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Combinatorial characterization 
of a certain class of words 
and a conjectured connection 
with general subclasses 
of phylogenetic tree‑child networks
Miquel Pons* & Josep Batle

The combinatorial study of phylogenetic networks has attracted much attention in recent times. In 
particular, one class of them, the so‑called tree-child networks, are becoming the most prominent 
ones. However, their combinatorial properties are largely unknown. In this paper we address the 
problem of exactly counting them. We conjecture a relationship with the cardinality of a certain 
class of words. By solving the counting problem for the words, and on the basis of the conjecture, 
several simple recurrence formulas for general cases arise. Moreover, a precise asymptotic analysis 
is provided. Our results coincide with all current formulas in the literature for particular subclasses 
of tree-child networks, as well as with numerical results obtained for small networks. We expect that 
the study of the relationship between the newly defined words and the networks will lead to further 
combinatoric characterizations of this class of phylogenetic networks.

Evolutionary histories of several kinds are usually represented with the mathematical help of phylogenetic trees. 
Linguistics, but mostly genomics are the traditional areas where this tool is employed. However, mechanisms 
of reticulate evolution, such as horizontal gene hybridization, transfer or recombination, render such trees less 
appropriate. When the species involved in those events have more than one ancestor, phylogenetic networks are 
better  suited1–4. Also, the comparison of phylogenetic trees and networks is attracting considerable  attention5,6. 
Quite recently, a phylogenetic network of SARS-CoV-2 genomes was sampled from across the world in order to 
better understand the outbreak of the ongoing Covid-19 coronavirus world  pandemic7.

Due to the increasing usage of phylogenetic networks, a combinatorial approach to their study regarding 
counting, enumeration and stochastic characterization has received a lot of attention  recently8–17. It is usual to 
impose further restrictions to the general structure of phylogenetic networks (in general they are labeled directed 
acyclic graphs) in order to make them more manageable. Among all classes of phylogenetic networks, we shall 
study tree-child networks (TCNs)18, see section “Preliminaries” for a formal definition. This class, besides of 
being biologically justified, is considered to possess good and interesting mathematical properties, but they are 
considered to be largely unknown from the combinatorial point of  view17. The present work tries to shed light 
on the long-sought problem of counting and enumerating this class of networks.

There exists in the literature exact counting results for TCNs with low number, k, of reticulation events, and 
arbitrary number, n, of leaves. Specifically for k = 1, 2 and 3, see Refs.8,11,14 respectively, and for TCNs with the 
maximum number of reticulation  nodes13. Our conjectured formula, Eq. (13), coincides with all these results, 
and it also reproduces particular values obtained by demanding computational  procedures8,14.

Specifically, we shall continue the work of Fuchs et al.13 who made use of a similarity from the number of 
maximally reticulated tree-child networks (we will show it occurs whenever k = n− 1 ) with a certain class of 
words defined in the On-Line Encyclopedia of Integer Sequences, specifically the sequence OEIS A213863. They 
are simply related by a n! factor. We have discovered that all general subclasses T Cn,k seem to be similarly related, 
now by a falling factorial factor, to a generalized version of those words.

In fact, as commented by Flajolet and  Sedgewick19, p. 62, words can, at least in principle, encode any com-
binatorial structure. A classical example is the encoding of set partitions. How to encode them can be found in 
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the same reference, where the translation makes possible an easy counting of the set partitions. A kind of set 
partition called binary total partition, which consists in repeatedly dividing the blocks of an original set into 
exactly two blocks, until only singletons remain, is bijectively related to the class of binary labeled trees, that is, 
phylogenetic trees (see example 5.2.6 in Ref.20).

The outline of this work goes as follows. We start with a preliminary section, providing general and basic 
terminology and elementary properties, firstly of general phylogenetic networks and secondly concerning the 
class of tree-child networks. In section “Tree-child networks and words” we highlight the parallel between TCNs 
and words. We start by reproducing the bijection given by Fuchs et al.13 for the maximally reticulated subclass. 
In the second part of the section we establish a bijection between phylogenetic trees and a class of very similar 
words. To the best of our knowledge, the encoding induced by the bijection is a brand new one. We highlight 
some practical aspects of the encoding and we also provide a simple algorithm to generate the entire sequence of 
words with a minimum difference between any two consecutive ones, which is useful for exhaustive combinato-
rial studies of phylogenetic trees. Finally the generalized words are defined, and the relationship between them 
and arbitrary subclasses of TCNs is conjectured. In section “Implications of the conjecture”, and based on the 
conjecture, counting formulas for TCNs are derived, enumeration procedures are provided and an asymptotic 
formula is obtained.

Preliminaries
In this section the basic terminology is introduced, including the formal definitions of phylogenetic networks and 
the tree-child networks class. Elementary, although important properties of these structures are also provided.

Phylogenetic networks. A phylogenetic network N  on X is a rooted acyclic digraph with no edges in par-
allel satisfying the following properties: 

(1) the root has in-degree zero and out-degree one.
(2) a vertex with out-degree zero has in-degree one and it is called a leaf. The set of leaves are bijectively labeled 

with the elements of X.
(3) all other vertices either have in-degree one and out-degree two, or in-degree two and out degree-one.

The vertices with in-degree two and out-degree one are called reticulations, and the vertices with in-degree 
one and out-degree two are called tree vertices. The edges directed into a reticulation are reticulation edges, 
and all other edges are tree edges. In particular, a phylogenetic X-tree is a phylogenetic network on X with no 
reticulations.

Lemma 1 For any phylogenetic network with n leaves, k reticulation nodes and t tree nodes the following relation 
holds:

Proof The sum of the out-degrees is equal to the sum of the in-degrees.   �

If u is a vertex of a phylogenetic network N  and (u, v) is an edge in N  , we say v is a child of u, conversely, 
u is a parent of v. More generally, u is an ancestor of a vertex w if there is a directed path from u to w in N  , in 
which case, w is a descendant of u.

