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Drain blockage is a crucial problem in the urban environment. It heavily affects the ecosystem and 
human health. Hence, routine drain inspection is essential for urban environment. Manual drain 
inspection is a tedious task and prone to accidents and water‑borne diseases. This work presents 
a drain inspection framework using convolutional neural network (CNN) based object detection 
algorithm and in house developed reconfigurable teleoperated robot called ‘Raptor’. The CNN based 
object detection model was trained using a transfer learning scheme with our custom drain‑blocking 
objects data‑set. The efficiency of the trained CNN algorithm and drain inspection robot Raptor was 
evaluated through various real‑time drain inspection field trial. The experimental results indicate 
that our trained object detection algorithm has detect and classified the drain blocking objects with 
91.42% accuracy for both offline and online test images and is able to process 18 frames per second 
(FPS). Further, the maneuverability of the robot was evaluated from various open and closed drain 
environment. The field trial results ensure that the robot maneuverability was stable, and its mapping 
and localization is also accurate in a complex drain environment.

Drains are a critical piece of infrastructure in the urban environment. They are responsible for transporting 
either rainwater, wastewater, or a combination of both. A routine drain inspection is an essential service in 
metropolitan cities. There are over 600,000 km of public sewer lines in Germany. In Singapore, it is estimated 
that the public net of the drain is extended to over 1.2 million kilometers. Globally, two million tonnes of plastic 
litters enter into rivers and oceans each year through drains. It heavily affects our ecosystem and creates a lot 
of water-borne diseases in human society. Apart from that, water blockage in the drain due to bushes, trash, 
mud creates critical infrastructure damage in heavy  rainfall1. Hence, routine drain inspection is mandated in 
urban regions. It will help mitigate water-borne and vector-borne diseases, saving human lives and safe critical 
infrastructure from floods. Human visual inspection is a commonly used method for drain inspection by sewer 
and waste management companies. This method includes identifying the trash and silt accumulation inside the 
drain and monitoring the intrusion of bushes and tree roots. For drain inspection, they use various inspection 
tools like a snake, plunger, wire brushes, and pipe camera. However, this is labor-intensive, time-consuming, 
difficult to monitor multiple locations simultaneously or over extended periods, and prone to high risk of acci-
dents in drains of enormous diameter. Further, workforce shortage has been a crucial issue to sewer and waste 
management companies over the past decade. The shortage in the workforce due to health problems, working in a 
complex environment of sewer networks, and low wages is another critical challenge faced by drain management 
companies. As a consequence, automation of drain inspection is the best course of action.

In literature, various algorithms and tools are reported to automate the drain inspection task. Typically, 
closed-circuit television (CCTV)2–7,  sonar8, laser  scanner9,  infrared10, and  robots11–16are commonly used inspec-
tion tools, and computer vision techniques are used for an alternate of human visual inspection. The computer 
vision techniques have been categorized into traditional computer vision and learning-based computer vision 
techniques. In contrast with traditional computer vision, learning-based computer vision increases the prediction 
performance and greater accuracy in tasks such as image  classification17,18, semantic  segmentation19,20, object 
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 detection21,22, and Simultaneous Localization and Mapping (SLAM)5. In addition, this approach often requires 
less expert analysis and provides superior flexibility as frameworks can be re-trained using a custom data set.

