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Context aware semantic 
adaptation network 
for cross domain implicit sentiment 
classification
Enguang Zuo1, Alimjan Aysa1,2, Mahpirat Muhammat1, Yuxia Zhao1,3 & Kurban Ubul1,2*

Cross-domain sentiment classification could be attributed to two steps. The first step is used to 
extract the text representation, and the other is to reduce domain discrepancy. Existing methods 
mostly focus on learning the domain-invariant information, rarely consider using the domain-specific 
semantic information, which could help cross-domain sentiment classification; traditional adversarial-
based models merely focus on aligning the global distribution ignore maximizing the class-specific 
decision boundaries. To solve these problems, we propose a context-aware semantic adaptation 
(CASA) network for cross-domain implicit sentiment classification (ISC). CASA can provide more 
semantic relationships and an accurate understanding of the emotion-changing process for ISC tasks 
lacking explicit emotion words. (1) To obtain inter- and intrasentence semantic associations, our 
model builds a context-aware heterogeneous graph (CAHG), which can aggregate the intrasentence 
dependency information and the intersentence node interaction information, followed by an 
attention mechanism that remains high-level domain-specific features. (2) Moreover, we conduct a 
new multigrain discriminator (MGD) to effectively reduce the interdomain distribution discrepancy 
and improve intradomain class discrimination. Experimental results demonstrate the effectiveness of 
different modules compared with existing models on the Chinese implicit emotion dataset and four 
public explicit datasets.

Sentiment analysis is considered one of the fundamental problems in natural language processing (NLP), and 
with social media developing rapidly, it is widely applied in real scenarios such as comment analysis, food safety 
monitoring, and public opinion mining. Such tasks are usually defined as identifying the emotional polarity (e.g., 
positive, negative, or neutral) of a given text, sentence, or aspect.

The expression of emotion can be explicit or implicit. The implicit expression of emotions is defined as ’A 
language fragment (sentence, clause or phrase) that expresses subjective sentiment but contains no explicit senti-
ment word’1,2. We exploit the following examples to show the difference of two expressions:

Explicit:你做的蛋炒饭太好吃了,我很喜欢! (English translation: “The rice fried with eggs is so delicious; 
I like it very much!” label=positive)
Implicit:这家蛋炒饭有种妈妈的味道!  (English translation: “The rice fried with eggs in this restaurant 
reminds me of my mother!” label=positive)

Example 1 uses the word ‘喜欢 (like) ’ to show a clear positive tendency. To express their views, people also use 
Example 2 (e.g., metaphor, sarcasm). In this sentence, no explicit emotional words are used and the individual’s 
emotional tendency is embedded in the semantic meaning of the text. This phenomenon creates an exceptional 
challenge for implicit sentiment classification tasks. Moreover, accompanied by the absence of a large-scale 
labeled corpus, even with an advanced deep learning model, the classification accuracy of implicit sentiment 
classification tasks is not  ideal3.

One solution to this problem is cross-domain sentiment classification, which aims to exploit the rich 
labeled data in the source domain, e.g., explicit sentiment corpus, to help the sentiment analysis task in another 
domain lacking for or even without labeled data, e.g., implicit sentiment corpus. Recently, relevant models on 
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cross-domain sentiment classification have mainly focused on learning domain-invariant features whose distri-
bution is similar in the source and target  domains4. These methods attempt to reduce the discrepancy between 
domain-specific latent feature representations. Inspired by this idea, most existing adversarial-based methods, 
e.g., domain adversarial neural network (DANN)  ]5, reduce feature differences by fooling a domain discriminator 
and have achieve promising  results6,7. However, to achieve explicit-to-implicit positive transfer, these methods 
still have two major inherent drawbacks that need to be addressed:

• Existing studies mostly focus on learning the domain-invariant information (e.g. ‘喜欢 (like)’, ‘坏  (bad)’, ‘
差  (weak)’), rarely consider the usage of domain-specific semantic information (e.g. ‘蛋炒饭 (the rice fried 
with eggs)’, ‘抵抗力  (resistance)’), which is also helpful for cross-domain implicit sentiment  classification7,8. 
Figure 1 shows that when the source domain-specific words appear in the target domain, the semantic 
knowledge learned from the source domain helps the target domain classification.

• Traditional adversarial-based models merely minimize the marginal distribution of the two domains and 
ignore maximizing the class-specific decision boundaries. As shown in Fig. 2 (DANN), the features near 
the decision boundary may be ambiguous and even tangled together with traditional domain discriminator 
training, thus blocking adaptation performance.