Let R(N ) denote the set of reticulation nodes of the phylogenetic network N  . Then, let N −R(N ) be the 
subnetwork that is obtained from N  by removing all incident edges to the reticulation nodes and edge-contract 
the resulting nodes with in-degree one and out-degree one. This subnetwork is actually a forest in which each con-
nected component consists only of tree nodes and it is rooted at either the network root or a former reticulation 
node. Each of these connected components is a tree-component of N  . This is a useful concept for characterizing 
the topological structures of phylogenetic  networks21,22.
Tree‑child networks. A phylogenetic network N  on X is a tree-child network if each non-leaf vertex v of N  
has a child that is either a tree vertex or a leaf. Introduced in Ref.18, the class of tree-child networks is an increas-
ingly prominent class of phylogenetic networks found in the literature. See Fig. 1 for some examples. From the 
definition it follows that no reticulation of N  has a child reticulation and no tree vertex of N  has two child 
reticulations. It will be convenient to define a deep tree path as a path starting with a node and ending with a leaf, 
such that all the intermediate nodes of the path are tree nodes. In a TCN there exists at least one such deep tree 
path for every node.

It is also said that a tree node is free if each of its children is either a tree node or a leaf. Moreover, an edge to 
a child of a free tree node is known as a free edge. In the present work we will denote the class of all tree-child 
networks with n leaves by T Cn , their subclasses having n leaves and k reticulation nodes by T Cn,k.

Lemma 2 13 Every tree-child network in T Cn,k has n− k − 1 free tree nodes and thus 2(n− k − 1) free edges.

Proof From (1), we have that a tree-child network from T Cn,k has n+ k − 1 tree nodes. The two parents of every 
reticulation node are not free, and due to the tree-child property, different reticulation nodes have different 
parents. Thus, the number of tree nodes which are not free is 2k, from which the result follows.   �

(1)n+ k = t + 1.
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Corollary 1 The number of edges ending either in a tree node or a leaf, called tree edges, is equal to 2n+ k − 1.

Proof Add up all contributions: one edge from the root, k edges from the reticulation nodes, the 2(n− k − 1) 
free edges and 2k edges from the 2k that are not free.   �

Tree‑child networks and words
In this section we present bijections between words and two particular subclasses of tree-child networks. The first 
considered subclass is the set of unlabeled maximally reticulated TCNs. The mapping, to certain words having 
every letter repeated exactly three times, was given by Fuchs et al.13. The second case is the subclass of networks 
without reticulations, that is, the set of proper phylogenetic trees, with labeled leaves. We provide a bijection 
between phylogenetic trees and a similar class of words, but now every letter is repeated twice. In both situations 
the word is determined from the network by drawing and labeling non overlapping deep tree paths. We will see 
that for the maximally reticulated TCNs paths do not depend on the label of the leaves, whereas for trees, words 
strongly depend on the labeling of the leaves. Besides, for trees the mapping is a one-to-one relationship, whereas 
for the maximally reticulated TCN, every labeling of the leaves gives rise to a different TCN, hence there are 
exactly n! networks sharing the same word, being n the number of leaves. We finalize the section by presenting 
a driving hypothesis: a general TCN, say with k reticulation nodes and n leaves, is a mixture of the above cases, 
where the associated words have k letters repeated thrice and the remaining characters are repeated twice.

Maximally reticulated tree‑child networks. We start by introducing the first proposition which gives 
the fundamental characterization of this particular subclass of TCNs: for every node in every maximally reticu-
lated TCN there exists an unique deep tree path. The property is of paramount importance in order to establish 
a bijection with words.

Proposition 1 13 A tree-child network from T Cn has n− 1 reticulation nodes if and only if the path from every node 
to a leaf whose intermediate nodes are all tree nodes is unique.

Proof First, let us assume that we have a tree-child network with n leaves and n− 1 reticulation nodes. Then, for 
different reticulation nodes, the paths from these nodes to leaves with all intermediate nodes being tree nodes end 
with different leaves. Moreover, the child of the root (which is a tree node) also has a path with all intermediate 
nodes being tree nodes that end with another leaf. Thus, we have already at least n leaves and, consequently, no 
node can have two paths with the claimed property because the number of leaves would thus exceed n.

Next, let us suppose that for every node there is a unique path to a leaf with all intermediate nodes being tree 
nodes. Consider first this path from the child of the root. Clearly, all intermediate nodes must be parents of reticu-
lation nodes for otherwise an intermediate node would have two different paths to leaves with all intermediate 
nodes being tree nodes. Moreover, any reticulation node which is the child of an intermediate node on the path 
is followed by a tree node, which again has a path to a leaf (all intermediate nodes being parents of reticulation 
nodes). Clearly, this gives a network with n leaves and exactly n− 1 reticulation nodes.   �

Next the class of words is formally defined.

Definition 1 Let An denote the class of words built from a n-ary alphabet so that in each word w every letter 
is repeated exactly 3 times, and for every prefix z of w we have #(z, ai) = 0 or #(z, ai) ≥ #(z, aj) for all j > i and 
the function #(z, ai) counts the occurrences of the i-th letter in z.

The sequence {xn}n≥0 = {1, 1, 7, 106, 2575, . . .} corresponds to the entry A213863 of the OEIS. Bellow the 
first classes are shown:

(a) This network is not a TCN because the two childs
of the red node (circle) are reticulation nodes.

(b) This network is tree-child.

Figure 1.  Examples of phylogenetic networks.
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The following result was recently discovered by Fuchs et al.13. Note that for maximally reticulated TNC the 
tree-components, defined in section “Phylogenetic networks”, are actually paths, so in this section we will refer 
to them as path-components.

Proposition 2 There is a bijection from the set of tree-child networks T Cn,n−1 with labels removed to An−1 . Con-
sequently, |An−1| = |T Cn,k|/n!.

Proof Beginning with any given network from T Cn,n−1 , the bijection goes as follows.
In the first step, we sort the path-components of the chosen tree-child network. We do this inductively. 

First, the path-component of the child of the root receives an index 0. Assume that k path-components have 
been indexed. Now, consider all un-indexed path-components whose first node (which is a reticulation node) 
has its two parents already within indexed path-components. If both parents are in the same path-component, 
then one is the descendant of the other. Let us call that one the second parent. If both parents are in different 
path-components, then the parent in the path-component with the higher index is the second parent. Now, sort 
all the above chosen un-indexed path-components according to the indices of the path-components where the 
second parents are located. In case their indices coincide, one goes to the ancestor relationship within the path-
component of their second parents. Continue this until all path-components are indexed, which will eventually 
happen because our networks are assumed to be connected.

