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Diosmectite inhibits the interaction 
between SARS‑CoV‑2 and human 
enterocytes by trapping viral 
particles, thereby preventing 
NF‑kappaB activation and CXCL10 
secretion
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SARS‑CoV‑2 enters the intestine by the spike protein binding to angiotensin‑converting enzyme 
2 (ACE2) receptors in enterocyte apical membranes, leading to diarrhea in some patients. Early 
treatment of COVID‑19‑associated diarrhea could relieve symptoms and limit viral spread within 
the gastrointestinal (GI) tract. Diosmectite, an aluminomagnesium silicate adsorbent clay with 
antidiarrheal effects, is recommended in some COVID‑19 management protocols. In rotavirus models, 
diosmectite prevents pathogenic effects by binding the virus and its enterotoxin. We tested the 
trapping and anti‑inflammatory properties of diosmectite in a SARS‑CoV‑2 model. Trapping effects 
were tested in Caco‑2 cells using spike protein receptor‑binding domain (RBD) and heat‑inactivated 
SARS‑CoV‑2 preparations. Trapping was assessed by immunofluorescence, alone or in the presence 
of cells. The effect of diosmectite on nuclear factor kappa B (NF‑kappaB) activation and CXCL10 
secretion induced by the spike protein RBD and heat‑inactivated SARS‑CoV‑2 were analyzed by 
Western blot and ELISA, respectively. Diosmectite bound the spike protein RBD and SARS‑CoV‑2 
preparation, and inhibited interaction of the spike protein RBD with ACE2 receptors on the Caco‑2 cell 
surface. Diosmectite exposure also inhibited NF‑kappaB activation and CXCL10 secretion. These data 
provide direct evidence that diosmectite can bind SARS‑CoV‑2 components and inhibit downstream 
inflammation, supporting a mechanistic rationale for consideration of diosmectite as a management 
option for COVID‑19‑associated diarrhea.

A substantial number of patients with the novel coronavirus disease 2019 (COVID-19) experience gastrointes-
tinal (GI)  symptoms1–3. Prevalence estimates vary between studies, with higher rates noted among  children4, 
but up to 39.6% of all patients with COVID-19 are believed to experience associated  diarrhea5. The prognostic 
implications of diarrhea in patients with COVID-19 requires further investigation, but there is increasing evi-
dence of correlations with both disease severity and  survival6,7.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gains entry to host cells by exploiting the 
angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in absorptive enterocytes from the 
ileum and  colon8. ACE2 expression in the GI tract is thought to lead to dysregulation of intestinal ACE2, affecting 
the expression of antimicrobial peptides and homeostasis of the gut  microbiome6. Infection of intestinal cells 
with SARS-CoV-2 also activates several signaling pathways (e.g., nuclear factor kappa B [NF-kappaB] and TGF 
beta, directly; PI3K/AKT, Ras/Raf/MAPK/STAT and Src via the activation of EGFR) causing further, indirect, 
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pathogenic  effects9. In addition, there is evidence of SARS-CoV-2 localization in the cytoplasm of gastric, duode-
nal, and rectal glandular epithelial  cells10, and data suggest that fecal–oral transmission of SARS-CoV-2 may be a 
route of  infection11, highlighting the importance of GI management considerations in patients with COVID-19.

The development of diarrhea in patients with COVID-19 may naturally prompt the use of antidiarrheal agents, 
but caution has been recommended with respect to the use of agents that slow intestinal  motility12. These agents 
extend transit time and may delay the clearance of the SARS-CoV-2 pathogen from the  gut12,13. Thus, antimotility 
drugs have the potential to prolong the course of SARS-CoV-2 infection and increase the risk of a more severe 
COVID-19 disease  course12. Based on this theoretical rationale, it has been highlighted that it may be relevant to 
consider use of antidiarrheal agents with a mode of action that does not delay intestinal transit  time12. Relevant 
drug classes in patients with diarrhea include antisecretory agents with inhibitory actions on enkephalinase and 
adsorbents that have the potential to bind digestive mucus and toxins, as well as reduce water  loss12. Indeed, 
recommendations for the use of the adsorbent dioctahedral smectite (diosmectite) have appeared in a number 
of local protocols and national guidelines for the management of GI symptoms in patients with COVID-1914–16.

Diosmectite is a well-defined multilamellar argillaceous compound recommended for the management of 
several GI diseases in adults and  children17,18. At the time of writing, there are no empirical data on the efficacy 
of diosmectite in patients with COVID-19, thus clinical recommendations for its use in these patients are based 
on an inferred clinical rationale.

