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Metabolic characterization 
and metabolism‑score of tumor 
to predict the prognosis in prostate 
cancer
Yanlong Zhang1,3,5, Xuezhi Liang1,3,5, Liyun Zhang2,6* & Dongwen Wang1,3,4,6*

Tumor metabolism patterns have been reported to be associated with the prognosis of many 
cancers. However, the metabolic mechanisms underlying prostate cancer (PCa) remain unknown. 
This study aimed to explore the metabolic characteristics of PCa. First, we downloaded mRNA 
expression data and clinical information of PCa samples from multiple databases and quantified the 
metabolic pathway activity level using single‑sample gene set enrichment analysis (ssGSEA). Through 
unsupervised clustering and principal component analyses, we explored metabolic characteristics and 
constructed a metabolic score for PCa. Then, we independently validated the prognostic value of our 
metabolic score and the nomogram based on the metabolic score in multiple databases. Next, we 
found the metabolic score to be closely related to the tumor microenvironment and DNA mutation 
using multi‑omics data and ssGSEA. Finally, we found different features of drug sensitivity in PCa 
patients in the high/low metabolic score groups. In total, 1232 samples were analyzed in the present 
study. Overall, an improved understanding of tumor metabolism through the characterization of 
metabolic clusters and metabolic score may help clinicians predict prognosis and aid the development 
of more personalized anti‑tumor therapeutic strategies for PCa.
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PCA  Principal component analysis
ssGSEA  Single-sample gene set enrichment analysis
TCGA   The cancer genome atlas
TGF-β  Transforming growth factor-beta
TMB  Tumor mutation burden
TPMs  Transcripts per kilobase million

Prostate cancer (PCa) is one of the most common male cancer  types1. Although therapies, including laparo-
scopic radical prostatectomy and robot-assisted radical prostatectomy, for PCa have rapidly advanced in recent 
years, the recurrence rate is still  high2–4. Simultaneously, almost all recurrent PCa cases become castration-resist-
ant PCa (CRPC) after castration  therapy5. Therefore, it is necessary to further explore the mechanisms underlying 
PCa to discover new treatments and seek biomarkers to predict prognosis and guide anti-tumor therapy in PCa.

The development and multiplication of cells are driven by the power of energy metabolism. Based on the char-
acterization of the infinite proliferation of tumor cells, the emergence and growth of tumors is closely associated 
with the transformation of cell metabolic states. Recent studies have shown that the process of PCa emergence 
is related to tumor metabolism, including citric acid and choline  metabolism6. Meanwhile, certain investiga-
tions have indicated that tumor metabolism associated with the androgen receptor (AR) leads to the occurrence 
and castration resistance of  PCa7,8. It is possible to oppose this transformation toward PCa by inhibiting these 
metabolic pathways. Therefore, it is worthwhile exploring tumor heterogeneity and the mechanism underlying 
the metabolic perspective in PCa.

With the advent of high-throughput sequencing technology, tumor characterization of the whole genome can 
be performed. Compared with traditional metabonomic experiments, high-throughput sequencing technology 
can be used to analyze correlations between tumor metabolism and other biological behaviors, such as immune 
infiltration and tumor mutation burden (TMB)9 10. Therefore, highly comprehensive and accurate results can 
be obtained using high-throughput sequencing data and bioinformatics analysis.

Previous studies based on array and sequencing technology have reported that metabolic changes are the most 
obvious alterations in many types of cancer. In some cancers, high energy metabolism indicates a high capacity 
for proliferation and invasion as well as poor  prognosis11–13. However, in specific tumors, including liver cancer, 
low metabolism indicates high tumor heterogeneity, which is associated with a poor  prognosis14. The metabolic 
mechanisms underlying PCa development remain unknown.

Based on the information at hand, we investigated the tumor metabolic status using a large number of samples 
and multiple datasets with reasonable and complex bioinformatics methods. First, we collected PCa datasets 
from six databases, and 1,232 samples were included in our study. Then, unsupervised clustering analysis, prin-
cipal component analysis (PCA), and univariate cox analysis to identify metabolic subsets and quantify tumor 
metabolic status based on the metabolic score were carried out. We further calculated the relationship between 
the metabolic score and tumor heterogeneity. We hypothesized that the metabolic score calculated based on 
metabolic gene expression from mRNA high-throughput sequencing or microarray data would better interpret 
PCa metabolic characteristics and be able to predict PCa prognoses while aiding anti-tumor therapy. The work-
flow of our research is shown in Fig. S1A.