Now, we label the first node of every path-component of index k > 0 together with its two parents by ak.
Finally, we read the labels of each path-component starting with the 0th one until reaching the last one; see 

Fig. 2, where a line separates the strings from different path-components, although they are not necessary (they 
ever occur just before the third appearance of a letter).

The resulting word uses n− 1 letters, a1, . . . , an−1 with each letter repeated exactly thrice. Moreover, if a letter 
of the resulting word when read from the left occurs from the first time, then due to the above construction, no 
larger letter could have occurred already twice. Likewise, if a letter occurs from the second time, again no larger 
letter could have occurred already thrice. Therefore, the resulting word satisfies the property from Definition 1.

Since the construction does not depend on the labels of the leaves, and clearly it can be reversed, the resulting 
map constitutes a bijection between unlabeled maximally reticulated TCNs and words.

The construction actually establishes a total strict order on the set of leaves, determined by the name of the 
paths themselves. Thus there are exactly n! (labeled) networks in T Cn,n−1 associated to the same word.

  �

Fuchs et al.13 made use of these words as an auxiliary tool to determine the cardinality of the T Cn,n−1 sub-
class, and to discern its asymptotic behavior. However, they are important in their own right because statistical 
properties of the words have a direct reflection on the topology of the network. Consider for instance the mean 
distance between equal letters and their dispersion. Next some results about Means and Standard Deviations are 
provided. The proofs can be found in the section A of the Supplementary Information File (SIF), along with the 
proofs of the analogous results presented in the next section.

The lowest possible mean value is zero and it corresponds to the word aaabbbccc . . . , the associated net-
work, Fig. 2a, is very regular. The maximum mean value is equal to n− 1 and is achieved by words of the type 
aσ(1)aσ(2) . . . aσ(n)a b c . . . ana b c . . . an , where σ is any permutation of {1, 2, . . . , n} . Taking into account that 

A0 = ∅
A1 = {aaa}
A2 = {aabbab, ababab, baabab, aaabbb, aababb, abaabb, baaabb}

∅

a

b

c

(a) aa|abb|bcc|c

∅

a b

c

(b) abcabcabc

∅

a
b

c

(c) cbaabcabc

∅

a

b

c

d

4

3

1

5 2

(d) dcaaabbbccdd

Figure 2.  Some encodings of Maximally Reticulated Tree-Child Networks. In panel (a) bars have been used to 
explicitly delimitate the path-components. As explained in the Proof of Proposition 2, the bars can be discarded 
without losing information.
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in such words the distance between the first and second appearances is x(i) = n− 1+ σ(i)− i , the Standard 
Deviation (SD) is given by

It ranges from zero for the identity permutation, to a maximum value of 
√

(n2 − 1)/6 , corresponding to the 
permutation (n, n− 1, . . . , 1) . These two cases correspond to Fig. 2b,c, respectively. Words having the maximum 
SD are of the form zy . . . rq aaabbb . . . ppp qqrr . . . zz , where p is the letter located in the n− s alphabet’s 
position and z refers to the last character of whatever n-ary alphabet. The length s of the prefix zy . . . q yielding 
a maximum SD depends on n, going asymptotically to the value s = (2−

√
2)
(

n− 1
4 +O

(

1
n

))

 and implying a 
linear increase of the maximum SD. The concomitant value is 12

√

21− 12
√
2
(

n− 6−3
√
2

28−16
√
2
+O

(

1
n

)

)

 , and they 
have a mean value of 32 (

√
2− 1) n− 3

8

√
2+O

(

1
n

)

 . For n = 4 the specific word is dcaaabbbccdd, and the highly 
irregular TCN associated to it is shown in Fig. 2d.

Phylogenetic trees. Now we move to the other extreme case: TCNs with no reticulation nodes, that is, 
phylogenetic trees. Next we show that there is a bijective relationship between phylogenetic trees with n leaves and 
words over an alphabet of n− 1 letters satisfying conditions similar to those of Definition 1. In this case letters 
are now repeated exactly twice instead of thrice. This is stated in the following proposition:

Proposition 3 The set of phylogenetic trees on [n] taxa is bijectively related to the class of words Bn−1 built from a 
(n− 1)-ary alphabet, so that in each word w every letter is repeated exactly twice, and for every prefix z of w we have 
#(z, ai) = 0 or #(z, ai) ≥ #(z, aj) for all j > i , and the function #(z, ai) counts the occurrences of the i-th letter in z.

Proof We shall give the bijection. Suppose that the leaves are labeled with elements of {1, 2, . . . , n} . First, let us 
make the assignments {2 → a, 3 → b, 4 → c, . . .} . Next, let us successively index deep paths in the following 
way: assign index 0 to the path from the root to the leaf labeled with number 1. For every node of the path, dif-
ferent from the root and the leaf, consider the path from the child of that node (not belonging to the path) to 
the descendant leaf with the lowest label. Then, index that path according the label of the leaf and the former 
assignment. Since any two members of the (root) path can not have common descendants not belonging to the 
path, it does not matter the order in which the indexing is done.

Continue then until the entire tree is covered by deep paths, which will eventually happen because our trees 
are assumed to be connected.

Finally, we read the labels of each indexed path, starting with the 0th one, continue with the a path, writing 
firstly the name of the path followed by the name of all paths departing from it. Then proceed lexicographically 
until reaching the last one (see Fig. 3 for some examples).

The resulting word uses n− 1 letters, a1, . . . , an−1 with each letter is repeated exactly twice. Moreover, if a letter 
of the resulting word, when read from the left occurs from the first time, then due to the above construction, no 
larger letter could have occurred already twice.

Finally, it is straightforward to see that the above construction can be reversed. Thus, the resulting map is a 
bijection.   �

Next the first sets Bn are displayed.

SD =

√

√

√

√

n
∑

i=1

(x(i)− x̄)2 + (n− 1− x̄)2

2n
=

√

√

√

√

1

2n

n
∑

i=1

(σ (i)− i)2.

B0 = ∅ (The empty word.)

B1 = {aa}.
B2 = {aabb, abab, baab}.
B3 = {aabbcc, ababcc, baabcc, aabcbc, abacbc, baacbc, aacbbc,

abcabc, bacabc, acabbc, acbabc, bcaabc, caabbc, cababc, cbaabc}.