Diosmectite is a natural aluminomagnesium silicate adsorbent clay that exerts antidiarrheal effects on the 
intestinal  epithelium18–20. Its effects are localized in the intestinal lumen or luminal surface of the epithelium 
where it adsorbs toxins, bacteria, and virus  complexes17. There is also evidence that it can counteract rotavirus-
induced cytotoxic damage and ion secretion via inhibition of viral replication and expression of the non-struc-
tural viral protein  NSP419,21. Before the emergence of COVID-19, an in vitro evaluation of several adsorbent 
clays (including a range of smectites) found a high adsorption capability for coronavirus, with high affinity 
(0.06–3.09% desorption). The study authors noted, however, that adsorbent-bound virus complexes retained 
 infectivity13, lending further support to the rationale for avoiding diarrheal management approaches that delay 
intestinal transit time.

To evaluate the theoretical rationale for the use of diosmectite for the management of diarrhea in patients 
with COVID-19, we conducted in vitro trapping experiments to assess the ability of diosmectite to bind to SARS-
CoV-2 components and inhibit downstream inflammation.

Results
The protein concentration of the heat-treated SARS-CoV-2 preparation was 523 μg/mL; it contained 26 μg/mL 
of spike protein receptor-binding domain (RBD) (i.e., ~ 5% of total protein).

Diosmectite trapping capability. After 1  h of incubation, diosmectite bound the spike protein RBD, 
based on the presence of specific fluorescence. There was no signal with diosmectite alone, which served as a 
negative control. Fluorescence intensity was consistent across all samples evaluated, with intensity positively 
correlated with spike protein RBD concentration (Fig. 1a).

The trapping capability of diosmectite was also observed when incubated with the SARS-CoV-2 prepara-
tion; again, the fluorescence (green signal) intensity was dependent of the protein concentration of the viral 
preparation (Fig. 1b).

Immunofluorescence microscopy showed that the spike protein RBD interacts with the surface of Caco-2 
cells in the absence of diosmectite after 1 h of incubation (Fig. 2a). When cells were pre-treated with diosmectite 
(100 mg/mL) for 15 min, enterocyte upload of the spike protein RBD was dramatically reduced, shown by the 
absence of green florescence (Fig. 2b).

Effects on NF‑kappaB activation. An antibody against the phosphorylated form of NF-kappaB (pNF-
kappaB) was used to evaluate the activation effect of 24-h exposure to different concentrations of spike protein 
RBD and the heat-inactivated SARS-CoV-2 preparation on NF-kappaB in Caco-2 cells (Fig. 3a). For both spike 
protein RBD and heat-inactivated SARS-CoV-2, the most effective concentration was 100 ng/mL. Diosmectite 
prevented activation of NF-kappaB induced by both spike protein RBD and heat-inactivated SARS-CoV-2 prep-
arations (Fig. 3b). Similar results were obtained after a shorter exposure period (1 h) (Supplementary Fig. S1). 
Diosmectite alone did not induce any change in NF-kappaB.

Effects on interferon‑γ (IFN‑γ) and CXCL10 secretion. Supernatants of Caco-2 cell cultures were 
collected 24 h after stimulation with spike protein RBD and the heat-inactivated SARS-CoV-2 preparation. The 
highest dose of spike protein RBD (100 ng/mL) induced a statistically significant (twofold) increase in IFN-γ 
compared with control cells. The highest concentration of heat-inactivated SARS-CoV-2 preparation (100 ng/
mL) also induced an increase in IFN-γ, although the increase was not statistically significant. Lower doses of 
both preparations had no effect on IFN-γ secretion (Supplementary Fig. S2).

Both spike protein RBD and heat-inactivated SARS-CoV-2 preparation induced the secretion of the 
chemokine CXCL10 in Caco-2 cells in a dose-dependent manner; the highest response was achieved at a con-
centration of 100 ng/mL for both preparations (ninefold increase for spike protein RBD compared with control 
cells) (Fig. 4a).

The most effective concentrations of spike protein RBD and heat-inactivated SARS-CoV-2 (100 ng/mL for 
both) on CXCL10 were subsequently used to test the effects of diosmectite. In the presence of diosmectite the 
induction of CXCL10 was inhibited (Fig. 4b). Diosmectite alone did not induce any change in CXCL10 levels.
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Discussion
The SARS-CoV-2 spike proteins bind to ACE2 receptors located on the brush border of enterocytes and exert 
direct pathogenic effects within the intestinal tract. The direct viral effects of cell invasion are further exacerbated 
by indirect inflammatory effects and disruption of the intestinal  microbiota22.