To tackle the above limitations identified above, we aim to use graph convolutional networks (GCNs). GCNs 
have a multilayer architecture, with each layer aggregating the information of nodes in the graph structure using 
features of immediate neighbors. Nevertheless, sequential free texts are unstructured data. Therefore, GCN-
based text learning must conduct graph representation learning from the free text before graph convolution. 
Different from sequence learning models, GCNs can directly represent complex structured data. A GCN has 
the potential to capture domain-specific semantical information with GCN layers. Recently, GCN models have 

Figure 1.  Example of domain-invariant and domain-specific. The sentiment expressions marked by red lines 
are virus domain-specific, while the broken blue lines marked domain-invariant.

Figure 2.  A comparison between the traditional domain discriminator DANN and the proposed MGD, where 
minimization means that the distribution difference is minimized in different domains and maximization means 
that the distribution difference is maximized between different classes, which come from different domains.
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gained widespread attention and have been successfully deployed on text-word  relationships9–11, and explicit 
sentiment  analysis12,13. However, these graph-based models only considered intrasentence hierarchical depend-
ency relationships and ignored intersentence semantic associations.

Therefore, in this paper, we propose a novel context-aware semantic adaptation network (CASA) for cross-
domain implicit sentiment classification via GCNs. To obtain inter- and intrasentence semantic associations, 
we build a context-aware heterogeneous graph (CAHG). CAHGs build graphs in each document by regarding 
tokens and sentences as nodes (hence heterogeneous graph). The intrasentence propagation is constrained by 
the syntactic dependency tree, and intersentence propagation is constrained by the sentence-free sequence and 
term frequency-inverse document frequency (TF-IDF) local token cooccurrence information. The information 
propagates inter- and intrasentences via the GCN layers, followed by an attention mechanism that keeps high-
level domain-specific features. We also conduct a multigrain discriminator (MGD) which is imposed during 
domain adaptation to minimize domain distribution and maximize class identification. The domain adapta-
tion layer makes the source domain and target domain inseparable e through adversarial training, reduces the 
representation distribution gap between source and target domain data in a coarse-grained manner. The class 
adaptation layer utilize a classifier to judge different domain samples, whether class consistent, to distinguish 
samples in different classes. Figure 2 illustrates the difference between the traditional domain adversarial method 
of domain-adversarial training of  DANN5 and MGD.

In short, the main contributions of this paper are as follows: 

1. We proposed a new transfer learning model CASA for the implicit sentiment classification task via GCNs, 
which is the first attempt to transfer explicit sentiment information to implicit sentiment.

2. Our model provides a context heterogeneous graph, which can effectively extract inter- and intrasentence 
semantic information. Moreover, CASA improved the model’s generalization ability for implicit classification 
tasks and increased each sentiment’s polarity discrimination in the domain.

3. We evaluate CASA on the Chinese implicit sentiment analysis dataset (SMP-ECISA 2019). CASA outper-
forms existing models in four different source domains. We also provide a visualization to demonstrate that 
CAHG can capture domain-specific information, and MGD can make features near decision boundaries 
more distinguishable.

Related works
Sentiment analysis. The existing sentiment calculation and sentiment analysis methods can be divided 
into three categories: knowledge-based methods, statistical methods and hybrid  methods14.

Knowledge-based methods are popular because of their simplicity and ease of use, but their effectiveness is 
limited mainly by the depth and breadth of the established knowledge base. Statistical methods based on machine 
learning and deep learning have been widely used in Chinese sentiment classification, such as fine-grained senti-
ment analysis  framework15, multi-label sentiment analysis  model16, aspect-level sentiment analysis research based 
on Reinforcement  Learning17, etc. On the other hand, more and more scholars have realized the particularity 
of Chinese characters and tried to model Chinese  radicals18–22. The hybrid method aims to describe the rules of 
emotional expression better and realize the machine’s perception of  semantics23. The model CASA in this paper 
considers contextual semantic perception and introduces cross-domain explicit emotional knowledge.

Attention mechanism shows good performance in sentiment analysis tasks. It improves the interpretability 
of neural networks by letting people know the location of the  focus24–27. They exemplified recent research on 
attention-based sentiment analysis.

Various sentiment analysis tasks usually focus on realizing binary classification (positive and negative clas-
sification), which cannot better describe emotions. In contrast, Wang proposed a multi-level emotion perception 
method with contradiction  processing28. However, these sentence-level sentiment analyses cannot be directly 
applied to implicit sentiment tasks because, in implicit sentiment tasks, the emotion of the target sentence holds 
different polarities for different contexts.