Materials and methods
PCa datasets collected and preprocessing. We downloaded 1,232 tumor sample datasets from 1205 
PCa patients (TCGA-PRAD, Deutsches Krebsforschungszentrum [DKFZ], and GSE54460 procured from the 
RNA-seq database; GSE70768, GSE116918, and Memorial Sloan-Kettering Cancer Center [MSKCC] pro-
cured from the Array Express database) from six publicly available databases. The samples in TCGA, DKFZ, 
GSE54460, GSE70768, and MSKCC were collected after radical prostatectomy, while the samples in GSE116918 
were collected with primary radiotherapy (with or without ADT). Information on the clinical and data types of 
1205 PCa patients is displayed in Table S1. The RNA sequencing data (FPKM: fragments per kilobase per mil-
lion) of TCGA-PRAD datasets were collected from TCGA (https:// portal. gdc. cancer. gov/). The RNA sequencing 
(FPKM) data of the GSE54460 datasets and the microarray datasets (GSE70768 and GSE116918) were col-
lected from the Gene Expression Omnibus (GEO) (https:// www. ncbi. nlm. nih. gov/ gds/). The RNA sequenc-
ing (FPKM) data of the DKFZ datasets and the microarray datasets of the MSKCC datasets were downloaded 
from the cBioPortal for Cancer Genomics (http:// www. cbiop ortal. org/). Details about each sample (including 
patient characteristics; treatments received; and methods of assay, preservation, and storage) can be obtained 
from the corresponding database websites. Then, we converted the expression profile (FPKM) of TCGA-PRAD, 
GSE54460, and DKFZ datasets to TPMs (transcripts per kilobase million) and processed TPM values with + 1 
and log2 to ensure that these values were in accordance with the microarray  values15. To eliminate batch effects 
between different datasets (GSE54460, GSE70768, GSE116918, MSKCC, and DKFZ cohorts), we used the "sva" 
R package and "ComBat" algorithm to produce the meta cohort (Fig. S1B and S1C)16.

ssGSEA for metabolic pathways. Metabolic pathway gene sets collected by KEGG (Kyoto Encyclopedia 
of Genes and Genomes) were downloaded from the Molecular Signatures Database (MSigDB; https:// www. gsea- 
msigdb. org/) (Table S2). The active levels of PCa samples in all the pathways were quantified by single-sample 
gene sets enrichment analysis (ssGSEA) using the "gsva" R  package17. We employed unsupervised clustering and 
the "k-means (km)" method to identify the metabolic pattern of each PCa sample using the "ConsensuCluster-
Plus" R package and repeated it 1,000 times to ensure classification  stability18.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
http://www.cbioportal.org/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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DEGs connected with metabolic subtypes. To further select genes associated with metabolic subtypes, 
we identified differentially expressed genes (DEGs) between these clusters through differential analysis using the 
limma R package (adjust P-value < 0.001).

Construction of metabolic score and nomogram. First, we performed univariate cox analysis for each 
DEG to select those with prognostic potential. Next, we performed unsupervised cluster analysis based on the 
expression levels of the prognostic DEGs to classify patients in the meta cohort. Finally, PCA was performed 
based on the prognostic DEGs to describe the metabolic characteristics of the PCa samples. Principal compo-
nents 1 and 2 were calculated as biomarkers to quantify the metabolic level of the PCa sample. The advantage of 
this approach is that it concentrates the score on the largest set of highly correlated (or unrelated) gene blocks 
in the set, while down-weighting the contribution of genes that are not tracked by other members in the  set19.

The metabolic score was calculated as follows:

where i is the expression of 216 prognostic DEGs.
Correlations among the clinical variates, metabolic score, and disease-free survival (DFS: biochemical recur-

rence-free survival) of PCa patients were analyzed using univariate cox analysis. The prognostic model and 
nomogram were constructed using multivariate Cox regression analysis. Kaplan–Meier (K–M) survival curves 
were used for prognostic analysis, and log-rank tests were performed to calculate P-values. To test the precision 
of the risk model and nomogram, time-dependent receiver operating characteristic (ROC) analysis was per-
formed using the R package survivalROC 1.0.3. The area under the ROC curve (AUC) > 0.60 was considered to 
indicate that the prediction ability of the model was meaningful, and an AUC > 0.75 was considered to indicate 
outstanding predictive value.

Functional enrichment analysis of the metabolic score. To investigate the potential molecular bio-
logical function of metabolic score genes, we performed gene set enrichment analysis (GSEA) in the meta cohort 
according to the high and low metabolic score groups divided by the medium metabolic score. We further 
explored the function of the metabolic score through gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) gene function enrichment analysis as well as prognostic DEGs (P < 0.05).

Acquisition of DNA mutation data. We collected the DNA mutation and copy number variation (CNV) 
information of PCa patients in TCGA from TCGA data portal (https:// www. cancer. gov/ tcga/), and that for 
patients in the DKFZ cohort were downloaded from the cBioPortal for Cancer Genomics (http:// www. cbiop 
ortal. org/). DNA mutation driver genes were selected for the high or low metabolic scores group using the 
"maftool" R  package20. The top 20 driver genes with the highest mutation rates were investigated.