Our model provides novel, direct evidence of trapping of SARS-CoV-2 spike proteins within the diosmec-
tite clay structure. Diosmectite has been shown to reduce diarrhea in children with acute  gastroenteritis23 and, 
based on compelling efficacy data, is endorsed by international guidelines for the management of acute pediatric 
 gastroenteritis18. The mechanism of action of diosmectite against rotavirus (the leading cause of severe gastro-
enteritis in children) relates to its ability to adsorb viral  components18,21. SARS-CoV-2 frequently induces GI 
 symptoms6,24 and family outbreaks may be associated with prolonged fecal viral  shedding11. Our data suggest 
that diosmectite can bind heat-inactivated SARS-Cov-2 and spike protein RBD, thereby preventing the poten-
tial interaction with ACE2 receptors on cell surfaces; similar to the mechanism of action of diosmectite against 
rotavirus. These results exploit a strategy of intermolecular interference that has been observed with human 
defensin 5 which blocks the spike protein by cloaking  ACE225.

In recognition of the ability of SARS-CoV-2 to induce an inflammatory response following infection of 
intestinal cells, we used Caco-2 cells to test the ability of spike protein RBD and heat-inactivated SARS-CoV-2 
to activate NF-kappaB and induce secretion of IFN-γ and CXCL10. Both viral components activated NF-kappaB 
and induced the expression of the pro-inflammatory chemokine CXCL10. An increase in CXCL10 has previously 
been reported in Calu-3 lung epithelial cells in mice lungs following SARS-CoV-2  infection26 and in COVID-
19  patients27, implicating this chemokine as a key contributor to SARS-CoV-2-related cytokine storm. In our 
experimental model the IFN-γ response was of limited magnitude; however, in an in vitro study, Yeruva et al. 
demonstrated that induction of CXCL10 may be dependent on other cytokines (such as interleuchin-1β, TNF-α) 
either acting alone or synergistically with IFN-γ28. A similar scenario may occur in cases of SARS-CoV-2 intes-
tinal infection in which the induction of CXCL10 by the spike protein may be totally or partially independent 
of IFN-γ, as has been observed for  macrophages29.

Spike 50 ng/mLCTRL neg CoV-2 125 ng/mLCTRL neg

Spike 200 ng/mLSpike 100 ng/mL

Spike 1 μg/mLSpike 500 ng/mL

CoV-2 250 ng/mL CoV-2 500 ng/mL

CoV-2 1 μg/mL CoV-2 10 μg/mL

a b

Figure 1.  Trapping of viral particles by diosmectite. Diosmectite was incubated with spike protein RBD (a) and 
heat-inactivated severe acute respiratory syndrome coronavirus 2 (CoV-2) (b) at different concentrations. The 
suspension was then probed with the anti-spike protein RBD antibody. Diosmectite alone was used as a negative 
control (CTRL). Images are at × 1000 magnification and represent three separate experiments.
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There is increasing evidence that the NF-kappaB pathway is a central signaling pathway for the SARS-CoV-2 
infection-induced pro-inflammatory cytokine/chemokine response, and that inhibition of NF-kappaB has the 
potential to inhibit both virus- and LPS-induced cytokine  storm30. Diosmectite was able to prevent both NF-
kappaB activation and CXCL10 secretion because of its ability to trap viral particles, thereby inhibiting their 
interaction with the cell surface and the activation of intracellular inflammatory  pathways31. In addition to its 
ability to adsorb luminal antigens, diosmectite may mitigate diarrhea and contribute to reduced inflammation by 
increasing colonic mucin levels and via direct modulatory effects of cytokine production, as previously described 
in an experimental rat model of hapten-induced  colitis31.

Diosmectite is widely used as an antidiarrheal agent in clinical settings, but no direct assessment of its activity 
against SARS-CoV-2 had previously been conducted. The SARS-CoV-2 trapping and anti-inflammatory effects 
of diosmectite demonstrated by our model, provides a theoretical rationale for the efficacy of diosmectite for the 
management of patients with COVID-19-associated diarrhea.

