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Age‑related macular degeneration (AMD) is a progressive retinal disease, causing vision loss. A more 
detailed characterization of its atrophic form became possible thanks to the introduction of Optical 
Coherence Tomography (OCT). However, manual atrophy quantification in 3D retinal scans is a tedious 
task and prevents taking full advantage of the accurate retina depiction. In this study we developed 
a fully automated algorithm segmenting Retinal Pigment Epithelial and Outer Retinal Atrophy 
(RORA) in dry AMD on macular OCT. 62 SD‑OCT scans from eyes with atrophic AMD (57 patients) were 
collected and split into train and test sets. The training set was used to develop a Convolutional Neural 
Network (CNN). The performance of the algorithm was established by cross validation and comparison 
to the test set with ground‑truth annotated by two graders. Additionally, the effect of using retinal 
layer segmentation during training was investigated. The algorithm achieved mean Dice scores 
of 0.881 and 0.844, sensitivity of 0.850 and 0.915 and precision of 0.928 and 0.799 in comparison 
with Expert 1 and Expert 2, respectively. Using retinal layer segmentation improved the model 
performance. The proposed model identified RORA with performance matching human experts. It has 
a potential to rapidly identify atrophy with high consistency.

Age-related macular degeneration (AMD) is a chronic and progressive disease, with central visual loss in more 
advanced stages. Atrophic AMD is one of the late stage forms of the disorder, characterized by irreversible loss 
of retinal layers—photoreceptors, the retinal pigment epithelium (RPE), and the  choriocapillaris1. Its traditional 
assessment is based on fundus autofluorescence (FAF) and color fundus photography (CFP).

Recently, a new classification system for atrophy in AMD has been proposed, based on spectral-domain 
optical coherence tomography (SD-OCT)2,3—a modality providing 3D depiction of the retina at micrometer 
resolution. It allows for differentiating the affected retinal layers (outer retinal atrophy (ORA) versus retinal pig-
ment epithelium and outer retinal atrophy (RORA)) as well as for distinguishing the completeness of the atrophic 
changes and as a result a more detailed pathology characteristics. Indeed, atrophic presentation in AMD is vari-
able in size, progression, sharpness of borders, and the involved retinal layers as shown in Fig. 1. An OCT-based 
classification system allows accounting for those structural details and is no longer restricted to only the typically 
well-defined geographic atrophy in atrophic AMD seen in FAF images.

Deep learning (DL) applied in the medical domain enabled automated detection of different structures by 
extracting patterns from large quantities of annotated data. Among the various DL methods, Convolutional 
Neural Networks (CNNs) have been shown to be particularly well-suited to the field of medical  imaging4–7. AI 
has been successfully applied also to the automated identification of geographic atrophy (GA) based on SD-
OCT8–16. While the results of the previous studies were promising, they were not based on the most recent 
atrophy definition of RORA and the model’s prediction relied primarily on the hypertransmission (increased 
signal) in the choroid, ignoring subtle changes in the photoreceptors and the RPE layer, which are critical for 
early atrophy detection.

The aim of our study was to develop a fully-automated algorithm to detect and measure RORA in macular 
SD-OCT volume scans according to the most recent  definition2,3. To this end, a DL model based on CNN was 
developed. In contrast to other methods, it relies not only on choroid hypertransmission, which is insufficient to 
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detect RORA as shown in Fig. 1D, but uses the information from full retina cross-section, additionally focusing 
on RORA-relevant retinal layers.

The interobserver agreement for RORA based on OCT only is  challenging2, and an automated algorithm 
could allow for highly reproducible and rapid image analysis, which is potentially useful not only for research, 
but also for clinical practice.

Figure 1.  Examples of an OCT b-scan (left) and corresponding manual RORA segmentation (right). (a) 
Hypertransmission in the choroid is present within the annotated region. The status of the RPE is attenuated in 
the right part of the square and absent in the left part. (b) Clear presence of hypertransmission in the choroid, 
absence of the RPE line, and severe alteration of the photoreceptors. (c) Clearly altered but still present RPE 
layer within the annotated region. The RORA criteria are not fulfilled for the region to the left of the square, as 
there is incomplete hypertransmission and elevated RPE without significant attenuation. (d) Example of weak 
hypertransmission despite absence of the retinal pigment epithelium and existing RORA.
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Results
The 62 OCT volumes were extracted from 62 eyes (43 right eyes, 19 left eyes) with atrophic age-related macular 
degeneration of 57 patients (mean age 85 ± 12 years, 38 females (66.6%)). The training set, used for development 
and cross validation, contained 2557 b-scans (44 cube scans), including 1166 b-scans without RORA and 1391 
b-scans with RORA presence. The separate test set of 18 OCT volumes (each graded by two clinicians), contained 
1038 b-scans, including 344 b-scans without RORA and 694 b-scans with RORA presence. An additional set of 
5 healthy subjects (173 b-scans) was used to assess the false positive rate.