Implicit sentiment analysis and GCNs. Models based on  RNNs29,30 and  CNNs31 in deep neural net-
works are widely used in sentiment classification tasks. In RNN-based models, an attention mechanism is usu-
ally introduced because each word in the text contributes differently to the classification  task32–34. CNN-based 
 models35,36 use character-level CNNs to extract semantic information from text. However, these models lack an 
effective mechanism to capture the information in the dependency tree structure. In works  of37–39, structural 
and semantic information extracted from the tree structure of sentences, such as a dependency tree or grammar 
tree by LSTM or BiLSTM, was used for the sentiment classification task. Although Tree-LSTM can extract more 
accurate semantic information from text, it is difficult to perform parallel computing and requires a longer time 
to train. After that, CNNs were introduced into the tree structure information encoding process  by40,41. In their 
work, a phrase structure tree and syntax-dependent tree were used to encode the semantic information of the 
target sentence and the context, respectively. However, in the above tree-based convolutional neural network 
model, sentences are considered to be independent of each other, so information regarding the relationship 
between sentences is lost. To solve this problem, our model extracts semantic information via  GCNs9.

GCN models have attracted widespread attention and have been successfully deployed in NLP tasks. Yao 
et al.10 builds a corpus-level text graph by word-word co-occurrence and document-word relations for text 
classification. Zhang et al.42 introduces a TreeGCN, where the GCN is used to encode the dependency syntactic 
structure. Zhang et al.12 presented an aspect-based GCN to demonstrate that GCNs can achieve long-range 
word dependency. Zhang et al.43 employ gated graph neural networks document-level graph word interaction. 
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In contrast to their works, we regard the tokens and sentences in each document as graph nodes. The graph 
maintains inter- and intrasentence constraints to capture semantic information. It can obtain more accurate text 
semantics while increasing the interpretability of the model.

Transfer learning in sentiment analysis. Even with a strong deep learning model, the classification 
accuracy of implicit emotion classification problems is not ideal in the absence of sufficient labeled  data34,41. 
Yosinski et al.44 discusses the application of transfer learning in deep neural networks for single domains. It 
draws an important conclusion: adding fine-tuning will improve the performance of the deep transfer network. 
In the cross-domain scenario, the difference between the probability distribution of the source domain’s data and 
the target domain’s data is significant. The use of fine-tuning alone may lead to negative transfer. The purpose of 
domain adaptation, also known as cross-domain learning, is to reduce the difference in distribution representa-
tion of the data of the source and target domains. In domain adaptation, a direct way to solve the above problem 
is to use a certain distribution distance measurement method to measure the distance between distributions and 
reduce the distance in the model training process. However, the calculation of distance measurements is difficult. 
Many methods based on domain adversarial models have been  proposed5,6.

However, existing domain adversarial models for sentiment analysis focus on explicit sentiment classifica-
tion or aspect-level sentiment  classification45,46 without considering implicit situations. Due to data scarcity and 
the task’s value, transfer learning is more urgent for implicit sentiment analysis. To the best of our knowledge, 
CASA is the first explicit-to-implicit transfer learning model. MGD improved the model’s generalization ability 
to implicit emotion classification and the discrimination of each sentiment polarity.

Methods
Problem definition and approach overview. Domain definition. A domain D consists of marginal 
distribution P(x) and m-dimensional feature space X, namely D = {P(x),X}.

Task definition. Given the domain D, the task is composed of a classifier f(x) and a class label set Y, namely 
T = {f (x),Y} , where f (x) = Q(y|x) represent the conditional probability distribution, y ∈ Y .

Purpose. Given a training data come from source domain Ds = {(xi , yi)}
ns
i=1 and target domain 

Dt = {(xns+i , yns+i)}
nt
i=1 , we assume that there is a difference between the probability distribution P(Xs) and 

P(Xt) . under this settings, the purpose is to learn a prediction function f (x) : X → Y  that classify the target 
examples correctly during testing step.

The overview of the CASA framework is described in Fig. 3. As shown in Fig. 3, the proposed approach is 
divided into two steps: context modeling and transfer learning. Specifically, we first built CAHG in the context 
modeling phase to extract the semantic relationships unrelated to explicit and implicit sentiment domains. In 
the transfer learning step, MGD realizes fine-grained adaptation through a domain discriminator and label con-
sistency discriminator so that the model has stronger generalization ability. We present the details of different 
components as well as the training process in the following section.

Bi-GRU encoder. First, we use the bidirectional gated recurrent unit (Bi-GRU)47 to encode the text input 
from the source or target domain to obtain contextualized word-level representation H = [h1, h2, . . . , hi , . . . , hn] , 
where m denotes the vector dimension and hi ∈ Rm is the hidden layer state vector at time i. The reason for 

Figure 3.  Overview of the context-aware semantic adaptation network. CAHG represents the context 
background structure in both the source and target domains. Attention layers are hierarchical attention, 
token-level of target sentence, and sentence-level of context background. There are two layers of GCNs. MGD 
represents the proposed multigrain discriminator. Details on the CAHG and MGD are discussed in later 
sections.
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employing this layer is to correct the information of the syntactic dependency tree, which was built by HANLP. 
We use HANLP for this: https://www.hanlp.com.