∅
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d

e
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g
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(a) Tree encoded by the word
bdaacbfecdegfg.
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d
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(b) Tree encoded by the word
aabbccdd.

∅
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1 2

3
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5

(c) Tree encoded by the word
dcbaabcd.

Figure 3.  Examples of Tree encodings.
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Let us now determine the cardinalities |Bn| . Given the set corresponding to an alphabet of n− 1 letters, in 
order to obtain the set associated with n letters one shall add to each word two repetitions for the new letter (the 
last one in the alphabet). One of them must necessarily go at the end, and the other one may go elsewhere, thus 
having 2n− 1 possibilities. Consequently |Bn| = (2n− 1)|Bn−1| = (2n− 1)!!.

The bijection provides an easy encoding of phylogenetic trees, making their comparison straightforward. 
However, the codification is not a succinct representation because it uses twice the number of strictly necessary 
bits. This fact is seen by considering the leading term in the asymptotic expansion of the number (2n− 3)!! of 
phylogenetic trees, which is 

√
2
(

2n−2
e

)n−1 . The number of bits (obtained by taking the base 2 logarithm of the 
previous expression) goes as (n− 1) log2(n− 1) . On the other hand, our words contain 2(n− 1) letters, and 
for each letter one shall require log2(n− 1) bits. Still, the proposed encoding is not much larger than Newick’s 
standard codification, which only uses n numbers but it also requires 2n− 2 parenthesis and n− 1 commas. The 
important fact here is that Newick’s encoding is not a bijection.

As in the case of maximally reticulated networks, statistical analysis of the words can be performed. The very 
important difference is that in the former case words did not depend on the labels of the leaves, thus they only 
affect the topology of the network. But for phylogenetic trees, words depend not only on the topology but also 
on the labeling. Popular statistical indices for trees, such as the Colless or Sackin indices do not depend on the 
labeling, reflecting the structure of the tree. Therefore, taking into account the names of the leaves in the statisti-
cal indices can only be useful to compare trees with the same names for the leaves, or to be significative if some 
non arbitrary or significant order can be established between the set of leaves, which represent the so-called 
extant species. Next some statistical properties of the words are stated. The reader is referred to the section A of 
the SIF for their proofs. Regarding as before the distance between equal letters , words with the minimum average 
distance (actually zero) aabbcc . . . correspond to trees with lowest labels located as close to the root as possible, 
see Fig. 3b. On the other hand, words with the largest mean distance, specifically n− 1 , correspond as before to 
trees with the maximal depth, but now with the lowest label located as far as possible to the root. They are all 
words of the form aσ(1)aσ(2) . . . aσ(n)a b c . . . an , where σ is any permutation of {1, 2, . . . , n} , and the variance 
ranges from zero for the identity permutation, to a maximum value of (n2 − 1)/3 reached when the permutation 
is (n, n− 1, . . . , 1) . This latter case is represented in Fig. 3c. Words having the maximum variance are of the form 
zy . . . rq aabb . . . pp qr . . . yz , where we assumed that z is the nth letter of the alphabet and p is the letter 
located at the (n− s) th position of the alphabet. The length s of the prefix zy . . . q yielding a maximum SD 
depends on n, going asymptotically to the value s =

(

3−
√
5

2

)

n+ 2
√
5−5
10 +O

(

1
n

)

 . This fact implies a linear 
increase of the maximum Standard Deviation, specifically SD ∝ 5−

√
5

2
√
3

(

n− 3
5 +O
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1
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))

 , having a mean value 
of 
(√

5−1
2

)

n−
√
5
5 +O

(

1
n

)

.
As remarked by Diaconis and  Holmes23, combinatorialists often seek ways of walking through the space of all 

objects in a step-by-step way, useful for example to evaluate phylogenetic algorithms. This goal can be achieved 
by generating all equivalent words with minimal changes. The following program does this job. For convenience 
letters a, b, c . . . are substituted by numbers 1, 2, 3 . . .

Algorithm T (Gray tree generation): This algorithm visits all 2n-words w = c1c2 . . . c2n that satisfy the condi-
tions stated in Proposition 3 by starting with the word 112233 . . . nn and doing minimal changes at a time, until 
overflow occurs. Variable i contains the character to be moved next and an auxiliary vector of parities d2d3 · · · dn 
is used to reproduce the mirror symmetry. 

T1. [Initialize.]  Set c2j−1 ← j and c2j ← j for 1 ≤ j ≤ n , and set dj ← 0 for 2 ≤ j ≤ n . Also set 
i ← 2 (, the first letter to be moved).

T2. [Visit.]  Visit the word w = c1c2 . . . c2n . (The program that wants to examine all 2n-words 
now does its thing.)

T3. [Locate char to move.]  Let j ≥ 1 be minimum such that cj = i . Set a ← cj.
T4. [Direction?]  If di = 0 go to T5, otherwise ( di = 1 ) go to T6.
T5. [Move left.]  Let k < j be maximum such that ck < cj . If k > 0 go to 7. On the contrary, set 

di ← 1 and i ← i + 1 . Terminate if i = n+ 1 , otherwise go back to T3.
T6. [Move right.]  Let k > j be minimum such that ck ≤ cj . If ck  = cj go to 7. On the contrary, set 

di ← 0 , i ← i + 1 and go back to T3.
T7. [Exchange.]  Set cj ← ck and ck ← a . Also set i ← 2 and go to T2.

 The output sequence for n = 3 (corresponding to trees with 4 leaves) is

The conjecture. In this section we present a conjecture about the number of general subclasses of tree-child 
networks over n taxa and the cardinality of the set of words in the alphabet {a1, a2, . . . , an−1} that satisfy similar 
properties as the ones specified in Definition 1 and Proposition 3. Firstly the class of words is formally defined.

1 1 2 2 3 3
1 2 1 2 3 3
2 1 1 2 3 3
2 1 1 3 2 3
1 2 1 3 2 3

1 1 2 3 2 3
1 1 3 2 2 3
1 2 3 1 2 3
2 1 3 1 2 3
2 3 1 1 2 3

1 3 2 1 2 3
1 3 1 2 2 3
3 1 1 2 2 3
3 1 2 1 2 3
3 2 1 1 2 3
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Definition 2 Let Cn,k denote the class of words built from a n-ary alphabet, where all words have the same length, 
2n+ k . Every word w has k letters repeated thrice, n− k letters occur twice and for every prefix z of w we have 
#(z, ai) = 0 or #(z, ai) ≥ #(z, aj) for all j > i . The function #(z, ai) counts the occurrences of the i-th letter in z.