Immune infiltration evaluation of PCa tumors. The related infiltration and activity levels of 29 
immune cell gene sets collected from the Molecular Signatures Database (MSigDB; https:// www. gsea- msigdb. 
org/) were calculated using the "gsva" R package (Table S2). The immune scores, stromal scores, and ESTIMA-
TION scores calculated by the "ESTIMATE" R package were employed to evaluate immune cell and stromal 
cell abundance in PCa  tumors17. To further investigate the relationship between stromal cells and the metabolic 
score, we calculated ssGSEA scores for epithelial-mesenchymal transition (EMT), extracellular matrix (ECM), 
and transforming growth factor-beta (TGF-β) using the corresponding gene sets downloaded from the Molecu-
lar Signatures Database (Table S2).

Drug sensitivity analysis. To assess the connection between the metabolic score and drug sensitivity, we 
applied the "pROC" R package to predict drug  IC50 by sample expression data. Bicalutamide, docetaxel, cisplatin, 
methotrexate, axitinib, doxorubicin, and gemcitabine were included in the analysis.

Statistical analyses. All computational and statistical analyses were performed using the R software. The 
Wilcoxon test was used for the differential analysis of two groups. The Kruskal–Wallis test was used for more 
than two groups. Fisher’s exact test was used to calculate the difference for contingency table variables, and the 
correlation coefficient of the two variables was calculated using Spearman correlation analysis. Statistical signifi-
cance was defined as a two-tailed P value of < 0.05.

Ethics approval and consent to participate. This study is based on published or public datasets and 
does not include new data that require ethical approval and consent.

Consent for publication. Written informed consent for publication was obtained from all participants.

Results
Landscape of metabolic levels of tumors in PCa. First, we executed the ssGSEA algorithm to evaluate 
the activity levels of metabolic pathways in the PCa samples. Univariate cox and K-M survival curve analysis, 
based on 733 tumor samples with ssGSEA scores from the meta cohort (RNA-seq database: GSE54460 and 
DKFZ; array express database: GSE70768, GSE116918, and MSKCC), indicated that almost all metabolic path-

Metabolic score = � (PC1i + PC2i)

https://www.cancer.gov/tcga/
http://www.cbioportal.org/
http://www.cbioportal.org/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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ways had a prognostic value in PCa (Table S3). Finally, we performed unsupervised clustering analysis to identify 
the metabolic patterns of PCa patients in the meta cohort.

We then confirmed three distinct metabolic subtypes with noticeable disease-free survival (DFS) differences 
(log-rank test, P < 0.001) (Fig. S2A–H; Fig. 1A and B). In addition, we generated a correlation coefficient heatmap 
to display the universal landscape of active metabolic pathways in PCa (Fig. S3). To further explore the possible 
biological differences that lead to prognostic differences among PCa patients, we compared the ssGSEA scores 
of the metabolic pathways of the PCa samples. Among the three metabolic subtypes, metabolic cluster C was 
associated with the worst prognosis. The main feature of cluster C was that almost all metabolic pathways had 
low activity levels (low-metabolic tumors). The main feature of cluster A was that almost all metabolic pathways 

Figure 1.  The landscape of active level of 41 metabolic pathways in PCa. (A) Unsupervised clustering of 
metabolic ssGSEA scores in five independent PCa cohorts. Rows represent tumor metabolic ssGSEA scores, 
and columns represent samples. (B) Kaplan–Meier curves for disease-free survival (DFS) of all PCa patients 
with metabolism clusters. The log-rank test showed an overall p < 0.001. (C) The metabolic ssGSEA scores in 
four metabolism clusters. The difference in PSA (D) and AR expression (E) among distinct metabolism clusters. 
The statistical difference of three metabolism clusters was compared through the Kruskal–Wallis test. *p < 0.05; 
**p < 0.01; ***p < 0.001.
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of the samples had high activity levels (high-metabolic tumors), and cluster B contained metabolic pathways with 
medium activity levels (medium-metabolic tumors). We also analyzed androgen receptor (AR) and prostate-
specific antigen (PSA) levels in each metabolic subtype. Metabolic cluster C displayed an obviously higher PSA 
level than clusters A and B. By contrast, cluster B had lower AR expression levels than clusters A and C. The 
Kruskal–Wallis test was used to identify significant differences between the metabolic pathways, ssGSEA scores, 
AR expression levels, and PSA levels in the three unique metabolic subtypes (Fig. 1C–E).

Identification of metabolic gene subsets. To reveal the potential biological properties of different 
metabolic subsets, we performed differential analyses to identify the transcriptome characteristic genes between 
the high, low, and medium metabolic tumors using the limma package of R software (Fig. 2A). Next, we selected 
DEGs with a prognostic value by univariate cox analysis, performed unsupervised clustering analysis again 
based on the expression levels of 216 prognostic DEGs (Tables S4 and S5), and divided the meta cohort into three 
gene clusters (gene clusters A, B, and C) (Fig. S4A–G). The heatmap describes the expression abundance of the 
216 prognostic DEGs in three metabolic gene clusters (Fig. 2B). To explore the potential biological functions of 
these prognostic DEGs, GO and KEGG functional enrichment analyses were performed (Table S6). Functional 
enrichment analysis indicated that these prognostic DEGs play a role in cell metabolism and ion response.