Segmentation performance metrics. The performance metrics of the algorithm described in detail in 
“Methods” section and shown in Fig. 2, are summarized in Table 1 (cross validation) and Table 2 (separate test 
set graded by two experts). The segmentation metrics were computed per OCT scan and averaged.

Figure 2.  Method design. (a) A schematic illustration of our training method with layer segmentation prior. An 
input to the neural network is an OCT b-scan. The CNN output is a probability map for an atrophic region with 
a vertical span corresponding to the RPE layer and choroid. The loss is computed in 2d between the prediction 
and the RORA ground-truth masked with RPE and choroid. (b) A schematic illustration of the training 
approach without using layer segmentation prior. As the vertical span of the ground-truth bounding box is 
undefined, the loss is computed in 1d between the maximum probability projections of prediction and ground-
truth. (c) Inference workflow—each b-scan in a test volume is fed to the CNN, which outputs RORA prediction. 
In order to obtain an en face view, the predictions are max-projected and thresholded at 0.5.
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The proposed method showed stable and high performance in fivefold cross validation with average Dice 
scores ranging between 0.853 and 0.928. Similarly, Cohen’s Kappa scores ranged from 0.819 to 0.902 (Table 1, 
Fig. 3).

On the additional test set annotated by two graders, our model achieved a similar performance as the experts 
between themselves. The average Dice score of the CNN was 0.881 and 0.844 compared with Expert 1 and Expert 
2 as ground truth, respectively. In comparison, the average Dice score between the experts themselves was 0.863. 
Most of the test volumes obtained Dice score over 0.85 with respect to Grader 1 and over 0.80 with respect to 

Table 1.  Mean performance metrics of our method on fivefold cross validation.

Dice score Precision Recall Kappa

Fold 1 0.886 ± 0.077 0.849 ± 0.122 0.941 ± 0.064 0.861 ± 0.080

Fold 2 0.853 ± 0.111 0.814 ± 0.171 0.924 ± 0.051 0.819 ± 0.158

Fold 3 0.928 ± 0.051 0.934 ± 0.056 0.926 ± 0.077 0.902 ± 0.063

Fold 4 0.888 ± 0.048 0.862 ± 0.074 0.920 ± 0.062 0.862 ± 0.065

Fold 5 0.859 ± 0.184 0.809 ± 0.214 0.954 ± 0.038 0.836 ± 0.185

Table 2.  Mean performance metrics of the convolutional neural network (CNN) and graders on the separate 
test set. Bold indicates  the best performance values per evaluation parameter.

Dice score Precision Recall Kappa

Using annotations of grader 1 as ground-truth

Ji et al.12 0.716 ± 0.191 0.772 ± 0.244 0.727 ± 0.187 0.649 ± 0.180

Ours w/o layer prior 0.841 ± 0.114 0.955 ± 0.050 0.765 ± 0.157 0.801 ± 0.110

Ours with layer prior 0.881 ± 0.074 0.928 ± 0.054 0.850 ± 0.119 0.846 ± 0.072

Grader 2 0.863 ± 0.099 0.982 ± 0.014 0.782 ± 0.145 0.828 ± 0.100

Using annotations of Grader 2 as ground-truth

Ji et al.12 0.677 ± 0.206 0.679 ± 0.264 0.770 ± 0.177 0.608 ± 0.188

Ours w/o layer prior 0.831 ± 0.090 0.845 ± 0.134 0.845 ± 0.130 0.800 ± 0.086

Ours with layer prior 0.844 ± 0.076 0.799 ± 0.133 0.915 ± 0.064 0.800 ± 0.082

Grader 1 0.863 ± 0.099 0.782 ± 0.145 0.982 ± 0.137 0.828 ± 0.100

Figure 3.  Distribution of the Dice and kappa scores in fivefold cross validation. The line within the box 
corresponds to median value, the range of each box to Q1-Q3 range (25–75% of scores) and whiskers to lowest 
and highest observations excluding outliers (individual points).
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Grader 2 (Fig. 4). Additionally, the CNN showed high precision (0.928) with respect to Grader 1, and a high 
recall (0.915) with respect to Grader 2. RORA was not detected in any of the healthy test cases. Figure 5 shows 
several en-face examples of the CNN predictions and manual ground-truth.