Sets An and Bn are included in this definition. Next we display the class C2,1 as a minimal proper example of 
the general case.

Section B of the SIF contains a bigger example: the C3,1 class. The main conjecture simply proposes an specific 
connection between cardinalities.

Conjecture 1 The cardinality of a (general) subclass T Cn,k of tree-child networks with n leaves and k reticulation 
nodes is related to the cardinality of the class of words Cn−1,k by the equality

The conjecture is supported by strong evidence. By solving the counting problem concerning Cn,k , the num-
bers of tree-child networks predicted by the hypothesis (2) exactly coincide with all entries of the table provided 
by Cardona and  Zhang8 which cover all cardinalities of TCN subclasses up to eight leaves. Furthermore simple 
analytic expressions can be extracted from the hypothesis, which coincide with already proven formulas for low 
numbers of reticulation nodes deduced by different methods: case k = 1 solved by L. Zhang in Ref.14, case k = 2 
proved by Cardona and  Zhang8 and the case k = 3 provided by Fuchs et al.11. Of course it also coincides with 
the extreme cases k = 0 and k = n− 1 . Incidentally, due to a theorem provided in Ref.8, it also agrees with the 
case k = n− 2.

Once Conjecture 1 is proven, which can be done by proving from properties of tree-child networks any of 
the forthcoming results based on it (namely Propositions 8, 9, 10 or 11), any surjective map

will induce a partition on the set T Cn,k through the equivalence relation

The map will be crucial to relate the stochastic and combinatorial properties of words with those properties 
of tree-child networks. Certainly the task should be simpler if the map produced a partition with equal-sized 
blocks. There is no evidence at this point indicating that it shall be the case. However, since this is the more 
desirable scenario, we consider that such “natural map” is worth searching for.

Conjecture 2 There exists a surjective map ψ : T Cn,k −→ Cn−1,k such that all its equivalence classes 
[a] = {x ∈ T Cn,k : ψ(a) = ψ(x)} have the same size, that is,

Another ambitious objective would be to enlarge somehow the words in such a way that it could be possible 
to define a bijection between T Cn,k and a new class C∗n−1,k of “augmented words”. It will make possible a con-
venient encoding of TCNs, facilitating their comparison. For the very particular case of maximally reticulated 
TCNs, the extension is immediate: one only needs to add the label of the final leaf of every deep path after the 
third appearance of the corresponding letter. In this fashion, the tree-child network represented in Fig. 2d is 
encoded as dcaaa3bbb1cc5dd2.

Counting words
In this section several counting formulas for the classes of words Cn,k are derived, as well as a precise asymptotic 
result. Next proposition is somehow fundamental.

Proposition 4 The number of words specified in Definition 2, cn,k ≡ |Cn,k| , satisfies the recurrence

Proof Notice that for every word w ∈ Cn,k the k letters repeated three times need to be the first k letters of the 
alphabet, otherwise the entire word will not fulfill the prefix condition. For the same reason, each word w ∈ Cn,k 
either ends with the kth letter or with the nth one.

In the first case, the map consisting in adding the kth letter at the end of a word w ∈ Cn,k−1 determines a 
one-to-one correspondence between Cn,k−1 and the subset X ⊆ Cn,k of words ending with ak : Adding ak to two 
different words w1  = w2 ∈ Cn,k−1 produces two different words w′

1 �= w′
2 ∈ X , and due to the prefix condition 

removing the last letter of a word w′ ∈ X leads to a word belonging to Cn,k−1 . It accounts for the first term on 
the right hand side of Eq. (3).

C2,1 ={aabba, ababa, baaba, aaabb, aabab, abaab, baaab}.

(2)|T Cn,k| =
n!

(n− k)!
× |Cn−1,k|.

ψ : T Cn,k −→ Cn−1,k ,

Given x, y ∈ T Cn,k : x ∼ y ⇔ ψ(x) = ψ(y).

# [a] =
n!

(n− k)!
∀ a ∈ T Cn,k .

(3)cn,k = cn,k−1 + (2n+ k − 1) cn−1,k with c0,0 = 1 and ci,−1 = ci,i+1 = 0 ∀ i.
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Words comprised in the second case can be obtained by adding to each word w ∈ Cn−1,k two repetitions of the 
nth letter. Since one letter is located at the end of the word, the other letter can be placed in any of the 2n+ k − 1 
available positions. It accounts for the second term on the right hand side of Eq. (3).

Incidentally, in case k = n , the fist procedure, which places the last nth− letter at the end of each word 
w ∈ Cn,n−1 , already generates all words with three repetitions, hence the convenience to define ci,i+1 = 0.

Finally, for the other extreme case k = 0 , adding a third appearance of a letter does not apply, so it is imposed 
ci,−1 = 0 , obtaining the recurrence for the double factorials cn,0 = (2n− 1)!! .   �

The lowest values of the cardinalities cn,k are:

where rows and columns correspond to n and k, respectively.

Proposition 5 The numbers cn,k satisfy the following recurrence equations

Proof Both equations follow by considering Eq. (3) as a first order recurrence equation, ym+1 = amym + bm , 
and then applying its standard solution method, see section D of the SIF. To obtain Eq. (5a), the independent 
term bm must be identified with cn,k−1 , solve for n and after that, shift n by one unit. On the other hand, to obtain 
Eq. (5b) the independent term has to be identified with (2n+ k − 1) cn−1,k , and then to solve for k.   �

Every counting equation implicitly describes a recursive procedure to generate the entire class. Formula (5a) 
implies that all words composing Cn+1,k can be obtained by adding up disjoint sets, one for each member of 
the sum (5a). All words belonging to one such set share a common suffix formed by k − r ordered letters of the 
alphabet, from the (r + 1)-th to the k-th letter. Different prefixes are built from words in Cn,r , adding the (n+ 1)
-th letter of the alphabet twice, one at the end of the word and the other one inserted in all possible positions. 
See diagram (a) shown in Fig. 4.