Deep convolutional neural network (DCNN) are widely used in learning-based computer vision techniques 
for drain inspection instead of traditional computer vision algorithms. The DCNN framework is directly or 
remotely bridged with closed-circuit television (CCTV) or a robotics vision pipeline to perform the automated 
visual drain inspection task.  In2, Ruwan et al. automate the storm–water pipe inspection using DCNN. The 
authors tested the trained DCNN models on a held-out validation set created from CCTV video and achieved 
an average precision of 0.77. In another study, Jack et al. introduced automated detection of sewer pipe defects 
by utilizing CCTV inspection videos. A Faster Region-based convolutional neural network (Faster R-CNN) is 
constructed, and several hyper-parameters are adjusted to study the influential factors. Higher detection accuracy 
is achieved by adjusting filter size and stride values, resulting in mAP of 83%3. Saeed et al. proposed an automated 
approach for inspection and condition assessment of sewer pipelines using computer vision techniques. This 
approach identifies a region of interest (ROI) using hidden Markov models (HMM) to extract abnormal frames 
from sewer CCTV videos and uses convolutional neural networks (CNN) to detect the defects and classify them 
in data sets from CCTV inspection  reports4.  In5, the authors proposed a framework for tracking multiple sewer 
defects in CCTV videos based on defect detection and metric learning. The experiments show that the framework 
can track sewer defects in CCTV videos and achieve a F1 score of 57.4%. The research by Syed et al. presented a 
framework for automated sewer defect classification and recognition of defect location in CCTV inspection vid-
eos based on deep learning. The AlexNet model was trained and validated by extracting the images from CCTV 
videos. The highest accuracy recorded was 96.33%6. Dang et al. suggested a deep learning-based automated sewer 
defect classification framework for the collected images by CCTV videos. The authors addressed the imbalanced 
data problem using XGBoost, LightGBM, and misclassification cost customization. The model was successful in 
achieving classification accuracy of 95.7%7. The above studies suggested that CCTV and DL for drain inspection. 
However, CCTV based inspection has lot of practical issues in deployment and maintenance. Deployment and 
maintaining CCTV for long-range drain networks is a challenging task. More cameras are required to cover a 
more extensive area of the drainage system and accurately pinpoint the exact location of the defect in the drain. 
This further increases the cost of CCTV drain inspection.

Robot-assisted drain inspection is an alternative method for CCTV inspection. The robot is equipped with 
a high-power vision system, and remote monitoring system built with a high-level visual inspection algorithm. 
PIRAT, a sewer inspection robot, was introduced by Kirkham et al. to measure geometry and detect defects. The 
authors employed a laser scanner and sonar scanner to measure geometry and for flooded sewers, respectively. 
A combination of machine vision and neural network techniques was used to identify, classify automatically, 
and rate pipe  defects11. Another semi-autonomous wheeled tethered robot named KARO was reported  in12. The 
robot was equipped with sophisticated multi-sensors for smart sensor-based sewage inspection.  In13, the authors 
presented KANTARO, a fully autonomous, untethered robot that can access straight and bendy pipes using a 
specific mechanism known as the “naSIR Mechanism.” A small 2D laser scanner is used with a fisheye camera 
to assess the pipe state and fault detection. KURT is a six-wheeled untethered autonomous robot that can fit 
through 600 mm diameter  pipes14. MAKRO is an untethered autonomous worm-shaped wheel with multiple 
segments, and an autonomous engine for drainage system  navigation15. Tarantula is a self-configurable drain 
mapping robot that can adapt and morph according to a drain that has multiple level  shifts16,23,24.

However, the robot-assisted inspection also has some practical shortcomings. Generally, robot-based inspec-
tion uses fixed morphology robots, which are mostly design for sewer pipe or tunnel inspection and hard to fit 
for inspecting uneven complex open and closed drain environments. As a result, limited efficiency is achieved 
during the inspection tasks. Reconfigurable robots are more flexible than fixed-size robots. These robots can 
adopt dynamic environment changes and can access the constricted environment of the drain. It has been used 
widely for various automation applications including cleaning indoor and  outdoor25,26, inspecting the built 
 environment27,28, ship hull inspection, aircraft structural  inspection29, etc. These robots are developed with an 
inherent capability to change their morphology to perform another motion such as  climbing30,  rolling31,  flying32 
and  floating33.

Conclusively, the above literature survey indicates that many researchers have tried to automate the drain 
inspection using CCTV, robot, and DCNN algorithms. However, they only focus on drain structural or construc-
tion defects but do not address common drain-blocking objects such as accumulated trash, bushes, and silt. Also, 
these studies have used CCTV or fixed morphology robot-based tools for automating drain inspection. Fixed 
morphology robots have some practical limitations for use in the dynamic environment of open and closed 
drains. Reconfigurable robots are more flexible than fixed-size robots. To the best of our knowledge, there is no 
direct case study using AI powered reconfigurable robots for detecting the common drain-blocking objects. This 
work presents DCNN based drain-blocking object detection using our in-house developed reconfigurable robot 
Raptor to bridge the research gap and overcome the shortcomings.

This paper is organized as follows; Section “Introduction” has an introduction, motivation, and literature 
review; Sect. “Overview of proposed system” presents the overview of the proposed system. Next, Sect. Experi-
mental setup and results consists of the experimental setup, results, and discussion. Finally, Sect. Conclusion 
presents the conclusion of this research work.