GCNs over the context-aware heterogeneous graph. To express the text’s more valuable informa-
tion, we construct a document-level heterogeneous graph, which retains intrasentence dependency information, 
and has intersentence relationship representation. We define G = (V ,E) as a text graph, where |V | = n is the 
number of nodes and V, E represents the node set and the edge set of graph G, respectively. We construct G 
based on the token-token dependency relationship, TF-IDF, and sentence order. The token’s TF-IDF determines 
the edge weight between the sentence node and the token node in the sentence. We define TF as the number of 
words that appear in the sentence, and IDF as the logarithm of the overall sentence number in the text to the 
sentence number, which contains the token. The formal definition is as follows formula (1–3).

Among them, Sw and S represent the number of token occurrences in the input sentence and the sentence 
token’s total number, respectively. Docw and Doc represent the number of sentences in the input text with the 
token and the total number of sentences, respectively.

Meanwhile, we introduce the sentence sequential features to represent the sentence-sentence relationship. 
The matrix H ∈ Rm×n consists of the feature vector hi ∈ Rm of n nodes, and the adjacency matrix A ∈ Rm×n is 
used to represent the weights between nodes in graph G. The relationships of the edges between nodes p and q 
are formally defined as function (4–5):

Order(p, p+ 1) denotes sentence p → p+ 1 ’s natural reading order in the text. Tree(p, q) is the relationship 
between token nodes p and q in the dependency tree. Nsyntactic represents the number of times that the tokens p 
and q have a relationship in the current text (the relationship means that p and q in at least part of the Chinese 
characters are the same), and Ntotal is the number of times that p and q appear throughout the dataset. To facili-
tate the description of the process of information transfer in the graph, we divide CAHG into two subgraphs in 
Fig. 4. One of the subgraphs describes the transfer of information within sentences, and the other describes the 
transfer of information across sentences.

(1)TF − IDF =TF × IDF

(2)TFw =
Sw

S

(3)IDFw =log

(

Doc

Docw + 1

)

(4)Ap,q =











D(p, q) p,q all tokens
TF − IDFp,q p is sentence, q is token
Order(p, p+ 1) p is sentence
0 otherwise

(5)Dp,q =

{

Tree(p, q) p,q in same sentence
Nsyntactic

Ntotal
p,q in different sentence

Figure 4.  A tony demo of the CAHG. Si represents for the i-th sentence, tij represents for the j-th token in 
the i-th sentence, the intrasentence edges between the tokens are dependency relations, and the green color 
represents these tokens at least part of the Chinese characters are the same.
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The information propagates inter- and intrasentences via the GCN layers, followed by a hierarchical attention 
layer that keeps high-level domain-specific features. The final text representation is defined as follows:

In formula (6–8), r is the final representation of the text, which is composed of the target sentence Ot and the 
relevant context Oc . ⊕ represents the splice operation. HG

t  represents the output from two-layer  GCNs5. Then HG
t  

through a one-layer multilayer perceptron. Finally, Ot is obtained by weighted summation of the MLP output. 
The sentence-level attention mechanism Oc is a mirror of the word-level attention mechanism.

Multi-grain discriminator. Ben-David and Ganin proved that to perform domain adaptation to reduce 
the target domain’s prediction error, maximizing the discriminator error between the source and target is 
 necessary5,48,49. Therefore, adversarial-based transfer learning is widely used to solve the domain adaptation 
problem. Although it has considerable advantages, we observed that the domain discriminator could only 
reduce the marginal distribution distance.

However, the relationship between marginal distributions and conditional distributions is uncertain. As indi-
cated  in50, minimizing the difference between conditional distributions is critical to the robustness of distribution 
adaptation. We propose MGD, which consists of a domain discriminator T and an emotional polarity discrimina-
tor D. T makes the source domain and target domain not separable through domain confrontation. D maximizes 
the difference between different labels through label consistency identification. When the class discriminator D 
can accurately identify whether the sample labels from the source domain and the target domain are the same, 
the model can learn the class invariant features from the two domains. The formula is derived as follows:

where GT denotes the domain discriminator, GT (·) is the output prediction labels, LTi is the classification error, 
YD = [s, t] is a set of domain labels, and s and t represent the source and target domains, respectively.

To maximize the extraction of domain invariant features, we hope to maximize the discrimination error Gt . 
As suggested  in5, this min-max game is implemented by a gradient reversal layer. Specifically, when the network 
is undergoing the gradient back-propagation process, we will change ∇LT into −η∇LT . η > 0 is a controllable 
hyper-parameter.

where I denote an indicator function:

Here, GD denotes the class-consistency discriminator, GD(·) is the output prediction labels, and LDi is the clas-
sification error. Note that as LD drops, the distribution difference also decreases in the same sentiment polarity 
between different domains. Finally, GD enhances the identifiability of each sentiment polarity.