The model trained without layer prior achieved lower Dice scores with respect to both graders (0.841 and 
0.831) (Table 2). While it improved the overall precision, the recall dropped significantly compared to our pro-
posed approach.

The method of Ji et al.12 achieved lower performance than our model, with an average Dice score of 0.716 
and 0.677 compared to Grader 1 and 2 respectively. The drop in performance was especially visible in terms of 
precision. Qualitative examples of predictions obtained with our method (trained with and without layer seg-
mentation) as well as predictions of the method of Ji et al. are shown in Fig. 6.

Inter‑expert Agreement. The level of segmentation agreement between the two experts, as well as that 
between each expert and the trained models, was computed on the test set in terms of Cohen’s kappa coefficients 
(Table 2, Fig. 4). The mean Cohen’ kappa coefficient between experts was 0.828. The CNN model showed a mean 
Cohen’s kappa coefficient of 0.846 and 0.800 with Experts 1 and 2, respectively.

Figure 5 presents Bland–Altman plot for segmented RORA area differences between graders and the auto-
matic method. It indicates that Grader 1 had a tendency to segment a bigger area than Grader 2 and the proposed 
method closely matched her. Grader 1 was the senior grader (IM), and Grader 2 the junior (YD).

Complete and incomplete RORA. The prevalence of iRORA lesions in the ground truth of the test set 
provided by Grader 1 and Grader 2 was 82 and 91 lesions, respectively, based on a b-scan evaluation (horizontal 

Figure 4.  Distribution of the Dice and kappa scores per test volume when using ground-truth provided by 
either of the graders. The performance of our method matches the level of agreement between the two graders.
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extension of 250 μm). However, on the en face presentation, 78% and 96% of iRORA cases identified by Grader 
1 and 2 respectively were in direct connection with a neighbouring cRORA, representing an edge of the RORA 
lesion rather than an isolated iRORA lesion. Of the remaining iRORA lesions without contact to a cRORA on a 
neighbouring b-scan (18 cases for Grader 1 and 4 cases for Grader 2), the interobserver agreement was 0.18, and 
the CNN model was able to identify 16% of iRORA cases delineated by Grader 1 and 25% of iRORA annotated 
by Grader 2.

Figure 5.  Bland–Altman plot illustrating RORA area differences between graders and our method.

Figure 6.  Examples of en face RORA segmentation. From left to right: a corresponding infra-red fundus image, 
RORA annotated by Expert 1, Expert 2, predicted by the method of Ji et al.12 and predicted by our algorithm 
trained without and with layer prior. Our automatic segmentation approach was able to consistently segment a 
wide range of atrophic lesions and detected cases where hypertransmission was not clearly visible in infra-red 
images.
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Discussion
The proposed DL method achieved performance comparable to the two clinicians for the detection and delinea-
tion of RORA in SD-OCT images among atrophic AMD patients. The disagreement between experts was similar 
to the difference between CNN and an individual expert. Thus, the CNN performed within the accuracy range 
that can be found between  experts2. However, the automatic approach has the advantage of being progressively 
more consistent with continuous training.

Recent years have seen increased interest in application of automated methods for disease identification and 
pathology segmentation in OCT imaging. De Fauw et al.17. introduced an automatic method for making referral 
decisions for retinal diseases based on the prior tissue segmentation. Apart from GA, other pathologies of inter-
est segmented in OCT include retinal  fluids18–20 and Hyperreflective  Foci21. Schmidt-Erfurth et al.22 proposed a 
method for predicting early AMD progression to the wet type with choroidal neovascularization (CNV) or dry 
type with GA. For those two tasks it obtained AUC of 0.68 and 0.80 respectively. Venhuizen et al.14 evaluated a 
machine learning method to automatically grade AMD stages from OCT scans. Their method achieved sensitivity 
of 0.982 and specificity of 0.912, which was comparable to agreement between clinicians. However, the ground-
truth clinical grading was based on CFP, and the authors noted that in several cases of nascent GA the algorithm 
assigned higher severity than the graders. This is possibly because of atrophy already seen in OCT but not yet in 
CFP, which underlines the importance of OCT imaging in atrophy diagnosis. While previous reports incorporat-
ing machine learning for atrophic AMD  images8–15,22–25 mostly used FAF, according to the classic definition of 
GA, the recent trend for classifying atrophy in AMD is strongly based on SD-OCT, in order to benefit from its 
structural  information2,3. Indeed, SD-OCT enables the detection of pathologic changes of specific retinal lay-
ers at various stages of the atrophic process, sometimes even before lesions are clinically visible in fundoscopy.