Regarding the other expression, Eq. (5b), the members of an arbitrary disjoint set are obtained from words 
belonging to Cℓ,k by first adding the (k + 1)-th letter of the alphabet at the end of that word. Then add two rep-
etitions of the (ℓ+ 1)-th letter, one at the end and the other in all possible positions. After that add similarly 
the (ℓ+ 2)-th letter, one placed at the end and the other one elsewhere. Continue doing so until placing the last 
letter of the alphabet. The method is depicted in the diagram (b) displayed in Fig. 4.

Enumeration. Given a combinatorial class, an important issue is to being able to list all its elements. In sec-
tion F of the SIF we provide an algorithm, based on the recurrence (5a), that sequentially generates all words 
in Cn,k . Here we describe the recursive structure on which it is based, although the algorithm is not written 
recursively.

Given numbers n and k, all words in Cn,k are generated starting by the word (written in numbers)

The algorithm can be understood as a sequence of “intermediate initial configurations”. One such “intermedi-
ate” word has the structure

(4)

1
1 1

3 7 7
15 57 106 106

105 561 1515 2575 2575
945 6555 23220 54120 87595 87595

(5a)cn+1,k =
k

∑

r=0

(2n+ r + 1) cn,r ,

(5b)cn,k+1 =
n

∑

ℓ=k+1

n
∏

i=ℓ+1

(2i + k) cℓ,k .

(6)w0 = 112233 . . . nn||123 . . . k.

w0 ∈ Cn,r

w ∈ Cn+1,k an an

Alphabet: a b c d · · · ak · · · an

r+1 k

Suffix

(a) Generation associated to formula (5a).

w0 ∈ C�,k

w ∈ Cn,k+1 anak+1

{a�+1, . . . , an}

(b) Generation associated to formula (5b).

Figure 4.  Methods to recursively generate the classes of words.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21875  | https://doi.org/10.1038/s41598-021-01166-w

www.nature.com/scientificreports/

where the substring p(n−1) is precisely 1122 . . . n−1 n−1 , while substrings q1 and q2 are the two parts of a cut of 
the rightmost k numbers in the original word (6), thus q1(i) = 12 . . . i−1 and q2(i) = i i+1 . . . k . The sequence 
starts with i = 0 (q1 = ∅) and ends with i = k . From this basis word, other words are obtained by moving the 
left most n to the left, placing it in all possible positions. But every one of such movements will be done after the 
same procedure is applied to the (inner) word

In the Section B of the SF it can be seen how the above procedure generates all words in C3,1.
Thus we take an enumeration of Cn,k , that is, a bijective mapping from Cn,k to an initial segment of the natural 

numbers, as the position in which the last procedure visits a word. Due to the clear recursive structure of the 
procedure, it is both quick and simple to implement, given an arbitrary word in which position it is visited. The 
following algorithm does this job.

Algorithm E (Direct Enumeration): Given an input word w = c1c2 . . . cm , this algorithm determines the class 
Cn,k to which it belongs and equipped with the table of cardinalities cn,k (Proposition 4), it provides the position 
P that Algorithm A (placed in Section F of the SIF) visits it. 

E1. [Initialize.]  Determine n, the number of distinct characters. Also determine k, the number of 
characters repeated thrice. Initialize the output P ← 1 , the position of the word in 
the list.

E2. [Easy case?]  If k = n remove rightmost character (it is necessarily an ). Set k ← k − 1.
E3. [Localize last char.]  Find p and q < p maximums such that cp = cq = an.
E4. [Actualize.]  Remove last 2n+ k − p characters and the other repetition of an located at position 

q. Set k ← p− 2n and also set n ← n− 1.
E5. [Accumulate.]  Set P ← P + (p− q− 1) cn,k +

∑k−1
r=0(2n+ r + 1) cn,r . Terminate if n = 0 , other-

wise go to E2.

It is of course possible to reverse the last algorithm. That is, specifying n, k and an integer 1 ≤ P ≤ cn,k , to 
determine to which word it corresponds. Such algorithm could be useful to generate words uniformly at random.

Asymptotic behavior. Let us start by providing an useful counting formula for small values of k.

Proposition 6 The number of words contained in Cn,k is given by

where the coefficients ai are determined by the recursive equation

The first terms of the ai sequence are {1,−1, 16 ,
17
48 ,−

283
1512 ,−

467
9216 ,

66329
1297296 ,

8915
4644864 , . . .}.

The proof follows easily by induction. It can be found in the Section C of the SIF.
Formula (9) is very appropriate to study the asymptotic behavior for k fixed and n → ∞ . Notice that the 

variable n only appears in the argument of the double factorial, thus for sufficiently large n only considering the 
first term of the sum will be a good approximation.

Proposition 7 For k fixed and n → ∞ , numbers cn,k grow as

The detailed proof can be found in the Section E of the SIF.
It is possible to get an idea of what it means “for sufficiently large n”. Formula (9) will give a good asymptotic 

result whenever the terms of the sum are decreasing in module. Considering the known inequality between 
double factorials

(7)wi = p(n−1) | q1(i) | nn || q2(i)

(8)w′ = p(n−1) || q1(i).

(9)cn,k =
k

∑

i=0

(2n+ 2k − i − 1)!!
(k − i)!

ai ,

(10)ai = −
i

∑

j=1

(3i − 3+ j)!!
(3i − 3)!!

ai−j

j!
, and a0 = 1.

(11)

cn,k =
√
2
e−n (2n)n+k

k!

{

1−
√

π

2
k (2n)−1/2 +

14k2 − 2k − 1

12
(2n)−1 −

√

π

2
k
31k2 + 3k − 26

48
(2n)−3/2

+
2900k4 − 264k3 − 10016k2 + 6876k + 21

6048
(2n)−2 +O(n)−5/2

}

m+
1

4
<

(2m)!!2

π(2m− 1)!!2
< m+

1

2
,
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it can be seen that an absolute ratio of consecutive terms lower than one is obtained if

where

Numerical experiments showed us that γi is usually small but has some peaks. For i < 500 it is ever lower 
than 30. It seems reasonable to consider it as a constant. In such case a safety bound would be around n > O

(

k
2
)

.