The main limitation of our study is the use of an in vitro model of human intestinal (Caco-2) cells, with-
out gut sub-mucosa, immune cells and vascular components, which may play an additional role in intestinal 

Figure 2.  Spike-adhesion to the Caco-2 cell surface in the absence (a) or presence (b) of diosmectite, as 
shown by immunofluorescence microscopy. Spike protein RBD is shown after being probed with the primary 
and secondary fluorescein isothiocyanate-conjugated antibody (green). Nuclei were stained using Hoechst 
(blue). Images shown are × 1000 magnification. A detail of a single cell is shown in the square. (a) Caco-2 cells 
incubated with spike protein RBD. (b) Caco-2 cells pre-incubated with diosmectite and co-incubated with spike 
protein RBD.
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Figure 3.  NF-kappaB activation and preventive effect of diosmectite. (a) Western blot analysis of protein 
lysates from Caco-2 cells treated for 24 h with different concentrations of spike protein RBD (Spike) and 
heat-inactivated SARS-CoV-2 (CoV-2) as indicated. (b) Western blot analysis of protein lysates from Caco-2 
cells treated with spike protein RBD (100 ng/mL) and heat-inactivated CoV-2 (100 ng/mL) for 24 h alone and 
after pretreatment with diosmectite (DS). The upper line was blotted with anti-pNF-kappaB antibodies and 
the lower line was blotted with anti-tubulin antibodies as a loading control. A representative image from three 
independent experiments is shown. The relative levels of pNF-kappaB were normalized to tubulin levels. Bars 
indicate the means and lines the standard deviations of the three independent experiments. Student’s t-test. 
*p ≤ 0.05. SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, DS diosmectite, NF-kappaB nuclear 
factor kappaB, NT not treated, p65 primary antibody for NF-kappaB, pNF-kappaB phosphorylated NF-kappaB. 
Full-length blots/gels are presented in Supplementary Fig. S3.

Figure 4.  CXCL10 secretion and preventive effect of diosmectite. (a) Levels of CXCL10 measured by ELISA 
in supernatants of Caco-2 cell cultures treated for 24 h with different concentrations of spike protein RBD 
(Spike) and heat-inactivated SARS-CoV-2 (CoV-2) as indicated. (b) Levels of CXCL10 measured by ELISA in 
supernatants of Caco-2 cell cultures treated for 24 h with spike protein RBD (100 ng/mL) and heat-inactivated 
SARS-CoV-2 (100 ng/mL) alone and after pretreatment with diosmectite (DS). Bars indicate the means and 
lines the standard deviations of three independent experiments. Student’s t-test. *p ≤ 0.05. ELISA enzyme-
linked immunosorbent assay, DS diosmectite, NT not treated, SARS-CoV-2 severe acute respiratory syndrome 
coronavirus 2.
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inflammation. Further animal and ex vivo studies and clinical trials are warranted to provide a more compre-
hensive understanding of the role of the intestine in the inflammatory response to COVID-19 and SARS-CoV-
2-associated diarrhea, and potential implications for patient management.

Materials and methods
Cell culture, virus and reagents. Caco-2 cells (Zooprophylactic institute, Brescia, Italy) derived from 
a colon carcinoma were used for the trapping experiments because of their previous use in COVID-19 associ-
ated research and their ability to differentiate into enterocytes of the upper villus, forming monolayers featuring 
ACE2  receptors32.

The cells were grown in high glucose (4.5 g/L) DMEM (Gibco, Thermo Fisher Scientific, Oxfordshire, UK) 
supplemented with fetal calf serum (FBS) (10%; Gibco), non-essential amino acids (1%), penicillin (50 mU/
mL), and streptomycin (50 mg/mL).

A serum-free viral preparation of SARS-CoV-2 was obtained from the National Institute of Health (ISS, 
Rome, Italy)33. SARS-CoV-2 virus was amplified in Vero C1008 (Vero E6) cell culture. Inoculation of Vero E6 
cells with SARS-CoV-2 was carried out directly in serum-free DMEM. Medium harvested from infected cells 
4 days after inoculation was clarified by centrifugation and inactivated by temperature. Virus propagation and 
manipulation occurred in a BSL-3 laboratory setting at ISS.

The heat-inactivated preparation of SARS-CoV-2 and a commercial spike protein (RBD [V367F, SPD-S52H4] 
ACRO Biosystems, Newark, DE, USA) was tested in the absence or presence of diosmectite (Ipsen Consumer 
HealthCare, France).

Liquid chromatography-mass spectrometry was used to confirm the total protein and spike protein concen-
trations in the viral preparations.