OCT-based detection algorithms mainly rely on choroidal hypertransmission to identify GA. Hu et al.8 pro-
posed a method based on the projection image derived from the region between RPE/Bruch membrane and 
the choroid, obtaining an average Dice score of 0.87. The method introduced by Niu et al.26 processed an OCT 
projection image with an average overlap ratio of 0.81. Zhang et al.11 constructed a projection input using the 
OCT region underneath the Bruch membrane as an input to a multi-scale CNN, achieving an average Dice score 
of 0.91. These methods used a set of hand-designed heuristic steps to segment atrophy, which commonly do 
not generalize as well as data-driven approaches. Conversely, Ji et al.12 and Xu et al.13 used each OCT a-scan as 
an input to a neural network instead of a projection image. The initial prediction was subject to refining steps, 
resulting in an overlap ratio of 0.86912 and 0.90713. Classification of raw a-scans saves the additional step of 
preparing a slab image, but at the same time it omits the contextual information of a full b-scan. In contrast to 
previous reports, which used the classic definition of GA based on FAF and  hypertransmission8–13, our study 
used the recently proposed classification system based on SD-OCT, including layer specific criteria for RORA 
and full b-scan context.

The reported expert grading of the presence or absence of cRORA showed great  variability2. The gradual 
degenerative process leads to a spectrum of OCT changes within the process, from normal to incomplete, and 
finally to complete atrophy, which makes a clear cutoff between the definitions challenging. Despite this dif-
ficulty, we found an inter-expert agreement in our study of 0.83, and a Dice score of 0.86 between the experts. 
This number was calculated on segmentation agreement, which is more challenging than mere presence/absence 
agreement. Given the high reported  variability2 we consider the inter-expert agreement found herein to be 
satisfactory. The CNN segmentation within the range of the inter-expert variability can be considered to be 
within human-grade annotation performance. Furthermore, the results of cross validation were comparable 
to the performance on a separate test set and within the agreement between graders, showing stability of the 
proposed method.

Adding retinal layer information during training increased the algorithm test performance. While the method 
trained without layer prior still achieved satisfactory results, a significant drop in recall was observed. Figure 7 

Figure 7.  Comparison of outputs obtained with models trained without and with layer information. Left: 
input b-scan, middle: output of CNN trained without layer prior, right: output of CNN trained with layer prior 
overlaid on input b-scan. The network trained using only maximum probability projection focuses mostly on 
increased hypertransmission in atrophic regions, while the other model also looks at RPE status.
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illustrates the fact that our model looks at the most relevant image regions for RORA definition (RPE and 
choroid), while the approach trained without layer prior detects primarily increased hypertransmission. While 
hypertransmission is an important sign of RORA, it is not a sufficient criterion in itself, and therefore the inves-
tigation of the RPE region is important.

Applying the method recently proposed by Ji et al.12 achieved lower performance. Possible reasons include 
the facts that their method used individual a-scans as input, did not take into account contextual information 
on b-scans and that the compared baseline did not incorporate layer information, resulting in lower recall in the 
atrophic regions where RPE was still relatively intact (Fig. 6, last row).

In general, our method showed higher recall than precision (Table 1). The likely cause is the maximum 
probability projection, which was applied to obtain en face output and may bias the error towards false positives 
and over-segmentation. Manual inspection of the outliers seen in Fig. 3 showed that in several cases the model 
detected RORA in the regions with existing drusen or elongated, flat PED as well as strong hypertransmission 
in the whole choroid (SI, Fig. S1). Enriching the train set with more OCT scans containing drusen may improve 
the performance in such cases.

For the differentiation between cRORA and iRORA, several problems became evident. First, the iRORA 
lesions were infrequent in our cohort, possibly related to the advanced stage of atrophic AMD. Indeed, our 
inclusion criteria were orientated on the presence of GA which largely corresponds to cRORA. Second, some 
small b-scan lesions (< 250um) were edges of cRORA lesions rather than isolated, true iRORA lesions. Third, 
the definition based on size resulted in disagreement of classification due to very small size differences between 
graders. For all of these reasons, we described the CNN performance with respect to iRORA with caution.