Sentiment classification and training. The vector r obtained by the feature extractor is sent to the cas-
cade of the fully connected layer and softmax layer to generate class distributions. The formula is as follows:

where P ∈ RC represents the predicted soft distribution, C is the number of classifications, and Wp ∈ Rc×m and 
bp represent training weights and offsets. The cross-entropy has a loss function, given as:

D is the document’s index with the label, and Y is the real label matrix. Therefore, we can obtain the classifica-
tion loss of the source domain LCs and the classification loss of the target domain LCt.

(6)αt,i =
exp

(

ω⊤
t tanh

(

WtH
G
t,i + bt

))

∑

i′ exp
(

ω⊤
t tanh

(

Wt ,H
G
t,i′ + bt

))

(7)Ot =
∑

i

αt,iH
G
t,i

(8)r =(Ot ⊕Oc)

(9)GT =softmax(WTr· + bT ), · ∈ (s, t)

(10)LTi =− YD
i log(GT (ri)− (1− YD

i )log(GT (ri)))

(11)GD =softmax(WD(rs ⊕ rt)+ bD)

(12)LDi =− Ilog(GD(ri))− (1− Ilog(GD(ri))

(13)I =

{

1 label(rs) = label(rt)
0 label(rs) �= label(rt)

(14)P = softmax(Wpr + bp)

(15)LC =
∑

i∈D

C
∑

j=1

YijlogPij
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Before the training stage, we were motivated  by42, who proposed mutual learning in supervised single-domain 
tasks. The Kullback Leibler divergence of the predicted source class distribution and predicted target class dis-
tribution is calculated and vice versa. The two KL divergences measure the similarity of the two distributions. 
Finally, the overall loss function in CASA consists of both source and target loss, which are given as follows: 
Ls = LCs − ηTLTs + ηDLDs + �DKL(Ps � Pt) and Lt = LCt − ηTLTt + ηDLDt + �DKL(Pt � Ps) . Here, ηT , ηT and 
� are hyperparameters.

Experiments
Datasets and evaluation indicator. Our target domain data set is The Evaluation of Chinese Implicit 
Sentiment Analysis task in SMP2019 (one of the top academic conferences on social media processing in China). 
The dataset contains two types of content in each document: context and target sentence. We chose four bench-
mark datasets of explicit sentiments as the source domain. They are the Weibo-60000 dataset, the hotel review 
dataset, the SMP-2020’s virus Weibo dataset, and the SMP-2020’s general Weibo dataset. The data is available 
at: http:// biend ata. com/ compe tition/ smpec isa20 19/, http:// www. pudn. com/ Downl oad/ item/ id/ 39937 18. html, 
http:// www. searc hforum. org. cn/ tanso ngbo/ corpu s1. php, https:// smp20 20. aconf. cn/.

To clean the dataset, we performed some preprocessing. The construction of a heterogeneous graph requires 
contextual sentence nodes and a dependency tree structure. We performed the following preprocessing, and 
Table 1 summarizes the statistics: 

(1) To keep intact the dependent syntax structure, filter out sentences, which have no subject-predicate struc-
ture.

(2) As suggested  by41,51, sentiment polarity consistency exists between the context semantic background and 
the target sentence. To match the target domain data granularity, we randomly select a sentence in each 
source domain document as the target sentence and the rest as the context.

We compute every model classification accuracy and F1 score in test dataset as evaluation indicator. The F1 
score calculation and accuracy are shown as follows:

where Pi and Ri mean the precision and recall of i-th sentiment polarity. After the above equation, we can 
through calculate metrics for each label, and find their unweighted mean getting macro-F1 score, i.e. 
macro-F1 = 1

N

∑

i∈Ni
F1i . P(x) is the predicted label and Y(x) is the actual label of sample x, respectively.

Models for comparison. To fully verify and understand CASA, we divide the baseline models into two 
groups for comparison:

Non‑transfer. To demonstrate the benefits from heterogeneous graphs, we compare with the following meth-
ods without transfer:

• TextCNN31, TextRNN52 and BiLSTM+Att53: These are the basic deep neural networks in sentiment classifica-
tion.

(16)DKL(Ps � Pt) =

Ns
∑

i=1

C
∑

c

pcs (ri)log

(

pcs (ri)

pct (ri)

)

(17)F1i =
2× Pi × Ri

Pi + Ri

(18)Accuracy =
|P(x) = Y(x) ⊆ x : x ∈ Dt |

|x : x ∈ Dt |

Table 1.  Statistics of the target domain and source domain datasets. The AvgLength denotes the average 
number of tokens in each text; the T2TEdges, the S2SEdges, and the S2TEdges indicate the average number of 
times token-token, sentence-sentence, sentence-token edges occurrences in each text, respectively.