Overview of proposed system
Figure 1 shows the overview of the drain inspection framework. Here, a deep learning-based object detection 
framework was used to perform the visual drain inspection task from our in-house developed drain inspection 
robot Raptor collected images. The details of drain inspection algorithm and robot architecture are described 
as follows.
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SSD Inception object detection framework. SSD Inception is an object detection framework that is 
used for the drain inspection task. It’s a lightweight framework and widely used in mobile applications and 
onboard object detection in robotics. In our drain inspection application, SSD automatically detects the bushes, 
trash, and silt from raptor transferred images. Typically, VGG-16 or MobileNet is used as a feature extractor for 
SSD. In our implementation, VGG-16 is replaced by the Inception feature extractor to achieve optimal detection 
accuracy and faster detection. The detail of Inception and SSD functionality are described as follows.

Inception. In our proposed framework Inception v3 was utilised after evaluating its performance and com-
putational complexity. A brief discussion of Inception v3, Inception v4 and Inception-ResNet v2 is mentioned 
below. As seen in Table 1 a 2 times jump in parameters is observed when comparing Inception v3 with Inception 
 v435 and Inception-ResNet  v235. Szegedy et  al. further improved upon the existing Inception v3 architecture 
by making changes in the stem of both pure Inception v4 and Inception ResNet v2 network, introducing the 
reduction modules and standardising the inception modules to be more uniform to reduce complexity and 
improve performance at the same time. Szegedy et al. was able to produce a gain of 0.4–1.3% over Inception v3 
architecture on the ILSVRC 2012 validation set using various crops. In the experimental results, replacing the 
Inception v3 feature extractor with Inception v4 and Inception-Resnet v2 did not yield the additional gain of 
0.4–1.3% as produced by Szegedy et al.. The results can be seen in Table 4 and further elaboration is done in the 
experimental section.

Figure 2a shows the neural network architecture of the Inception framework. Inception  v336 is an updated 
version of the Inception  v137 algorithm and uses batch normalization, dropping dropout, and removed the local 
response normalization function. In contrast with other feature extractor, the Inception algorithms use wider 
networks with filters of different kernel sizes in each layer, making it translation and scale-invariant. In Inception 
v3, 5× 5 convolution is factorized by the two 3× 3 convolutions and 7× 7 convolutions is replaced by series of 
3× 3 convolutions. This increases the performance of the architecture and reduces the computational time (typi-
cally 5× 5 convolution is 2.78 more expensive than 3× 3 convolution). Further, to reduce the representational 
bottleneck issue, the feature banks of the module were expanded instead of making it deeper. Here, the algorithm 
factorizes convolutions filter size where 3× 3 convolutions function is converted into 1× 3 then followed by 3× 1 
convolution. This factorize process takes 33% lesser computation compared to 3× 3 convolution and prevents the 
loss of information that is caused when a deeper architecture is used. A 17× 17× 768 feature map is extracted 

Figure 1.  Overview of the drain inspection framework.

Table 1.  Comparison of the Inception  models34. MACC = Multiply and accumulate, COMP = comparison, 
ADD = addition, DIV = division.

Models MACC COMP ADD DIV Activations Parameters

Inception v1 1.5G 15.98M 3.28M 3.23M 15.71M 6.62M

Inception v2 2.2G 8.48M 12.55M 3.25M 18.03M 11.19M

Inception v3 5.72G 16.53M 25.94M 8.97M 41.33M 23.83M

Inception v4 12.27G 21.87M 53.42M 15.09M 72.56M 42.71M

Inception-ResNet v2 13.18G 31.57M 38.81M 25.06M 117.8M 55.97M
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from the Inception v3 framework and used as the input into the SSD framework to perform the object detection 
task. It uses the outputs of ‘Mixed_2d’, ’Mixed_7’, ‘Mixed_8’ of InceptionV3 framework.