To study the generalizability of our method, we fully separated the OCT patient sets used for the training 
and testing phases as well as in folds of cross validation, avoiding intra-eye, and intra-patient correlation. Thus, 
the result of high precision by the algorithm with the test set demonstrates the algorithm’s ability to correctly 
analyze the criteria for RORA and apply these criteria for cases it had not seen before, including healthy scans.

There are some limitations to our study. Although the number of b-scans included is high, we acknowledge 
that the number of test eyes was limited. An approach with fewer b-scans per eye and larger number of eyes, 
would have precluded an en face area evaluation of the CNN model predictions. In addition, a wide range of 
atrophy presentations was included, from small to large lesions, from sharply demarcated to ill-defined RORA 
borders, from unifocal to multifocal to confluent to diffuse regions (Fig. 6). Thus, we believe that the included 
spectrum is representative. Moreover, the results of cross validation were in line with the performance on the 
separate test set, which further shows robustness of the proposed approach.

We acknowledge that the selection criteria of atrophy visible on FAF and SD-OCT may have led to exclusion 
of earlier stages of atrophy not yet visible on this modality. Therefore, our results cannot be generalized to cases 
without atrophic signs on FAF. All training and testing scans used in this study were cube scans acquired with 
the Spectralis OCT machine. While adequate augmentation and resizing techniques should cover at least part 
of the image appearance variability, inclusion of other manufacturers would potentially increase the proposed 
method’s robustness and allow us to test its generalizability properties. Similarly, the applicability to neovascular 
cases has not yet been investigated. Finally, the number of human experts was limited to two. A ground truth 
with more graders would cover a larger part of the spectrum of inter-expert variability.

Future research should focus on the applicability of such algorithms on a larger spectrum of diseases, includ-
ing earlier but also neovascular stages. Furthermore, recognition of more stages in the development of atrophy 
would be valuable.

In conclusion, in this paper we proposed a DL model for the automated detection of atrophy in SD-OCT 
images. It takes into account the structure of RPE and the choroid, which is in line with the new RORA definition. 
The results showed excellent performance of the model for RORA identification and measurement on SD-OCT 
scans. The advantages of this algorithm and future developments include consistency of the algorithm, and rapid 
calculation of the atrophic area in AMD, all based on the widely available imaging generated with SD-OCT. This 
might become a useful tool for atrophy measurement and grading, particularly with regards to the difficulty to 
achieve consensus between human experts. Furthermore, early identification of atrophy could allow patients to be 
properly staged, enable appropriate monitoring of atrophy, and support new therapeutic development approaches.

Methods
Subject and data recruitment. SD-OCT scan volumes were extracted from an existing image database 
of the Medical Retina Department at Jules-Gonin Eye Hospital. Included were AMD eyes with atrophy on fun-
dus autofluorescence and SD-OCT Spectralis scans (Heidelberg Engineering, Germany; at least 49 b-scans, 
6 × 6 mm), and the absence of exudative signs (past and present examinations). Exclusion criteria were a history 
of retinal treatment, evidence of neovascularization, RPE tear, poor image quality (Heidelberg Spectralis quality 
level 20 or below, according to the inbuilt quality grading system), or confounding retinal pathologies. A random 
selection of 57 patients resulted in the recruitment of 62 eyes with fulfilled inclusion and exclusion criteria. The 
study was approved by the cantonal commission for ethics and human research committee—Vaud (CER-VD 
2017-00493) and was performed according to the ethical standards set by the Declaration of Helsinki. Informed 
consent was waived by the cantonal commission for ethics and human research committee—Vaud (CER-VD).

Atrophy segmentation and criteria. The entire sample of SD-OCT volumes were separated into three 
independent sets: a training set (2301 b-sans), a validation set (256 b-scans), which together were obtained from 
44 eyes and constituted a development set, and a separate test set from 18 eyes (1038 b-scans). Volumes from 
the training set were sampled from different patients than volumes from the test set. All training SD-OCT scans 
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were annotated per b-scan indicating the extent of atrophy (definitions below), by two readers (YD and IM). For 
the test set the experts worked completely independently.