Dataset Documents AvgLength T2TEdges S2SEdges S2TEdges Classes

Explicit

Virus 7146 35.46 63.47 2.11 44.67 2

Usual 22019 39.37 64.8 1.85 45.62 2

Weibo 119999 40.99 72.32 2.83 51.34 2

Hotel 9998 88.78 187.03 5.02 129.7 2

Implicit SMP_2019 9733 51.81 111.51 4.44 78.95 2

http://biendata.com/competition/smpecisa2019/
http://www.pudn.com/Download/item/id/3993718.html
http://www.searchforum.org.cn/tansongbo/corpus1.php
https://smp2020.aconf.cn/
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• TreeLSTM54: An LSTM network based on a tree structure, which solves the problem of the emotional clas-
sification of nonlinear systems such as dependent trees.

• TreeGCN39: BiLSTM is used to encode the input word vector to obtain the hidden state with context infor-
mation. It then uses a GCN convolution to obtain the neighboring node information, which enhances the 
GCN’s robustness.

• CASA‑T‑D: The CASA feature extractor part for examining the ability of CAHG to express text information.

Transfer. To investigate the effectiveness of each part in the CASA, we also compare the following frameworks 
for experiments. For a fair comparison, we use CASA-T-D as a feature extractor in other methods.

• Fine‑tuning: Initialize the CASA-T-D parameters randomly, then train on the source domain dataset, and 
finally fix the parameters and fine-tune the model in the target domain dataset.

• DANN+5: The model adopts the idea of domain adversarial, which has a feature extractor and a domain 
discriminator.

• CCSA55: A unified framework for supervised domain adaptation is created.
• d‑SNE56: d-SNE is a novel technique method based on the distance metric that has achieved great transfer 

results on the image benchmark datasets.
• DAS+45: This model employs two regularizations, entropy minimization and self-ensemble bootstrapping to 

refine its classifier while minimizing the domain divergence.
• DAAN+57: DAAN is an adaptation network with dynamic adversarial.
• SAFN+58: SAFN is the state-of-the-arts across many visual domain adaptation benchmarks.
• ML42: We apply the standard mutual learning in our task directly. ML can make the source domain and target 

domain collaborative and teach each other throughout the training process.

The original DANN, DAS, DAAN and SAFN are unsupervised domain adaptation models. As suggested  in59, 
we use the source code of DANN, DAS, DAAN and SAFN and extend them to DANN+ , DAS+ , DAAN+ and 
SAFN+ , which utilize target supervised information. They all have improved performances, respectively.

Implementation details. The word embeddings dimension is initialized with 200-dimensions. The GRU 
hidden layer size is 64 dimensions. The batch size is 64. The GCN hidden layers size is 128 dimensions, and the 
initial learning rate is 0.001. ηT is not constant and ηD and � are set in to be 0.1 and 0.9, respectively. Details on the 
hyperparameters are discussed in later sections. For a fair comparison of experimental results, feature extractors 
for all transfer learning models are set to CASA-T-D. Adam  optimizer60 is used to train up to 30 epochs on the 
dataset, and the loss value is output every 100 batches. The training is stopped when the verification loss does 
not decrease for ten consecutive times.

Main result analysis. Comparison with non‑transfer. We compared the model in the context modeling 
stage with the current nontransfer model to explore the heterogeneous graph’s presentation ability in CASA. The 
results are shown in Table 2.

We note that (1) the CASA-T-D results are far better than those of the other models. Despite the same tree 
structure, the TreeGCN results are 7.4% higher than that of TreeLSTM, which shows that GCN captures depth 
features more effectively. (2) CASA-T-D and TreeGCN are both GCN convolutions but different in representa-
tion learning. In comparison, the result of CASA-T-D is 2.02% higher than that of TreeGCN. (3) The BiLSTM 
+ Att has a higher performance than TextRNN. One possible reason is that the attention mechanisms in text 
classification plays an important role. Thus, it could be more convincing that the CASA-T-D model has superior 
performance mainly due to the CAHG, which gathers rich semantic information.

Comparison with transfer. It can be observed from the experimental results in Table 3 that (1) for the popular 
technology “fine-tuning”, after adding Virus, Usual and Weibo source domain data, the target data accuracy rates 
dropped by 0.68%, 1.4%, and 2.94%, respectively. This resembles our predicted results because the feature distri-
bution gaps in the source and target domains are too large. Fixed source domain parameters cannot be corrected 

Table 2.  Model comparison results. The state-of-the-art result of each evaluation indicator is bolded. The 
marker ♦ refers to p-value < 0.05 when compared with TreeGCN in the paired t-test. All models run over five 
times with random initializations and are report average precision, recall, macro-F1, and accuracy.