SSD. Figure 2b shows the functional block diagram of  SSD38 based object detection framework. It runs on 
top of the Inception v3 feature extractor algorithm. SSD can execute object detection tasks using a single neu-
ral network structure by converting the classification and localization steps of the object detection task into a 
regression problem. SSD comprises of the pyramid structured numerous auxiliary convolutional layers on top 
of Inception CNN layers to perform the object detection and classification task, which are utilized to extract the 
feature map at different resolutions and enable the network recognize varied sizes of objects. SSD detects and 
locates objects using six feature maps. Here, the first two sets are obtained from the Inception module and the 
remaining feature maps ( 10× 10, 5× 5, 3× 3, 1× 1 ) produced using SSD auxiliary convolution layers. SSD also 
outputs the bounding box coordinates and class type, as well as the classification confidence level, using bound-
ing box predictors. The bounding box predictors use the default anchor boxes (bounding boxes) with different 
aspect ratios and scales. These bounding boxes have a fixed size, implying that their dimensions are chosen from 
a list of predefined values. The fixed size anchor boxes are tiled on generated feature map in a convolution man-
ner and perform the one prediction per default box as well as the per-class scores that indicate the presence of 
a class instance in each of those boxes. In the end, Non-Maximum Suppression (NMS) is applied to remove the 
overlapping boxes and keep the highest-rated bounding boxes.

Overview of drain inspection robot Raptor. Structural overview of the Raptor robot is shown in Fig. 3. 
The structural frame and cover of Raptor are 3D printed with nylon to have greater tensile strength. The overall 
weight of the robot is 2.45 kg which can achieve a vertical gradient of 20◦–25◦ . The detailed technical specifica-
tions of the platform are given in the Table 2. With a compact dimension of 390× 350× 200 mm, the platform 
can navigate through constrained drain sizes.

Figure 2.  SSD Inception v3 object detection framework.

Figure 3.  Raptor mechanical overview.
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The robot’s locomotion was accomplished by two adjustable dual-wheel forks assembled under the front and 
back sides of the chassis. These forks hold the DC motors for the motor to connect with the wheels. As shown in 
Fig. 3a, b, the Raptor design is centered around the payload holder to maintain the center of gravity in the middle 
of the robot. Most of the electronics components are mounted on the center body of the robot, where a mounting 
structure was provided. It also allows the assembly of electronic components and batteries. Furthermore, some 
additional mounting structure is added to fix the Lidar, camera, obstacle avoidance sensors in front of the robot.

System architecture. The high-level system architecture for Raptor is built using the robot operating sys-
tem (ROS) framework. The system consists of a mobile platform—Raptor, master control station mobile control 
Unit for operators. Here, all the communication happens through a WiFi router with TCP/IP protocol. Figure 4 
shows the high-level and the low-level control block diagram with all the associated modules.

Locomotion module. A four-wheel-drive system configuration powered the locomotion of the robot. It is pow-
ered by a 12 V DC metal gear motor that ensures the wheel pulls the load on all terrains. In addition, the fork 
holding wheels to the chassis is provided with extra reinforcement to withstand the direct impulse forces from 
the ground. These DC motors have a stall torque of 7.8 kg cm. With the air-filled rubber tires, the wheels ensure 
maximum friction, cushion effect, and ride height for the platform.

Re‑configurable module. Our Raptor has 3 modes of manual re-configuration as shown in Fig. 5. Here, Mode 
1 is fully folded and used to carry a heavy payload weight of around 1.6 kg with a high ground grip and traverse 
all types of terrain. Mode 2 is halfway open for carrying a heavy payload and traversing all types of terrain, 
specifically for locomote over the obstacles and stagnant water area, and Mode 3 is used for high-speed and 
surveillance purposes. The reconfiguration function has been controlled by manually triggering the push button 

Table 2.  Technical specifications of Raptor.

Description Specification

Platform weight 2.45 kg

Payload 1.6 kg

Dimension 390× 350× 200 mm

Environmental 3D printed nylon for prototyping

Ground clearance 98 mm stowed, 150 mm unstowed

Maximum linear velocity 0.22 m/s

Maximum angular velocity 0.85 rad/s

Maximum gradient 20, 25

Maximum side gradient 18, 20

Traverse terrain Tested on short grassland and rough concrete terrain

Figure 4.  System architecture.
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switch attached to both sides of the robot. This will release the folded wheel and move to Mode 1, Mode 2, and 
Mode 3, respectively.

Control module and path tracking. The on-board control unit for Raptor was built using RaspberryPi, which is 
capable of processing heavy data from Camera, Lidar, Inertial measurement units (IMU) and beacon modules. 
The control system takes linear velocity, and angular input commands directly from the operator and outputs 
individual motor speed signals using the inverse kinematics method. Each motor is pre-programmed to operate 
independently based on the specific input commands. For instance, if the input serial command is to turn the 
robot right, the two wheels on the inside radius spin in the opposite direction but proportional to that on the 
outer side. Each Roboclaw motor driver controls 2 DC brushless motors with 7.5 A till 15 A peak through pulse 
width modulation (PWM) signals from Raspberry Pi microcontroller.