For image segmentation and annotation, the OCT volumes were imported into the OmniViewer software 
(OmniViewer, RetinAI, V2019.4.0). RORA was identified on each b-scan using bounding boxes to delimit the 
lateral borders of atrophy, with the RORA zone at its interior. The vertical span of the annotated bounding box 
was not considered though, as the aim was to evaluate RORA in an en face (i.e. projection) view. RORA was 
defined according to the consensus definition by the Classification of Atrophy Meeting (CAM) Reports as a 
zone of choroidal hypertransmission and absent or attenuated RPE, with evidence of overlying photorecep-
tor  degeneration2,3. In complete RORA (cRORA), the width is larger than 250 μm while in incomplete RORA 
(iRORA) the width is less than 250 μm. Examples of annotations are shown in Fig. 1A–D.

Automated segmentation method. The goal of this study was to predict atrophic signs in the retina 
using 3D SD-OCT volumes. To this end, a CNN was trained, whose input was a single 2D b-scan (a slice of 3D 
volume on the fast acquisition axis) and the output was a corresponding 2D RORA probability mask (Fig. 2A).

As it is known that RORA affects the RPE and the outer retinal layers, we used retinal layer information 
as a prior in order to focus the network attention on the photoreceptors and the RPE region during training. 
Additionally, hypertransmission in the choroid motivated the inclusion of the choroidal region as a region of 
interest. To this end, every training b-scan was first automatically segmented using the approach of Branch 
Residual U-shape  Network27 to obtain an RPE and choroid segmentation mask. Next, it was used to define the 
vertical extent of the atrophy ground-truth (Fig. 2A). By constructing the training ground-truth where hori-
zontal extent is constrained by RORA width and the vertical dimension by the relevant retinal layers, we force 
the network to put greater attention to the affected retinal regions, which are emphasized by the latest RORA 
definition. The retinal layer segmentation was only applied in the training phase to compute the training loss 
but was not required at inference time.

The encoder part of our U-Net style network was based on the EfficientNet-b3  architecture28 pre-trained on 
ImageNet—a large set of natural images. During training we sampled batches of 32 b-scans and used the Adam 
 optimizer29 with a learning rate of 0.000025. We optimized a binary cross entropy loss with focal  loss30 gamma 
exponent of 2 for a total number of 50 epochs. We used common data augmentation strategies such as horizontal 
flip, scaling (in the range 0.8 to 1.2), adding gaussian blur and additive random noise. The model was developed 
using the Pytorch  library31. The learning curves for training and validation sets are available in SI, Fig. S2.

Outcomes and statistical evaluation. The CNN performance was first evaluated with fivefold cross 
validation using the development data (44 OCT scans of 44 eyes/39 patients). Next, the model was retrained 
using all available training data and tested on the separate test set (18 OCT scans of 18 patients), where each scan 
was annotated by two experts. In order to obtain en face predictions, the network output was projected using the 
maximal atrophy probability along the vertical direction, and thresholded at 0.5.

Outcome measures included the inter-expert agreement (Cohen’s kappa coefficients) as well as the sensitivity, 
precision and the Dice score of the en face atrophy segmentation. All metrics were computed per test volume/
scan by aggregating b-scan predictions from the given scan.

To investigate the influence of the retinal layer prior in training, the experiment was repeated without includ-
ing a photoreceptors-RPE-choroid mask. In that case the loss function was computed in 1D by taking the maxi-
mum probability projection along the b-scan’s vertical axis (Fig. 2B). Additionally, we compared our method 
to the one proposed by Ji et al.12, which similarly to us and in contrast to other methods did not perform image 
projection prior to feeding it into the network, but unlike us did not use any layer focusing mechanism during 
training. Finally, to study the bias of the proposed model and the range of error values, we computed Bland–Alt-
man plots for the RORA area.

The definition of incomplete RORA (iRORA) as a presumed precursor of complete RORA (cRORA) lesions, 
differs from the cRORA definition by its size smaller than 250 μm. Accordingly, the expert annotations were 
subclassified as either iRORA or cRORA by measurements on the horizontal b-scans. The prevalence of iRORA 
lesions and their relationship to cRORA was analysed in a descriptive way. The CNN performance for iRORA 
was calculated as the discovery rate.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to privacy 
constraints. The data may however be available from the Service of Medical Retina at the University Eye Hospital 
of Lausanne subject to local and national ethical approvals.

Code availability
The Machine Learning models described in this work were developed using the Pytorch library. The performance 
analysis was conducted using code developed in Python.
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