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Identifying autism spectrum 
disorder symptoms using response 
and gaze behavior during the Go/
NoGo game CatChicken
Prasetia Utama Putra1*, Keisuke Shima2, Sergio A. Alvarez3 & Koji Shimatani4

Previous studies have found that Autism Spectrum Disorder (ASD) children scored lower during a 
Go/No-Go task and faced difficulty focusing their gaze on the speaker’s face during a conversation. 
To date, however, there has not been an adequate study examining children’s response and gaze 
during the Go/No-Go task to distinguish ASD from typical children. We investigated typical and ASD 
children’s gaze modulation when they played a version of the Go/No-Go game. The proposed system 
represents the Go and the No-Go stimuli as chicken and cat characters, respectively. It tracks children’s 
gaze using an eye tracker mounted on the monitor. Statistically significant between-group differences 
in spatial and auto-regressive temporal gaze-related features for 21 ASD and 31 typical children 
suggest that ASD children had more unstable gaze modulation during the test. Using the features 
that differ significantly as inputs, the AdaBoost meta-learning algorithm attained an accuracy rate of 
88.6% in differentiating the ASD subjects from the typical ones.

People often misinterpret invisible disorder symptoms in their children, such as inattentiveness and difficulty 
communicating with other people, as willful misconduct or misbehavior. The prevalence of clinical disorders, 
however, is high. In Japan, the prevalence of Autism Spectrum Disorder (ASD) symptoms among children has 
been estimated to be between 1.9 and 9.3% based on parent and teacher reports 1; in the USA, about 1 of 54 
children was diagnosed with ASD in 2020 2, while in 2016, a study found that 9.41% of children had Attention 
Deficit Hyperactivity Disorder (ADHD)  symptoms3.

Since the conventional diagnosis method requires comprehensive tests that are time-consuming, many studies 
have proposed to automatically distinguish disordered children from typical ones by utilizing machine learn-
ing with biosignals such as  EEG4 or  fMRI5. Those methods extracted features from children’s brain activity to 
identify disorder symptoms.

In contrast, psychiatry studies recognize disorder symptoms by employing behavioral tests, e.g., Go/NoGo6–8 
and visual attention tests. Previous studies have discovered a significant difference between ASD and typical 
children during a Go/NoGo task. The task requires a subject to react to the Go stimulus and inhibit their reaction 
to the NoGo  stimulus8. The stimuli can be represented by visual objects with different colors and  shapes6,8 or 
by sounds with different  frequencies7. The task evaluates the subjects by measuring their percentages of correct 
responses and omission errors and their average response time and its variability. Children with ASD tend to 
perform  worse9 and have high response time  variability10 than typical children during the task, which may be 
caused by variability in neural  activations11.

Moreover, studies on ASD children’s gaze behavior have observed that the ASD group was slower to adjust 
their gaze to the stimulus position during eye-tracking measurement of joint  attention12, and faced difficulty 
in modulating their gaze during face-to-face  conversation13. Previous works have found that temporal features 
of gaze are more informative than global measurements in differentiating ASD from typically developing chil-
dren. Swanson and  Siller12 have found that ASD and typical children allocated the same amount of time to key 
areas but their duration of the first fixation to the target differed. Likewise, studies of gaze-shift14 and gaze-to-
stimulus-distance15 have signified that gaze behavior of ASD and typical children differed significantly in the 
spatio-temporal aspect.
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Other researchers extend those works by employing machine learning, and children’s behavior features to 
identify ASD  symptoms16,17. They asked participants to participate in face-to-face  conversation18 or to complete 
visual tasks such as viewing a sequence of face  images16 or identifying directional  cues17. Then they utilized 
spatial features extracted from children’s eye movement distribution to recognize ASD symptoms in children.

This study aims to investigate the response and gaze behavior of children during the Go/NoGo task and to 
utilize features extracted from those measurements to identify ASD symptoms that suggest difficulty in inhibiting 
action and point of  view19. Contrary to previous works on ASD subjects’ gaze behavior, which have focused on 
global summary measures related to the gaze and stimulus positions, this study examined the intrinsic spatio-
temporal structure of the gaze trajectories in greater detail by employing entropy-based and autoregressive 
features.