Trapping experiments. The ability of diosmectite (Ipsen Consumer HealthCare, France) to bind SARS-
CoV-2 components was tested through in vitro trapping experiments without cells. Diosmectite (100 mg/mL) 
was directly incubated with either the heat-inactivated SARS-CoV-2 preparation or pure spike protein RBD at 
different concentrations (50, 100, 200, 500 and 1000 ng/mL and 0.125, 0.25, 0.50, 1 and 10 μg/mL, respectively) 
for 1 h at 37 °C. After centrifugation, the preparations were washed twice with PBS and then probed with the 
primary antibody (anti-SARS-CoV-2 RBD neutralizing antibody, human IgG [SAD-S35], ACRO Biosystems; 
1:1000 dilution) for 1 h at room temperature, followed by the secondary antibody (Fluorescein isothiocyanate 
[FITC] conjugated polyclonal rabbit anti-Human IgG [F02020-2], Dako; 1:30 dilution) for 1 h at room tem-
perature in a dark chamber. After incubation, the preparations were washed with PBS and left to precipitate for 
1 h in a dark chamber. Supernatants were discharged and precipitates were evaluated using a Nikon Eclipse 80i 
epifluorescence microscope (FITC filter). The images were analyzed using the NIS-Elements D imaging software 
(Ver3.22.00).

Inhibition effect of spike binding to cell surface. Cells were seeded onto 12-well plates with sterile 
glass slides at a density of 2 ×  105 cells per well, and pre-incubated with diosmectite (100 mg/mL) for 15 min 
at 37 °C, followed by co-incubation with spike protein RBD (8 µg/mL) for 1 h at 4 °C. The primary anti-spike 
protein RBD antibody (anti-SARS-CoV-2 RBD neutralizing antibody, human IgG1 [SAD-S35] ACRO Biosys-
tems; 1:100) and the secondary FITC conjugated antibody (polyclonal rabbit anti-human IgG/FITC [F020202-
2], Dako; 1:100) were used to stain spike protein RBD. Nuclei were stained with Hoechst 33342 (1 µg/mL). Cells 
were evaluated using a Nikon Eclipse 80i epifluorescence microscope (FITC filter). The images were analyzed 
using NIS-Elements D imaging software.

Western blot. Caco-2 cells were stimulated with different concentrations of spike protein RBD and heat-
inactivated SARS-CoV-2 preparation for 1 h and for 24 h at 37 °C with or without pre-treatment with diosmec-
tite (100 mg/mL). Cells were washed twice with cold PBS and suspended in lysis buffer (Tris–HCl [50 mM, pH 
7.4], EDTA [1 mM], EGTA [1 mM],  MgCl2 [5 mM], NaCl [150 mM], Triton [1%], PMSF [1 mM],  VO4[1 mM], 
aprotinin [100 × ; Sigma, Milan, Italy], and LAP [50 ×; Roche, Milan, Italy]) before incubation for 30 min on ice. 
Lysates were clarified by centrifugation at 16,000×g for 30 min at 4 °C. The obtained supernatants represented 
the total cell extracts. Protein content was determined using the Bio-Rad reagent protein (BIO-RAD Laborato-
ries, Milan, Italy).

For Western blot analyses, 40 µg of total proteins were separated by SDS (10%)–polyacrylamide gel electro-
phoresis and transferred onto trans blot turbo (BIO-RAD). The membranes were then blocked with non-fat dry 
milk solution (5%) and probed with rabbit anti-phosphorylated NF-kappaB (anti-pNF-kappaB) (Elabscience, 
Houston, Texas, USA) and with mouse anti-tubulin (Sigma, Milan, Italy). Bands were visualized with enhanced 
chemiluminescence (Elabscience) using 2- to 10-min exposures. Band intensity was evaluated by integrating all of 
the pixels of the band without the background to calculate the average number of pixels surrounding the  band34.

Enzyme‑linked immunosorbent assays (ELISA). Caco-2 cells (1 ×  105 per well) were seeded into 
24-well plates and grown until reaching 80% confluence. To study the effects on IFN-γ and CXCL10 induc-
tion, supernatants of Caco-2 cells were collected 24 h after stimulation with different concentrations of spike 
protein RBD and heat-inactivated SARS-CoV-2 preparation. Levels of IFN-γ and CXCL10 were measured in 
the supernatants by enzyme-linked immunosorbent assays (ELISA) according to the manufacturer’s protocol 
(Elabscience). The CXCL10 assay was repeated after 1 h pre-treatment at 37 °C of spike protein RBD and heat-
inactivated SARS-CoV-2 with diosmectite (100 mg/mL).
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Statistical analysis. Comparison of NF-kappaB activity, IFN-γ and CXCL10 levels between groups was 
performed by Student’s t-test. Statistical significance was defined as a p value less than 0.05.

Data availability
Study documents, such as the study protocol and clinical study report, are not always available. Proposals should 
be submitted to DataSharing@Ipsen.com and will be assessed by a scientific review board. Data are available 
beginning 6 months and ending 5 years after publication; after this time, only raw data may be available.
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