Moreover, we compared the DFS of patients with PCa from different metabolic gene clusters using 
Kaplan–Meier survival analysis. The results suggested that patients in gene cluster A had a longer DFS and bet-
ter prognoses than those in gene clusters B and C and accord to metabolism cluster A (log-rank test, P < 0.001) 
(Fig. 2C). We also discovered that gene cluster A had higher ssGSEA scores for most metabolic pathways. 
Therefore, we designate the samples corresponding to gene cluster A as high-metabolic tumors. Samples corre-
sponding to gene clusters B and C were similarly designated as medium- and low-metabolic tumors. In addition, 
the three gene clusters displayed obvious differences in AR expression and PSA levels. For the PSA level, gene 
cluster C showed higher values than gene cluster B/C, and for AR expression, gene cluster B had lower values 
than gene cluster A/C. The Kruskal–Wallis test was applied to determine significant differences between the 
metabolic pathway ssGSEA score, AR expression levels, and PSA levels in the three gene clusters (Fig. 2D–F). 
Taken together, these results indicate that our classification method can extract metabolic characteristics and 
reflect the prognosis and tumor heterogeneity in PCa.

Generation of the metabolic score. To obtain a quantitative biomarker of metabolic characterization in 
PCa patients, we produced the PCA algorithm to calculate the metabolic score, which was the value of the sum 
of PCA1 and PCA2 from the prognostic DEGs (Fig. 3A). The coefficient of the PCA is displayed in Table S7. 
We then divided the patients from the meta cohort into high and low metabolic score groups by cut-off values 
(medium metabolic score = − 92.30). The distribution of patients from the meta cohort in the three gene clusters 
is shown in Fig. 3B–D. Additionally, the GSEA results of the meta-analysis revealed that the Notch pathway was 
enriched in the low metabolic score group, whereas metabolic pathways were enriched in the high metabolic 
score group (Fig. 3E and Table S8). To further identify the metabolic feature of samples between high and low 
metabolic score groups, we compared the ssGSEA score of metabolic pathways and found that 30/41 pathways 
were significantly different (Fig.  3F). These results further suggest that the metabolic score can describe the 
metabolic characteristics of PCa samples.

We further compared the metabolic score between Africans and Caucasians in TCGA and MSKCC cohorts, 
for which there was no significant difference (Fig. S5A–B). Finally, we analyzed the relationship between the 
metabolic score and tumor metastasis. We found that patients with lymph node-positive tumors and distant 
metastasis had higher metabolic scores than those without (Fig. S5C–D). These findings indicate that the meta-
bolic score can serve as a predictor for tumor metastasis.

Validation of the prognostic value of the metabolic score and construction of nomo‑
gram. Since we found a correlation between the metabolic score and prognosis, we divided the PCa patients 
into a meta-cohort, based on a median metabolic score (cut-off value = − 92.30), into high and low metabolic 
score groups and verified the prognostic value of the metabolic score by performing K-M survival curve analysis. 
The results of this analysis suggested that the patients in the low metabolic score group had a prolonged DFS 
time in the meta-cohort (log-rank test: P < 0.001) (Fig. 4A). We then divided the PCa patients into a TCGA 
cohort, based on a medicine metabolic score (cut-off value = − 77.13), into high and low metabolic score groups 
and further validated the prognostic value of metabolic score (log-rank test: P < 0.001) (Fig. 4B). ROC analysis 
also indicated that the metabolic score predicted the values in both the meta and TCGA PRAD cohorts and 
could predict DFS at 1, 3, and 5 years (Fig. 4C and D). We also validated the prognostic value of the metabolic 
score in each cohort included in the meta-cohort by K-M survival curve analysis. The results were consistent 
with the meta-analysis, and the low metabolic score group had a prolonged DFS in the GSE54460 (log-rank 
test: P = 0.038), GSE70768 (log-rank test: P = 0.224), GSE116918 (log-rank test: P < 0.001), DKFZ (log-rank test: 
P < 0.001), and MSKCC (log-rank test: P < 0.001) cohorts (Fig. S6A–E). A possible reason for the P-values of the 
GSE70768 cohorts being greater than 0.05 could be the small sample size. To further identify the predictive value 
of the metabolic score (continuous variable) in PCa, we performed univariate Cox analysis and meta-analysis to 
calculate the hazard ratio (HR) in six datasets (Fig. 4E). The results (HR = 1.08) also indicated that the metabolic 
score is a reliable prognostic marker.