Using the CatChicken  game20, we measured 21 ASD (10 with and 11 without ADHD) and 31 typical children’s 
response and gaze modulation; the use of a standardized task minimizes the bias that often occurs in face-to-face 
conversation. Spatial and gaze-adjustment features were extracted to represent each child’s response, performance 
during the game, and gaze behavior. Statistical comparisons between typical and ASD disorder children were 
performed using Student t and Mann-Whitney U  tests21. Additional details of the statistical methodology appear 
in the Methods section. The AdaBoost algorithm was  employed22 to distinguish the features of ASD disorder 
children from those of typical children. Experiments employing spatial features, gaze-adjustment features, and a 
combination of them were conducted to identify differentiating features. Classification performance of the model 
was evaluated with accuracy, Matthews Correlation Coefficient (MCC)23, and Area Under the Curve (AUC)24 
metrics and validated using three-fold cross-validation.

Results
Spatial features. Statistical analysis demonstrated a significant difference (by both Student t and Mann-
Whitney U tests) between typical and ASD groups for eight spatial features ( n = 52 , p < 0.01 corrected by 
Benjamini-Hochberg at the level 0.05; see Supplementary Materials for further detail): variance of fixation time, 
average and entropy of gaze acceleration, spectral entropy of gaze-to-object-distance, sample entropy of gaze dis-
tance, gaze angle, gaze-to-obj-distance, and velocity. For all such variables, the mean of the second group (ASD) 
was larger than that of the first group (typical); the corresponding effect sizes were  large25 ( |d| > 0.8 ), except for 
average acceleration, for which a moderately large effect size ( d = −0.763 ) was observed.

In contrast, although a medium effect size ( |d| > 0.5 ) was observed for Go positive and negative percentages, 
response-time variance (RT-var), and gaze-acceleration standard deviation, the differences between typical and 
ASD groups for those variables were insignificant. Nevertheless, within-group mean values indicated that ASD 
children more often responded incorrectly with higher response-time variance than the typical subjects.

A comparison between typical and ASD children without ADHD yielded similar results. The results, however, 
also suggested a significant difference in Go positive and negative percentage between those groups ( n = 42 , 
p < 0.008 ). Typical children responded correctly towards the Go stimulus more often than ASD participants 
without ADHD ( d > 0.99 ). A significant difference in RT-var (Mann-Whitney p = 0.012 ) was observed between 
those groups.

Different results were observed in the statistical comparison between typical and ASD subjects with ADHD. 
An insignificant difference ( n = 41 , p > 0.02 ) was observed for spectral entropy of gaze-to-object-distance. 
The Student t-test suggested a significant difference ( p < 0.012 ) of gaze acceleration variance between those 
groups. The statistical tests also showed that ASD children without ADHD did not differ from the children with 
ADHD ( n = 21 , p > 0.09 ). However, the latter had a lower gaze-fixation time than the former (moderate effect 
size, d = 0.726).

Similarly to the results of comparison between typical and ASD groups described above, statistical analysis by 
ANOVA revealed that typical and ASD participants with and without ADHD differed significantly in the same 
eight features(n = 52 , p < 0.02 ). The results also showed a significant difference in gaze acceleration variance 
( p = 0.003 ) and in the average and variance of gaze distance and velocity ( p <= 0.025).

Gaze-adjustment features. A significant difference ( n = 208 , p < 0.023 ) between the groups was 
observed in the mean values of α , θ1 and θ2 by the Mann-Whitney U test. In contrast, both the Student t-test and 
effect size ( |d| < 0.2 ) suggested that ASD children’s gaze-adjustment features did not differ from the typical ones.

Separating gaze-adjustment features according to response types (Go-positive, Go-negative, NoGo-positive, 
and NoGo-negative) yielded statistically significant differences ( n = 52 , p < 0.023 ) between typical and ASD 
children in all auto-regressive coefficients by the Mann-Whitney U test, as well as greater effect size (mean |d| > 
0.4). The t-test results also signified that ASD gaze modulation differed when they responded incorrectly to the 
Go stimulus and correctly to the NoGo stimulus ( p < 0.007).