Implications of the conjecture
It is plain that it would be desirable to establish a “natural mapping”, as the one described in the Conjecture 2, 
between the subclass of tree-child networks T Cn,k and the class of words Cn,k , or even better, a bijective relation-
ship between T Cn,k and some class C∗n,k (for now unknown) of “augmented words”. Such bijection would provide 
a proper codification for the networks that would greatly help in their comparison, the enumeration procedures 
provided in section 4.1 could be used, but it would specially help to study the combinatorial and stochastic prop-
erties of those networks, linking them to the properties of words. Summing up, the bijection would greatly help 
to characterize a “typical network”. But usually it is not so simple to design a bijection. It is often much simpler 
to count directly the elements of a set rather than to provide a bijection with a different set whose counting is 
known. In order to fully prove our Conjecture 1, Eq. (2), it may be easier to do so probably via some inductive 
argument, by relating the cardinals of subclasses of networks. Thus, given the main Conjecture 1 and the deduced 
recurrence between words, Proposition 4, we state the following proposition:

Proposition 8 Assuming Conjecture 1 holds, by Proposition 4, the cardinalities |T Cn,k| satisfy

with initial values |T C1,0| = 1  and  |T Ci,−1| = |T Ci,i| = 0 ∀ i.

This recurrence exactly reproduces the table given in Ref.8. Table1 displays the (conjectured) counts of TCNs 
up to 10 leaves and all possible reticulation numbers.

Similarly, simply adding the falling factorial to Eq. (5a), the following result is obtained.

Proposition 9 Assuming Conjecture 1 holds, the following relation, directly deduced from Eq. (5a), also holds:

Now, the inductive argument would consist of adding reticulations nodes starting from the initial set of 
phylogenetic trees with n− 1 leaves or, alternatively, to begin with an arbitrary TCN and to start deleting reticu-
lations until reaching a tree.

The following equality follows similarly from Eq. (5b) by adding the falling factorial.

Proposition 10 Assuming Conjecture 1 holds, yet another relation for |T Cn,k| can be readily obtained from Eq. (5b):

(12)n > (k − i)2 γi − k +
2i + 1

4
∀ 0 ≤ i ≤ k,

γi =
1

π

(

ai+1

ai

)2

.

(13)(n− k) |T Cn,k| = (n+ 1− k)(n− k) |T Cn,k−1| + n (2n+ k − 3) |T Cn−1,k|,

(14)(n− k)! |T Cn,k| = n

k
∑

r=0

(2n+ r − 3) (n− 1− r)! |T Cn−1,r |.

Table 1.  Counts of TCNs with k reticulations on [n], where 1 ≤ k < n and 2 ≤ n ≤ 10. The last row contains 
the total numbers of TCNs.

k\n 2 3 4 5 6 7 8 9 10

1 2 21 228 2805 39,330 623,385 11,055,240 217,237,545 4,689,345,150

2 42 1272 30,300 696,600 16,418,430 405,755,280 10,606,551,480 294,109,704,000

3 2544 154,500 6,494,400 241,204,950 8,609,378,400 306,699,077,160 11,115,708,408,000

4 309,000 31,534,200 2,068,516,800 113,376,463,200 5,717,669,504,400 277,928,391,510,000

5 63,068,400 9,737,380,800 920,900,131,200 70,028,853,426,000 4,748,839,899,804,000

6 19,474,761,600 4,242,782,275,200 547,410,697,041,600 55,220,314,578,912,000

7 8,485,564,550,400 2,482,302,981,614,400 419,465,496,844,800,000

8 4,964,605,963,228,800 1,878,972,235,938,000,000

9 3,757,944,471,876,000,000

Total 2 63 4044 496,605 101,832,930 31,538,905,965 13,771,649,608,920 8,070,383,687,681,385 6,116,640,702,036,483,150
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valid for k ≥ 1.

This last Eq. (15) relates the number of elements of T Cn,k with those of the networks with one less reticula-
tion, as well as all possible number of leaves. In this case the inductive reasoning would involve deleting leaves 
till reaching a maximally reticulated TCN, a particular subclass already counted in Refs.11,13. Since we believe 
that this is a promising way to prove the conjecture, Eq. (2), particular instances of this recurrence for low values 
of m are displayed bellow. 

Let us notice how, in this fashion, we recover the principal recurrence (13):

The first Eq. (16a) was already proven in Ref.8 (Theorem 12 therein). We presume that proving the particular 
case (16b) is a decisive step towards the proof of the conjecture. Moreover we think that the correct interpretation 
of Eq. (15) could bring us to the desired map. We believe so because the letters repeated thrice in our words are 
the first of the alphabet, then a feasible strategy would consist in removing leaves, possibly in an ordered way, 
from a given TCN until reaching a maximally reticulated TCN, then setting the labels of the paths according to 
the Zhang/Yu/Fuchs bijection, Proposition 2, and after that reconstructing the network adding the previously 
removed leaves.

Relation (9) provides a straightforward method for obtaining explicit formulae for the number of TCNs with 
few reticulations. Let us rewrite it in terms of the new coefficients bi ≡ i! ai.

Proposition 11 Assuming Conjecture 1 holds, a convenient expression to determine |T Cn,k| for low k values is 
immediately deduced from Proposition 6:

where the coefficients bi are determined by the recursive equation

The first terms of the sequence are {1,−1, 13 ,
17
8 ,−

283
63 ,−

2335
384 ,

331645
9009 , . . .} . Notice that Eq. (18) also follows from the 

combination of Eq. (17) with the condition |T Cn,n| = 0.

The number of TCNs in closed form can be obtained analytically with the help of the previous relation (17). 
We shall list in the following some of them: 

(15)|T Ck+m+1,k| =
m
∑

ℓ=0

(ℓ+ 2)

[

m
∏

i=ℓ+1

(

1+
k

i + 1

)

(

2i + 3k − 1
)

]

|T Ck+ℓ+1,k−1|,

(16a)|T Ck+1, k| = 2 |T Ck+1, k−1|

(16b)|T Ck+2, k| = 3 |T Ck+2, k−1| +
(

1+
k

2

)

(3k + 1) 2 |T Ck+1, k−1|

(16c)

|T Ck+3, k| = 4 |T Ck+3, k−1| +
(

1+
k

3

)

(3k + 3)

(

3 |T Ck+2, k−1| +
(

1+
k

2

)

(3k + 1) 2 |T Ck+1, k−1|
)

|T Ck+m+1,k| = (m+ 2) |T Ck+m+1,k−1| +
(

1+
k

m+ 1

)

(3k + 2m− 1) |T Ck+m,k|.