This was further confirmed by performing a risk stratification analysis between the metabolic score (categori-
cal variable; cut-off value = − 92.30) and clinical or traditional risk factors, including age, Gleason score, T stage, 
Cancer of the Prostate Risk Assessment (CAPRA) score, and National Comprehensive Cancer Network (NCCN) 
stage, in the meta cohorts (Fig. S7). The results confirmed that the metabolic score is an independent prognostic 
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biomarker with clinical and traditional risk factors and can accurately predict DFS in patients with PCa. To 
improve the predictive value of the metabolic score, we selected clinical variables with independent prognostic 
values to obtain a nomogram through univariate and multivariate Cox analysis in the meta-cohort (Fig. 4F and 
Table S9). We used ROC analysis to assess the clinical significance of the metabolic score (continuous variable), 
clinical variate, and nomogram. Superior results were obtained for the metabolic score as a more accurate and 
reliable prognostic biomarker than clinical variates, while the nomogram had a better net benefit than clinical 
variate or metabolic score-only models (Fig. S8A–C). Furthermore, to independently validate the predictive 
value of the nomogram, we calculated the total points of each sample in the TCGA PRAD cohort and performed 
ROC and K-M survival curve analysis. Our findings on the efficacy of the nomogram demonstrated that it could 

Figure 2.  Identification of metabolic gene subtypes. (A) Venn diagram depicting 854 differentially expressed 
genes in three metabolism clusters. (B) Unsupervised clustering of DEGs among three metabolism clusters to 
classify patients into three groups: gene cluster A–C. (C) Kaplan–Meier curves for the three groups of patients. 
The log-rank test showed an overall p < 0.001. (D) The metabolic ssGSEA scores in three gene clusters. The 
difference in PSA (E) and AR expression (F) among distinct gene clusters. The statistical difference of three gene 
clusters was compared through the Kruskal–Wallis test. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 3.  Construction of the metabolism-score. (A) Principal Component Analysis (PCA) based on 
metabolic gene signatures expression. (B) Boxplot of metabolic score for three metabolism clusters in the 
meta cohort. (C) Boxplot of metabolic score for three metabolic gene clusters in the meta cohort. (D) Alluvial 
diagram of metabolic gene cluster distribution in groups with different metabolism clusters, gene clusters, 
and metabolic score. (E) Enrichment plots showing autoimmune thyroid disease, base excision repair, ECM 
receptor interaction, intestinal immune network for IGA production, and notch signaling pathway in the 
low metabolism-score subgroup, and showing beta-alanine metabolism, butanoate metabolism, fatty acid 
metabolism, propanoate metabolism, and valine leucine and isoleucine degradation in the high metabolism-
score subgroup. (F) The metabolic ssGSEA scores in high and low metabolic score groups. The statistical 
difference of two groups was compared through the Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001.
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predict DFS of PCa patients in both the meta and TCGA PRAD cohort (Fig. 4G–H, and S8D–S8E). Finally, we 
compared the area under the curve (AUC) of the ROC of our nomogram, CAPRA score, NCCN stage, TMB, 
and MSI and found that our nomogram had a better prognostic value than the other signatures (Fig. S8F–I).

Relationship between the metabolic score and DNA mutations. The GSEA indicated that base 
excision repair (BER) was associated with the metabolic score. Simultaneously, many studies have shown that 

Figure 4.  The prognostic value of metabolic score. (A) Kaplan–Meier curves for low and high metabolic score 
groups in meta cohort. Log-rank test, p < 0.001. (B) Kaplan–Meier curves for low and high metabolic score 
groups in TCGA cohort. Log-rank test, p < 0.001. (C) The ROC analysis of metabolic score in meta cohort. 
AUC = 0.717, 0.693, and 0.696 at 1, 3, and 5 year. (D) The ROC analysis of metabolic score in TCGA cohort. 
AUC = 0.719, 0.669, and 0.640 at 1, 3, and 5 year. (E) The meta-analysis of the HR of metabolic score in six 
cohort. (F) The nomogram based on metabolic score and clinical variates. (G) The ROC analysis of nomogram 
in meta (training) cohort. AUC = 0.728, 0.702, and 0.703 at 1, 3, and 5 year. (H) The ROC analysis of nomogram 
in TCGA (validation) cohort. AUC = 0.734, 0.705, and 0.685 at 1, 3, and 5 year.
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TMB is closely related to variations in tumor  metabolism21,22. Through obvious clinical signs of TMB, we con-
tinued to investigate the relationship between TMB and metabolic scores to explain the genetic characteristics 
of each metabolic group in the TCGA cohort (Fig. 5A). First, the TMB was compared between the high and 
low metabolic score groups. We found that patients in the high metabolic score group displayed higher TMB 
than those in the high metabolic score group (Wilcoxon test: P < 0.001) (Fig. 5B). Through correlation analyses, 
we further found that the metabolic score was positively correlated with TMB (Spearman coefficient: R = 0.39, 
P < 0.001) (Fig. 5C). Thereafter, we divided the patients into high and low TMB groups based on the median 
TMB value. As shown in Fig. 5D, we found that patients with low TMB had better DFS than those with high 
TMB (log-rank test, P = 0.012). Next, to compare the predicted value of the prognosis of TMB and metabolic 
score simultaneously, we further divided the patients into four groups using medium TMB value and medium 
metabolic score. As expected, the group with low TMB and high metabolic score had the best prognosis, and 
the group with high TMB and low metabolic score had the worst prognosis (Fig. 5E, log-rank test) (P = 0.002).