Systems P R macro-F1 Acc

Non-Transfer

TextCNN 0.7543 0.7544 0.7543 0.7544

TextRNN 0.7248 0.7237 0.7238 0.7243

BiLSTM+Att 0.7625 0.7626 0.7625 0.7626

TreeLSTM 0.7364 0.7279 0.7278 0.7317

TreeGCN 0.8119 0.8045 0.8043 0.8057

CASA-T-D 0.8266 0.8282 0.8256♦ 0.8259♦



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22038  | https://doi.org/10.1038/s41598-021-01385-1

www.nature.com/scientificreports/

sufficiently during fine-tuning; finally, negative migration occurs. (2) We try to apply advanced models in the 
visual DA to this task, but most of the results are not very outstanding. CCSA, d-SNE and DAAN+ even showed 
negative transfer on individual datasets. For example, the accuracy of CCSA and d-SNE on Virus Target dropped 
by 0.27 and 0.68, respectively. This result may be caused by the diversity between the image and the natural lan-
guage processing field. (3) The target domain experimental performances are improved with domain adaptation 
models CASA, DANN+ , DAS+ , SAFN+ and ML for all source domains. This proves that the knowledge learned 
from explicit sentiment is helpful to the recognition of implicit sentiment.

(4) SAFN+ has the outperformance result in the transfer of Usual → Target, which shows that many com-
monalities between visual domain adaptation and NLP domain adaptation could be mined. (5) In addition, the 
contribution of different source domains to implicit sentiment recognition is different. From Table 1, we know 
that the virus and hotel datasets are characterized by a small amount of data but a single topic of content. In 
contrast, the datasets Usual and Weibo have a large amount of data but on various topics. For CASA, the effect 
of single-topic transfer (Virus→Target, Hotel→Target) is better than that of multitopic transfer (Usual→Target, 
Weibo→Target). The Virus→Target, with a more similar structure, has a better transfer effect than Hotel→Target.

Ablation study. To further compare each component CASA’s contribution, we sorted out the data of the 
ablation study part of the main experiment and plotted it into a line chart, as shown in Table 4. From Table 4, we 
can intuitively find the following information.

(1) Removing the CAHG, class discriminator, and domain discriminator of CASA separately, the experimental 
results drop by 1.44%, 1.65%, and 2.06% and are still higher than those of the nontransfer model CASA-T-D 
(82.59%). This shows that the fine-grained adjustment contributes to this transfer task, and the coarse-grained 
adjustment has greater performance than the heterogeneous structure. (2) When CASA-T-D removes CAHG 
and CASA* removes MGD, the accuracy drops by 0.78% and 2.16%, respectively, indicating that the CAHG and 
MGD we proposed can have a great impact on the experimental results.

Hyperparameter study. In this section, we will present how to choose the value of hyperparameters ηT , 
ηD and �.

Hyperparameter ηT. Inspired  by5, ηT is not a constant, but changes from 0 to 1, namely ηT = 2
1+exp(−α·p) − 1 . 

Wherein, the hyperparameter −α in this paper is set to 10 as  in5; The relative value p of the iterative process, 
that is, the current number of training steps / the total number of training steps, changes from 0 to 1 with the 
progress of training. The above formula means that at the beginning,ηT = 0 , the domain classification loss will 

Table 3.  Model comparison results with domain adaptation. The state-of-the-art result of each dataset is 
bolded. The marker † refers to p-value < 0.05 by comparing with ML in paired t-test, while the marker ‡ refers 
to p-value < 0.05 by comparing with SAFN+ in paired t-test. All models run over five times with random 
initializations and report the mean results.

Systems

Virus→Target Usual→Target Weibo→Target Hotel→Target

F1 Acc F1 Acc F1 Acc F1 Acc

Transfer

Fine-tuning 0.8192 0.8191 0.8093 0.8119 0.7966 0.7965 0.8272 0.8284

DANN+ 0.8340 0.8345 0.8306 0.8314 0.8276 0.8284 0.8371 0.8386

CCSA 0.8224 0.8232 0.8358 0.8376 0.8293 0.8304 0.8265 0.8273

d-SNE 0.8189 0.8191 0.8349 0.8356 0.8300 0.8301 0.8202 0.8201

DAS+ 0.8467 0.8469 0.8397 0.8396 0.8336 0.8335 0.7942 0.7955

DAAN+ 0.8217 0.8099 0.8210 0.8109 0.8180 0.8078 0.8171 0.8068

SAFN+ 0.8278 0.8284 0.8461 0.8469 0.8384 0.8397 0.8404 0.8407

ML 0.8469 0.8479 0.8351 0.8366 0.8315 0.8325 0.8370 0.8376

CASA 0.8541† 0.8540† 0.8433† 0.8448† 0.8398‡ 0.8407‡ 0.8475‡ 0.8489‡

Table 4.  Ablation study results. For all transfer learning models, the source domain is virus. w/o CAHG 
means removing the sentence nodes and intergraph token-token links and turning them into a homogeneous 
graph structure for training. Accuracy is reported as the average result over 5 runs with random initialization.