(17)|T Cn,k| =
(

n
k

) k
∑

i=0

(

k
i

)

(2n+ 2k − i − 3)!! bi ,

(18)bi = −
i

∑

j=1

(

i
j

)

(3i − 3+ j)!!
(3i − 3)!!

bi−j , and b0 = 1.

(19a)|T Cn,1| =
(

n
1

){

(2n−1)!! − (2n−2)!!
}

(19b)|T Cn,2| =
(

n
2

){

(2n+1)!! − 2(2n)!! +
1

3
(2n−1)!!

}

(19c)|T Cn,3| =
(

n
3

){

(2n+3)!! − 3(2n+2)!! + (2n+1)!! +
17

8
(2n)!!

}

(19d)|T Cn,4| =
(

n
4

){

(2n+5)!! − 4(2n+4)!! + 2(2n+3)!! +
17

2
(2n+2)!! −

283

63
(2n+1)!!

}
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 Last expression, k = 4 , is actually a conjecture, whereas the previous ones agree and simplify the existing proven 
formulas in a compact manner. An equivalent expression to (19a) was first provided by  Zhang14, a direct formula 
for TCNs with two reticulation nodes was first given by Cardona and  Zhang8, while a closed formula for |T Cn,3| 
can be found in Ref.11.

Coefficients bi form a rather odd sequence, as can be grasped from Fig. 5. There it is plotted the ratio of two 
consecutive terms, Panel 5a. As can be seen this quantity oscillates for every increment of one unit of i, this means 
that bi coefficients can be grouped in pairs of consecutive elements having the same sign. We have checked 
numerically that this happens almost all the time. Also, the overall tendency of |bi| seems to be bounded by a 

known expression, as shown in the right panel 5b. It appears as if  
2

i
ln

(

|bi|
Ŵ(i/2)

)

< 1 ∀ i.
It is also instructive to study the numerical behavior of the terms composing the sum (17) for big n and several 

k values. In particular, in Fig. 6 we depict, for a fixed n = 625 and several k, the logarithm of the absolute value 
of all the terms forming the sum. In each case, the horizontal line represents the logarithm of the sum result. 
The first panel depicts the moduli for (n = 625, k = 50) , with k <

√
n ; the second one, (n = 625, k = 312) , with 

k ≈ n/2 ; finally, the third one depicts (n = 625, k = 624) , that is, k = n− 1 . Bearing in mind that the first term 
in the sum (17) constitutes an absolute upper bound to the sum itself, great cancelations occur in the summation 
for each case until each curve reaches the horizontal line.

Asymptotic expression. The concomitant expression for |T Cn,k| is obtained following (11) with 
n → n− 1 , and adding the factor n!

(n−k)!.

Proposition 12 Assuming Conjecture 1 holds, for k fixed and n → ∞ , numbers |T Cn,k| grow as

Figure 5.  Coefficients bi follows the sign pattern ··· ++−−++−− ··· most of the time. This is reflected in a near perfect 
sign alternation of the ratios bi/bi−1 , as shown in the left panel (a). To study the growth of coefficients bi , the 
right panel (b) depicts the quantity 2

i
ln

(

|bi |
Ŵ(i/2)

)

.

Figure 6.  Decimal logarithm of the absolute value of the terms forming the sum (17), including the 
(

n

k

)

 factor. 

Blue dashed line corresponds to the logarithm of the final sum result.
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Fuchs et al.10 were able to reproduce the asymptotic expressions of |T Cn,k| for large n and k = 1, 2, 3 by 
employing a rather involved method based on generating functions. We recover the (few) previously known 
expansions and extend them to any (fixed) k and (sufficiently large) n, along with several additional corrections 
to the leading term.

In the Fig. 7 we depict the accuracy of the asymtotic series (20) at different orders of approximation as a func-
tion of n for two particular cases, k = 4 and 5 . Usually, but not always, successive approximations overestimate 
and underestimate the exact value.

Concluding remarks
The key contribution deals about a combinatorial characterization of a new class of words Cn,k , formally intro-
duced in Definition 2. Counting formulas have been provided, enumeration procedures are described and an 
asymptotic analysis has been performed.

The practical importance of this class of words is a potential relationship with the subclasses T Cn,k of tree-
child networks with n leaves and k reticulation nodes. We conjectured that the cardinalities of the classes are 
related by |T Cn,k| = n!

(n−k)! × |Cn−1,k|.
No counterexamples have been found. Additionally, general counting formulas for T Cn,k , deduced from 

the counting results on words and the conjecture, agree and simplify all already proved results for particular 
subclasses of tree-child networks. The present work poses a very specific challenging problem to the Phylogeny’s 
community: the conjecture will be proven if any of the counting formulas deduced from it (namely Propositions 
9–11) can be proven only using properties of the networks.

Maps from networks to words have been described for two very particular subclasses: phylogenetic trees and 
maximally reticulated tree-child networks. For the trees case the map is a one-to-one correspondence, whereas 
for the maximally reticulated networks every word is the image of exactly n! distinct networks (only differing 
in the labels of the leaves). To dispose of a map for the general case will make possible a precise stochastic char-
acterization of the networks. This assertion is grounded on the fact that Algorithm E can be readily reversed to 
sample words uniformly at random. Thus, words have the potential to characterize typical tree-child networks, 
namely, the typical depth, the number of linages in the ancestry of a leave, the expected lengths of random walks 
between the root and leaves, and so on.

Finally, we would like to address some questions. Tree-child networks seem to be related to words with letters 
repeated two and three times, however, the “prefix condition” can be naturally extended to words with letters 
repeated two, three, four,..., up to an arbitrary number of times. Therefore, could those words be related to some 
class of labeled directed acyclic graphs, as in Conjecture 1? Does it correspond to a known class of phylogenetic 
networks? Future work will try to elucidate the previous issues.
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Figure 7.  Plots of the evolution |T Cn,k| versus n, for two particular cases, k = 4 and 5. The deviation is 
computed with regards to the exact value as Deviation = Approximated

Exact − 1.
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