Moreover, we evaluated the characteristics of DNA mutations in PCa driver genes between the low and high 
metabolic score groups. The top 20 highest mutation rate genes were further investigated (Fig. 5F). Analysis of 
the mutation data of TCGA cohort indicated that the DNA mutations of SPOP and TP53 were associated with 
the metabolic score groups. The SPOP mutation rate was higher in the low metabolic score group, while the TP53 
mutation rate was lower in the low metabolic score group (Fisher’s exact test; P < 0.05; Table 1). To further verify 
our results, we conducted the same analysis for the DKFZ cohort and observed that the results of the analysis of 
the DKFZ cohort were in accordance with those for the TCGA cohort (Fig. S9A–F). These results could provide 
novel ideas for exploring the mechanisms of tumor metabolism and gene mutations in PCa.

CNV is an upstream regulatory mechanism of mRNA transcription and leads to the genesis and development 
of  cancer23. In a previous study, we established that CNV is related to the tumor metabolic status in  PCa22. To 
further confirm the relationship between CNV and the metabolic score, we first compared the number of CNV 
amplifications and deletions of metabolic genes in the high and low metabolic score groups. The results indicated 
that the number of CNV amplifications and deletions was higher in the low metabolic score groups (Wilcoxon 
test [deletion]: P < 0.001; Wilcoxon test [amplification]: P < 0.001) (Fig. S10A). The correlation analysis suggests 
significant negative correlations between the number of CNV amplifications/deletions and the metabolic score 
(Spearman coefficient [amplification]: R = 0.33, P < 0.001; Spearman coefficient [deletion]: R = 0.51, P < 0.001) 
(Fig. S10B and C) and further suggests that CNV was the potential driving factor that led to the variation in 
tumor metabolic status and heterogeneity.

In previous research, MSI has been considered an important factor of genomic instability and has been 
demonstrated to be implicated in many genetic diseases. Our work involved downloading MSI information of 
the PCa samples predicted in the previous investigation and comparing it between the high and low metabolic 
score  groups24. We found that the low metabolic score group had a higher MSI level than the high metabolic 
score group (Wilcoxon test: P < 0.001; Spearman coefficient: R = 0.22, P < 0.001) (Fig. S10D and E), indicating 
that MSI may also be a driving factor in the variation of tumor metabolic status and heterogeneity.

Correlation between TME and metabolic score in PCa. TME includes tumor cells, immune cells, 
and other stromal cells and plays an important role in cancer  development25,26. In a previous GSEA, we found 
that our metabolic score had a close relationship with cellular immune function. Therefore, we further ana-
lyzed the differences in TME between the high and low metabolic score groups. The result of the ESTIMATE 
analysis suggested that, regardless of stromal or immune cells, there was a significant difference between the two 
groups (Wilcoxon test [stromal score and ESTIMATE score]: P < 0.001; Wilcoxon test [immune score]: P < 0.01) 
(Fig. 6A). To further compare the stromal cells of the two groups, we used the ssGSEA score of EMT, ECM, and 
TGF-β pathways and found that the ssGSEA scores of ECM and EMT were higher in the high metabolic score 
group, while TGF-β was higher in the low metabolic score group (Wilcoxon test [ECM]: P < 0.001; Wilcoxon test 
[EMT]: P < 0.001; Wilcoxon test [TGF-β]: P < 0.01) (Fig. 6B). Then, to confirm which immune cells were differ-
ent between the two groups, we compared the ssGSEA score of 29 immune pathways using the Wilcoxon test 
and found that ssGSEA scores of aDCs, APC_co_inhibition, checkpoint, CCR, CD8 + _T_cells, cytolytic activity, 
DCs, iDCs, HLA, inflammation-promoting, Macrophages, Neutrophils, pDCs, Tfh, T helper cells, Th2 cells, and 
TIL were significantly higher in the high metabolic score group, and the ssGSEA scores of Mast_cells, Th1_cells, 
and Treg were significantly lower in the high metabolic score group (Fig. 6C).