Systems Accuracy

Best CASA 0.8541

w/o CAHG CASA* 0.8397

w/o Class adaptation CASA-D 0.8376

w/o Domain adaptation CASA-T 0.8335

w/o MGD CASA-T-D 0.8259

w/o MGD&CAHG CASA-T-D* 0.8181



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22038  | https://doi.org/10.1038/s41598-021-01385-1

www.nature.com/scientificreports/

not be passed back to the feature extractor network, and only the domain classifier is trained; As the training 
progresses, ηT gradually increases, and the feature extractor is trained and begins to gradually generate features 
that can confuse the domain classifier.

Hyperparameters ηD and �. Which are selected through the validation set. First we have to judge whether ηD 
and � is the same order of magnitude, and the order of magnitude after verification is −1.Therefore, setηD + � = 1 
, When the verification set loss is minimum, checking the test accuracy.

Figure 5 shows the test set accuracy under different ηD values. From (a), it shows that the optimal range of 
ηD value is 0 to 0.2. Thus we did further experiments, as shown in (b). From (b), we can see that the optimal ηD 
value is 0.10, so � is 0.90.

Effectiveness verification
Case study. We want to explore what domain-specific information, which has been learned from the source 
domain, would enhance implicit emotion classification. In Table 5, we visualized the hierarchical attention layer 
in the nontransfer model CASA-T-D and the full model CASA. Using the CASA-T-D model as a benchmark, we 
compare the differences in attention weight distribution of different models under the same text.

The first two samples contain only one context and the target sentence. Although the two models’ attention 
scores are different, the critical points of emotional judgment are noted, such as ‘差 (poor)’ and ‘伤害 (harm)’. 
Obviously, these tokens are domain-independent words, which are usually used in many domains. In the third 
example, the CASA model learned the virus domain-specific information ‘抵抗力 (resistless)’, but CASA-T-D 
could not.

Then, we examine the impact of long contextual text on the two models. As shown in the last example, 
CASA-T-D focuses most of its attention on the token ‘不到 (not)’ in the target sentence and does not notice the 
token ‘不到 (good)’ in the context. In contrast, the CASA attention score is relatively scattered, conducive to the 
judgment of emotional polarity, which may benefit from source domain knowledge.

Feature visualization. To better illustrate how the CASA works, we used t-SNE61 to reduce the dimension-
ality of the feature to two and visualize the data distributions after domain adaptation Virus → Target.

Figure 6 shows that the baseline models (a), (b) and (c) all virtually guarantee the source and target domain 
data fusion. On the other hand, the distance between the classes in the domain is still very close.

In contrast, benefitting from our proposed MGD, CASA’s intraclass boundary is significantly more significant, 
conducive to intraclass identification.

Figure 5.  Hyperparameter study. For all ηD values, the source domain is virus. Accuracy is reported as the 
average result over 3 runs with random initialization.
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Conclusions and future work
This paper proposes a CASA network via graph convolution for the cross-domain implicit sentiment classification 
problem, first building a relation between explicit and implicit sentiment. Existing studies either rarely consider 
using domain-specific semantic information or ignore maximizing class-specific decision boundaries. We aim 
to address the above two drawbacks. First, CASA provides a CAHG, effectively extracting domain-specific 
semantical information for both sources and targets. Hence, CASA improved the model’s generalization ability 
for implicit classification tasks. The case study shows that our model can effectively capture high-level domain-
specific features. Second, CASA conducts an MGD to adapt the domain distribution, enhancing class distinction 
in each sentiment polarity decision boundary during domain adaptation. The feature visualization results show 
that CASA clarifies samples’ boundaries from different classes while adapting to the domain.

Moreover, there are several worthy challenges in cross-domain implicit sentiment tasks, such as transferring 
between the different single-domain topics, fine-grain sentiment transferring, ambivalence handling, and trans-
ferring explicit-to-implicit topics where the target domain tags are not given. We believe that all these factors 
can help us comprehend the link between explicit and implicit sentiment and that implicit sentiment analysis 
will be solved more effectively in the future.

Table 5.  Case study. Visualization of attention weight distribution from CASA-T-D and CASA on testing 
examples. For CASA, the source domain is Virus. Marker � signifies correct prediction, while marker × signifies 
incorrect prediction. Blue denotes the sentence weight, and red denotes the word weight.
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