A 2D Lidar sensor, RP-Lidar with rotation speed of 10 Hz and with sampling rate of 8000 points per second, 
is used for perceiving the environment for mapping and localization. This high sampling rate improves the map-
ping accuracy and map density. To map an unknown environment, hector slam algorithm is used to perform 
simultaneous localization and mapping (SLAM).

Power distribution module. The power distribution module includes a 4-cell Lithium-ion battery, 14.4  V 
2800 mA h. Through a toggle switch connected to the main battery, two voltage regulators provide a steady sup-
ply of 12 V for the motor driver and 5 V for the Raspberry embedded computing device. The four motors are 
individually powered through the two motors drivers, with all other sensors powered through the Raspberry Pi.

Tele operation with collision avoidance safety layer. Raptor is designed to be teleoperated by users through 
mobile or laptop applications. This multi-device compatible graphical user interface (GUI) application is devel-
oped using Unity. The communication between robots and control devices happens via the message queuing 
telemetry transport (MQTT) bridge through ROS. ROS messages are serialized by JSON for MQTT communi-
cation and deserialized back for ROS messages in the communication protocol. Figure 6 shows the GUI console 
which has the provision for monitoring the video feeds and robot control buttons for basic operations like linear 
forward and backward movement, pivot rotation.

With Lidar sensor data as input, an additional safety layer is added to avoid unintentional obstacle collision 
due to the carelessness of the operator. In order to tackle this scenario, ROS architecture is configured with DWA 

Figure 5.  Raptor three different re-configuration modes.

Figure 6.  Operators control unit.
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local planner to compute multiple possible trajectories and to choose the cost-efficient path to maneuver around 
static and dynamic obstacles.

Experimental setup and results
This section describes the experimental results of the drain inspection framework. The experiment was conducted 
in four phases: collecting training images, training the drain inspection framework, evaluating the trained model 
on both offline and real-time field test, and comparing the trained model with other object detection frameworks 
and existing works.

Training images collection and labelling. The training images collection process involve collecting 
the drain blocking objects images from different sources. The data-set is composed of common drain blocking 
objects and categorised into three main classes such as trashes (dry leaves, plastics bottles, metals cans, paper, 
and trash), bushes and silt accumulation. Our data set consists of 4500 images gathered from open and closed 
drainage’s in Singapore. Before labeling, the collected images are resized into 640× 480 and fed into “LabelImg” 
GUI tool. It’s an open-sourced bounding box annotations tool and is used to mark the objects bounding region. 
Thereafter, the bounding box data augmentation function is applied on the labeled  images39. Figures 7 and 8 
shows the bounding box annotation method and bounding box data augmentation results of one input image.

The data augmentation function converts the single image into multiple images with bonding box marking 
and uses the contrast adjustment, scaling, rotation, and flipping function on inputted images. The bounding box 
data augmentation function enlarges the data-set size, helps in controlling the over-fitting issues in training time, 
and enhances the detection framework learning rate.

Training and testing. Training hardware and software details. The drain inspection algorithm was developed 
in TensorFlow 1.15 open source machine learning platform running on Ubuntu 18.04.5 LTS version. The model 
was trained and tested via Google Colaboratary using the Intel(R) Xeon(R) CPU @ 2.00 GHz, 12.69 GB random 
access memory (RAM) and Nvidia Tesla P100 server graphics card (3584 CUDA cores).

Parameter configuration. Transfer learning method was used to train the drain inspection model. It’s more 
adaptable, allowing pre-trained models to be used directly as feature extraction. In our experiment, Imagenet 
dataset trained weight files was used to train algorithm under transfer learning scheme. Under the transfer learn-

Figure 7.  Bounding Box annotation tool.

Figure 8.  Data-augmentation of one input image.
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ing scheme, the detection model was trained with 100,000 epochs and using a batch size of 16, the RMSProp 
algorithm of 0.9 momentum and an initial learning rate of 0.004, respectively. The image data set is evaluated 
using the k-fold cross-validation process. Images are divided into k groups in this technique, with k − 1 being 
used to train the network. The one pair that remains is used for testing. 10-fold cross-validation approach is used 
in the proposed study. The visuals of the experimental data derived from the model are very accurate.