Predictive value of metabolic scores in anti‑tumor therapy. For metastatic prostate cancer and 
recurrent prostate cancer, androgen deprivation therapy is the main therapy and can significantly improve the 
 prognosis27. Therefore, we analyzed the relationship between the metabolic score and drug sensitivity of bicalu-
tamide in the TCGA cohorts. The results suggest that tumor samples in the high metabolic score group had 
a higher  IC50 with bicalutamide than the samples in the low metabolic score group (Wilcoxon test: P < 0.001) 
(Fig. 7A and B). Docetaxel is the most common anti-tumor drug for castration-resistant prostate cancer (CRPC) 
and is, in general, the most common anti-tumor  drug28. We executed the drug-sensitive analysis of docetaxel in 
TCGA cohorts and found that tumor samples in the high metabolic score group had a lower  IC50 with Docetaxel 
than the sample in the low metabolic score group (Wilcoxon test: P < 0.001) (Fig. 7A and B).

Immune therapy is the most popular treatment for many cancers, and its effect is associated with the expres-
sion of checkpoint  genes29. Although prostate cancer is an immune desert tumor, some studies display prospect 
of immunotherapy in  PCa30,31. Therefore, we compared the expression levels of checkpoint genes between the 
two groups. The high metabolic score group had higher expression levels of CD276, CD4, CD80, CXCR4, LAG3A, 
PDCD1, TGFB1, HAVCR2, CTLA4, CXCL9, CD8A, GZMA PRF1, and TNF and lower expression levels of CD274 



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22486  | https://doi.org/10.1038/s41598-021-01140-6

www.nature.com/scientificreports/

Figure 5.  The Correlation between the metabolism-score and somatic variants in TCGA cohort. (A) The 
summary information of Somatic Variants in TCGA cohort. (B) TMB difference in the high and low metabolic 
score subgroups. Wilcoxon test, p < 0.001. (C) Scatterplots are depicting the positive correlation between 
metabolism-scores and mutation load. The Spearman correlation between metabolic scores and mutation load is 
shown (p < 0.001). (D) Kaplan–Meier curves for high and low TMB groups. Log-rank test, p = 0.012. (E) Kaplan–
Meier curves for patients stratified by both TMB and metabolism-scores. Log-rank test, overall p = 0.002. (F) 
The oncoPrint was constructed using high metabolic scores on the left and low metabolic scores on the right. 
Individual patients are represented in each column.
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compared to the low metabolic score group, indicating that patients in the high metabolic score group could 
benefit more from immunotherapy (Fig. 7C).

Discussion
With the development of molecular biology and targeted therapy, particularly castration and androgen-depri-
vation therapy, the prognosis of PCa patients has improved  remarkably32. However, because all recurrent PCa 
patients will develop CRPC after castration and antimale treatment, a new biomarker is needed to predict PCa 
prognosis and guide drug  treatment5. Through ssGSEA, unsupervised clustering, PCA, univariate and multivari-
ate cox analysis, we constructed a metabolic score and found that it was closely associated with DFS and reflected 
the therapeutic effectiveness of anti-tumor therapy. We validated our metabolic score in six datasets and more 
than 1000 samples of PCa to prove that our results are credible and valuable.

In a previous study, we found that metabolic change was a significant characteristic between normal prostate 
tissue and prostate cancer  tissue22,33. To further explore the metabolic features of PCa samples, we performed 
ssGSEA of metabolic pathways and found that patients with PCa samples of low metabolism had the worst prog-
nosis. Prostate is a smooth muscle tissue with an inherently high metabolism, and the function of prostate tissue 
as well as changes and the metabolic status of the sample will decline when tissue undergoes  canceration7,34,35. In 
primary PCa, the PCa sample has a high metabolic level and the best prognosis because of a low heterogeneity. In 
advanced PCa with high heterogeneity, the metabolic levels in the samples with respect to a normal metabolism 
will markedly diminish, and some special metabolic pathways will increase to counter this phenomenon and 
continue providing energy to cancer  cells36. Therefore, these patients had the worst prognosis. At the same time, 
we used metabolic biomarkers to predict PCa prognosis based on bioinformatics and tested the biomarkers in 
multiple cohorts.

Many studies have reported that DNA mutations are the driving factor of tissue canceration and decrease 
the prognosis of patients, including  PCa37,38. At the same time, TMB is a recognized biomarker of anti-tumor 
immune  therapy29,39,40. We found that the metabolic score had a close relationship with DNA mutation, CNV, and 
MSI. Based on the low metabolically active samples at an advanced stage, these samples had accumulated DNA 
mutations and may be more sensitive to immune therapy. Furthermore, we found that low and high metabolic 
score samples had different gene-related DNA mutations, indicating that the metabolism subtype of PCa is not 

Table 1.  Association of metabolic score with somatic variants.

