vitro coculture groups: (1) direct coculture, (2) indirect coculture with an insert, and (3) direct 
coculture with an EV inhibitor. Each group included 3 lots of chondrocytes. Group (1) was tested as described 
above. For group (2), we first seeded unlabelled chondrocytes on Collagen I coverslips (Corning). Following 
adherence for 4 h, we placed a 12 mm Snapwell Insert with a 0.4 µm pore polyester membrane (Corning) on 
the coverslip, seeded double-labelled RAW264.7 cells onto the inner side of the insert, and cocultured the cells 
with the membrane. After 24 h of coculture, we removed the insert along with the seeded RAW264.7 cells. For 
group (3), we prepared a culture slide with unlabelled chondrocytes that had adhered as previously described. 
We also prepared double-labelled RAW264.7 cells, and after 2 h of preincubation with EV inhibitors [GW4869 
(D1692-5MG, Sigma) or Y27632 (030-24021, Fujifilm Wako)], the cells were seeded on a culture slide with 
inhibitors (20 μM each). The cells were cocultured for 24 h, fixed with 4% paraformaldehyde for 15 min at 4 °C, 
mounted using mounting medium with DAPI, and analysed with BZ-X800 and BZ-X800 analysis applications 
(KEYENCE Corp.). For statistical analysis of intercellular communication, we acquired three fields of view with 
the same parameters for each group and counted the SYTO RNASelect-positive points within chondrocytes.

Statistical analysis.  Statistically significant differences between multiple groups were determined using 
one-way ANOVA, followed by Tukey’s test. A value of p < 0.05 was considered to be statistically significant. Nor-
mality was checked by Shapiro–Wilk test. All statistical analyses were performed with EZR (Saitama Medical 
Centre, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation 
for Statistical Computing, Vienna, Austria). More precisely, EZR is a modified version of the R commander 
designed to add statistical functions that are frequently used in biostatistics.

Data availability
No datasets were generated or analysed during the current study.
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