Evaluation metrics. The efficiency of our trained model was evaluated in both offline and real-time test sce-
narios. Standard metrics were used to evaluate both detection and classification model performance. Here, accu-
racy, precision, recall and Fmeasure (1)–(4) were used to evaluate the model and confusion matrix was constructed 
to find the variables tp (true positives), fp (false positives), tn (true negatives) and fn (false negatives).

Offline test. The offline experiment was performed using web collected images and standard data-sets 
images including  trashnet40, deep-sea  waste41 and  taco42. Here, the three data-sets are composed of various 
classes of litters collected from diverse environment. In each dataset, 50 images were selected for offline test 
composed of metal, plastic cans, polythene covers and paper trashes. Figures 9, 10, 11 and 12 show the drain 
inspection framework offline experimental results. Here, the algorithm detect and classify trash category with 
average of 85–94% confidence level, bushes detected with 88–96% confidence level and accumulated silt are 
detected with 80–89% confidence level respectively.

In this analysis, we observe that the algorithm detect most of the visible objects with higher confidence level. 
The miss detection, false classification, detection with lower confidence level happened only when inference is 
done on decomposed objects or partially occluded objects. The offline experimental results shows that the trained 
model is able to detect the drain blocking objects in diverse environment with better accuracy. Hence, the model 
can be used for detecting the drain blocking objects in diverse drain environment.

Experiments with Raptor in real‑time drain inspection field trial. Three different drain environ-
ments were selected for the real-time field test: closed drain, semi-closed drain, and open-drain located near the 
SUTD campus. These drains are used for rainwater collection, 1–3 ft. depth. The experiment was carried out in 
two lighting conditions (day and night) and two different climate days (after heavy rainfall and summer days). In 
the first field trial, the raptor robot operation efficiency was tested in terms of maneuverability. In the next step, 
trash, bushes and silt detection was evaluated from Raptor captured field images.

Figure 13 shows the Raptor robot maneuverability test in various drain environments. In this experiment, the 
robot is deployed in an unknown drain environment with no prior preparation of drain map. Here, the drains 
are of different structures and sizes. There are areas inside the drain with long open tunnels of uneven concrete 
terrain with many L-shaped turns, narrow curves, and level changes. Hector slam algorithm was used to map the 
drain environment. The SLAM algorithm localizes the robot position with respect to the generated map simul-
taneously. Figure 14 shows the mapping and path tracking results. Here, path tracking is represented by green 
marker. From the experimental results, it can be observed that the morphology of the robot has accommodated 
various drain structures, and handles the various terrain constraints inside the drain (Fig. 13). Furthermore, 
mapping and localization results (Fig. 14) ensure that the robot’s position can track in deep and unexplored drain 
environments with the help of SLAM generated map.

Real‑time field trial. Evaluating the drain inspection algorithm with real-time video feed is the second and final 
phase of the field trial. The experiment was tested on the above-mentioned drain environment. The robot was 
operated in teleoperated mode and control by RF wireless communication module. The robot captured images 
are remotely analyzed by a drain inspection algorithm run on GPU enabled high-speed notebook. A total of 300 
frames of images with various trash, bushes and silt objects within frame were captured during the real-time field 
trial and used for evaluation.

Figures 15, 16 and 17 show the drain inspection algorithm field test results where the open drain has run-
ning water, bushes are sprouted through cracks, and trashes floating on water. Similarly, the closed drain has 
the accumulated silt and trashes scattered and accumulated after a heavy rainfall. The field test was also done 
during the night time as seen in Fig. 18.

The detection algorithm has detected majority of trash, bushes, and accumulated silt on raptor robot captured 
images with a higher confidence level. In this two-drain experiment, the algorithm detects the bushes, trashes, 

(1)Accuracy(Acc) =
tp+ tn

tp+ fp+ tn+ fn

(2)Precision(Prec) =
tp

tp+ fp

(3)Recall(Rec) =
tp

tp+ fn

(4)Fmeasure(F1) =
2× precision× recall

precision+ recall
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and silt with an average of 88–92% confident level. Its bounding region is also accurate with respect to ground 
truth.

Furthermore, statistical measures have been performed for estimating the robustness of the drain inspec-
tion algorithm. For each individual class, 100 images were chosen and used for statistical measures. The images 
are chosen with a mix of both unseen offline and real-time field-collected images. Table 3 shows the statistical 
measures result of the SSD Inception v3 framework.