Gene symbol High metabolic score (%) Low metabolic score (%) P-value

SPOP 12 (5%) 36 (16%) P < 0.0001

TP53 35 (15%) 9 (4%) P < 0.0001

Figure 6.  The Correlation between the metabolism-score and TME. (A) The stromal score, immune score, 
and ESTIMATE score differences in the high and low metabolism-score subgroups. (B) The ssGSEA score 
differences of ECM, EMT, TGF-β in the high and low metabolism-score subgroups. (C) The ssGSEA score 
differences of 29 immune pathways in the high and low metabolism-score subgroups. Wilcoxon test. *p < 0.05; 
**p < 0.01; ***p < 0.001.
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only a phenomenon related to the accumulation of DNA mutations, but also the two developmental orienta-
tions of PCa. Therefore, the metabolic score predicted the value of patient prognosis in different stages of PCa. 
Meanwhile, it is possible to further explore the reason for why the different metabolic samples had different DNA 
mutation spectra to understand the mechanism of development and appearance of PCa. In addition, these genes 
may be potential drug targets for anti-tumor therapy.

With the progress of tumor immunology and the rise of immune therapy of tumors, TME and immune cells 
play a crucial role in  tumors41–43. In some clinical trials, immune checkpoint block therapy has been reported 
successful for many cancers, featuring a significant curative  effect44,45. In our study, we determined that the 
metabolic score could reflect tumor TME. High metabolic score tumors have a higher content of stromal cells 
and certain immune cells than low metabolic score tumors. We assume this indicates that some stromal cells 
were carcinogenic. For example,  EMT46, which led to a significant increase in the high metabolic score group, was 
reported to promote cancer progression and transfer. At the same time, we believe that the increase in immune 
cells resulted from an increase in tumor heterogeneity, and some immune cells showed a decline in the high 
metabolic score group because of the depletion of the immune system. Based on the high immune infiltration, 
high expression of immune checkpoint genes, and high TMB, we believe a patient with a high metabolic score 
may benefit more from immune therapy more than other patients.

At present, castration and antimale therapy are the first-line treatments for metastatic prostate  cancer27. As for 
CRPC, docetaxel is often used as an anti-tumor  treatment28. In considering TMB, TME, and tumor immunity, 
we further analyzed the drug sensitivity associated with the metabolic score based on the Genomics of Drug 
Sensitivity in Cancer (GDSC). Through machine learning and forest regression analysis using the “pRRophetic” 
R package, we predicted the IC50 of each anti-tumor drug for each sample based on tumor mRNA expression 
data. We found that samples with a high metabolic score had higher IC50 of bicalutamide than those with a 
low metabolic score. At the same time, further analysis of the AR expression revealed that samples with high 
metabolic scores had higher AR expression levels than those with low metabolic scores. Hence, we assume that 

Figure 7.  The drug-sensitive analysis. (A) The heatmap of the correlation between metabolic score and IC50 
of ant-tumor drugs in TCGA cohort. (B) Boxplot of IC50 of ant-tumor drugs for low and high metabolic 
score groups in the TCGA cohort. (C) The differences of checkpoints in the high and low metabolism-score 
subgroups. Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001.
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patients with high metabolic scores have low sensitivity to bicalutamide, possibly due to the high expression of 
AR, which would require a higher concentration of bicalutamide to antagonize ARs and inhibit the growth of 
PCa. For other chemotherapy drugs, low-metabolic-score samples were more insensitive because these samples 
could metabolize the drugs at rapid rates following anti-tumor  therapy47,48. In summary, our metabolic score is 
associated with the drug sensitivity to anti-tumor therapy and can potentially direct clinicians toward choosing 
a suitable treatment for PCa.

Compared with other studies featuring public datasets, our work is mainly concerned with a larger number 
of datasets and samples. To avoid the instability of the bioinformatic analysis results, almost all analyses were 
performed in at least two independent cohorts. Furthermore, the metabolic score obtained by PCA reflected 
more biomarker features and could more accurately reflect tumor heterogeneity than traditional risk models 
built using cox analysis can. Finally, we used a multi-omics dataset to explore disease mechanisms. Therefore, 
we believe our results are stable and accurate. However, our study has some limitations. First, the reaction rate 
of the PCa anti-tumor therapy cohort was not accessible. The predictive value of the metabolic score for anti-
tumor therapy in PCa needs further verification. Second, because of the batch effect, the metabolic score cannot 
be used to directly compare different cohorts without batch correction.

Conclusion
We established a metabolic score based on a large number of samples, multiple databases, and sophisticated 
bioinformatics calculations to describe the metabolic characteristics of PCa tissue. Our metabolic score could 
predict patient prognosis and guide anti-tumor therapy in PCa. In addition, we discovered that DNA mutations 
might be the driving factor that leads to metabolic disorders in PCa. Finally, metabolic characteristics were 
found to be associated with TME and immune infiltration in PCa. Although our results need further validation 
by experimental confirmation, they provide valuable insights into the mechanism and clinical treatment of PCa.

Data availability
The data analyzed in this study can be downloaded from the TCGA, cBio, and GEO.
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