The statistical measure indicates that the algorithm has detected the drain blocking objects with 91.42% 
accuracy for combined test images (offline and real time collected drain inspection images) for day time and an 
accuracy of 90.18% is achieved during the night time (with light source to illuminate path and objects). A small 
drop-off of accuracy of 1.24% between day time and night time is reported. Further, the model miss rate is 4% for 
offline test and 7% for real time test images. The higher miss detection in real time is attributed to object occlu-
sion, blurring due to jerk in robot navigation when moving on uneven surface, shadows, and varying lighting 

Figure 9.  Offline test-web collected images trash, bushes and silt detection.

Figure 10.  Taco data-set detection result.
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conditions. The research confirms that environmental influences such as varying lighting conditions and shadows 
have no significant impact on the suggested solution.

Figure 11.  Deep sea data-set detection result.

Figure 12.  Trashnet data-set detection result.

Figure 13.  Raptor maneuverability test in different drain terrains.

Figure 14.  Mapping and path tracking results of Raptor.
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Figure 15.  Trash detection on real time drain inspection field test (day).

Figure 16.  Bushes detection on real time drain inspection field test (day).

Figure 17.  Silt detection on real time drain inspection field test (day).

Figure 18.  Real time drain inspection field test (night).
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Comparison analysis. This section examine the performance of SSD inception framework with baseline 
methods SSD MobileNet v2 and SSD VGG16 and also perform the comparison analysis with other state-of-the-
art object detection methods including Yolo v3 and Inception variants. The comparison analysis was performed 
with mixed of real time field images and web collected images with a total of 100 images from each class. The 
detection frameworks were trained using a transfer learning scheme along with our custom drain inspection 
data set. Table 4 shows the comparison between the proposed framework, baseline methods and the other object 
detection frameworks along with computation time.

The results indicate that the proposed framework and the various SSD Inception versions have good detection 
accuracy compared with Yolo v3 and the two baseline methods. The key issue of Yolo v3 and the two baseline 
methods is the miss detection and false classification of objects. These two factors affect the overall performance 
of the two baseline methods and Yolo v3 framework. In computation cost analysis, Yolo v3 (31 FPS) and SSD 
MobileNet v2 (23 FPS) took lower execution time than SSD Inception v3 (18 FPS), SSD VGG16 (14 FPS), SSD 
Inception v4 (9 FPS) and SSD Inception ResNet v2 (7 FPS). Due to dense CNN layers, the various SSD Inception 
versions and SSD VGG16 computation time are quite high comparatively. However, this is does not heavily affect 
the performance of the real-time drain inspection task. It can be overcome by upgrading the computing hardware. 
In this analysis, we observe that SSD Inception v3 model strikes a balance between detection accuracy and com-
putation time. Hence, SSD Inception v3 model is chosen as the optimal framework for the drain inspection task.

Comparison with existing work. This section elaborates the comparative analysis of the proposed algo-
rithm with existing drain inspection framework reported in literature based on inspection tool and inspection 
algorithms. Table  5 states the accuracy of various inspection models and algorithms based on some similar 
classes.

In Table 52–4,43, uses the CCTV as inspection tool and applying different DL framework namely Resnet-
TL, four layer custom CNN, five layer custom CNN and Modified ZF to automate the drain inspection. Here, 

Table 3.  Statistical measures results of drain inspection algorithm.

Weather condition Class Precision Recall F1 Accuracy Average accuracy

Day

Bushes 94.34 94.81 94.57 95.25

91.42Trash 90.57 89.87 90.22 90.19

Silt 88.95 88.74 88.84 88.82

Night

Bushes 92.94 92.01 92.48 93.47

90.18Trash 89.70 89.89 89.79 88.93

Silt 88.48 87.88 88.18 88.13

Table 4.  Comparison analysis with baseline method and other object detection framework. 1The bolded 
model is the framework used for real-time Raptor test. 2This refers to the inference time (ms) required by the 
respective model for one image converted into frame per second (FPS) metric, all models were tested on the 
same hardware and a total of 300 images (100 for each class) during the comparison analysis.

Model Precision Recall F1 Accuracy Detection speed (FPS)2

SSD with MobileNet v2 (baseline) 86.45 85.92 86.18 86.38 23

SSD with VGG16 (baseline) 88.76 88.06 88.41 88.39 14

Yolo v3 85.22 84.24 84.73 85.66 31

SSD with Inception v31 91.28 91.14 91.21 91.42 18

SSD with Inception v4 91.20 91.93 91.56 91.58 9

SSD with Inception ResNet v2 91.26 92.01 91.64 91.55 7

Table 5.  Comparison analysis with existing object detection framework. 1The bolded model is the our 
proposed framework used for real-time Raptor test. 2The authors only reported the accuracy score.

Case studies Inspection type Algorithm Classes Precision

Tennakoon et al.2 Offline CCTV Resnet-TL 5 85.00

Kumar et al.43 Offline CCTV 4 layer CNN 3 87.7

Moradi et al.4 Offline CCTV 5 layer CNN 1 78.002

Cheng et al.3 Offline CCTV Modified ZF 4 83.0

Proposed framework Real-time with Raptor SSD with Inception v31 3 91.28
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Resnet-TL2,  four43 and five layer  CNN4 are classifier framework which scored an average precision of 85%, 87.7% 
and 78% (accuracy) for drain inspection tasks, respectively. Modified  ZF3 is an object detector framework and 
uses Faster RCNN as the detector head. The implementation scored an average precision of 83% across four 
different classes; root, crack, infiltration and deposit.

In contrast with our implementation the above schemes’ classification and detection scores are quite low, 
however, the implementations cannot be compared directly with our work. Since their datasets, CNN topology 
and training parameters are totally different. Further, deploying and maintenance of CCTV for long range drain 
networks is a challenging task. More cameras are required to cover a more extensive area of the drainage. This 
will increases the cost of CCTV drain inspection system. The proposed framework utilises real-time inspection 
in comparisons to the above schemes which utilises offline inspection, this difference is reflected in the choice 
of algorithm used. Further, compared to Cheng et al. utilisation of Faster RCNN the proposed framework opted 
for a faster and lighter object detection framework, SSD.

Table 6 shows the comparison analysis of current robotic platform with existing drain inspection platforms. 
Here, robots KURT, PIRAT, and MAKRO has adopted fixed-morphology and designed only for sewer pipe 
inspection with small diameter. Whereas, Tarantula is the reconfigurable drain inspection robot. However, the 
robot has high cost, complex mechanical design and heavy weight due to many actuators. Moreover, its maneu-
verability is not stable in some drain  segments16. On the other hand, our in-house developed robot Raptor is 
lighter and has a simplistic design approach. Also, its three modes of reconfiguration provides good maneuver-
ability in varied terrain condition. This design consideration is the core contribution of the proposed design 
with respect to the state-of-the-art.

Conclusion
Remote drain inspection framework was proposed using Deep Learning based object detection framework and 
our in-house developed self-reconfigurable robot Raptor. SSD Inception v3 object detection module was trained 
for drain inspection tasks with common drain-blocking objects. The model was trained by a transfer learning 
scheme and used the pre-trained weights. The efficiency of the remote drain inspection framework was assessed 
100 meters to 300 meters in three different drains including closed drain, semi-closed drain, and open-drain. 
The experimental results proved that our in-house developed robot maneuverability was stable and its mapping 
and localization is more precise in complex rugged drain terrain. The efficiency of the drain inspection algorithm 
was examined in two phases: offline test and real-time field trial using drain images captured by Raptor. Standard 
performance metrics including accuracy, precision, recall, and F1 measures were used to assess the drain inspec-
tion algorithm. The performance metrics results show that the drain inspection algorithm has detected the drain 
blocking objects, including bushes, trashes, and silt, with 91% detection accuracy. Further, comparison analysis 
was performed with other object detection frameworks, existing object detection framework and existing drain 
inspection platforms. The analysis results show that the various SSD inception versions and SSD VGG16 models 
have higher detection accuracy than SSD MobileNet and Yolo v3 framework. However, SSD MobileNet and Yolo 
v3 framework is capable of lower inference time. In this comparison, SSD Inception v3 model strikes the balance 
between detection accuracy and computation time. Its detection accuracy and inference speed outperforms SSD 
VGG16. All the analysis results ensure that our proposed framework can perform drain inspection tasks and have 
the capability to identify the drain blocking objects in closed, semi-closed, and fully opened extended drains in 
varying lighting conditions and weather conditions.
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