Furthermore, extrapolation of the gaze-to-obj distance in time using the average values of the autoregressive 
coefficients suggested that separating the features (Fig. 1C–J) produced a more obvious difference between the 
groups than mixing them (Fig. 1A,B). Typical children adjusted their gaze to the stimulus position faster when 
they responded correctly to the Go and NoGo characters and when they reacted incorrectly to the latter stimulus 
(Fig. 1C,G,I); the velocity of their extrapolated gaze-adjustment (Fig. 1D,H,J) was ±0.0014 faster compared to 
the ASD children (the velocity of extrapolated gaze-adjustment was computed by averaging the negative of the 
first derivative of the extrapolated gaze-to-obj distance over time). Nevertheless, typical children modulated their 
gaze in a similar way to the ASD subjects when they missed the Go stimulus (Fig. 1E,F).

The Student t-test between the typical and ASD children without ADHD suggested those groups differed 
when they responded correctly towards the Go and NoGo stimuli ( n = 52 , p <= 0.004 ). Comparison results 
of typical children to ASD children with ADHD indicated that the former responded differently from the latter 
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during Go-negative and NoGo-positive ( n = 52 , p <= 0.017 ). The results also demonstrated that ASD children 
with and without ADHD did not differ significantly. Moreover, the ANOVA test showed a significant difference 
( n = 52 , p < 0.04 ) among those three groups for gaze-adjustment features when the subjects responded correctly 
to the NoGo stimulus; the difference was insignificant in the other conditions.

The extrapolation results of ASD children with and without ADHD symptoms (Fig. 2A–J) suggested that the 
former tended to adjust their gaze to the stimulus position slightly faster than the latter, with respective extrapo-
lation gaze-adjustment velocities of 0.0153 and 0.0156, respectively. Both groups had lower gaze-modulation 
speed compared to typical participants, whose average velocity was 0.0164.

Classification. Classification results (Table 1) showed that when using only spatial features, the accuracy 
of the AdaBoost model was 6.1% lower than when utilizing gaze-adjustment features. A significant increase in 
the model’s recognition rate occurred when separating the gaze-adjustment features based on response types 
(response-type-gaze features). The classification rate was 17.1% higher than when employing gaze-adjustment 
features.

Using both response-type-gaze and significant spatial features, the model obtained an insignificant increase 
in its accuracy rate, which was 0.3% higher than when using the former features alone. Combining the gaze 
features with significant spatial and game performance features, however, decreased the accuracy rate by 4.1%.

The MCC score agreed with the accuracy results: combining response-type-gaze features and significant 
spatial features yielded a 0.01 higher MCC score than using only response-type-gaze features. Even though the 
increase was insignificant, the high MCC score indicated that the model’s prediction results strongly correlated 
with the ground-truth labels, and the model could reliably recognize both the typical and ASD children. Besides, 
the AdaBoost obtained AUC scores higher than 0.85 when utilizing response-type-gaze features and when com-
bining them with significant spatial and performance features. This suggested that high performance could be 
expected from the algorithm when employing those  features26.

The confusion matrix (Table 2), however, shows that the model more frequently misclassified typical subjects 
as ASD (false-positive) than it misclassified ASD subjects as typical (false-negative). Visualization of the features 
through star plots (Fig. 3) reveals higher mean values and variability in the misclassified typical subjects’ features 
than the correctly-classified subjects’. On the other hand, the features of misclassified ASD subjects show lower 
mean values and variability.
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Figure 1.  Extrapolating results of Auto-regressive model using the average of parameters. Gaze extrapolation 
results using mixed (A), Go positive (C) and negative (E), and NoGo positive (G) and negative (I) coefficients. 
(B,D,F,H,J) show respectively the extrapolated gaze-to-obj distance and velocity results for mixed (typical-avg: 
0.0161, ASD-avg: 0.0156), Go positive (typical-avg: 0.0178, ASD-avg: 0.0165) and negative (typical-avg: 0.0169, 
ASD-avg: 0.0173), and NoGo positive (typical-avg: 0.0170, ASD-avg: 0.0158) and negative (typical-avg: 0.0141, 
ASD-avg: 0.0124) coefficients. Solid and dotted green lines represent, respectively, typical children’s extrapolated 
gaze-to-obj distance and the negative of its first derivative (gaze-adjustment velocity) over time. ASD children’s 
extrapolated gaze-to-obj distance and gaze-adjustment velocity are represented by sold and dotted orange lines, 
respectively.
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In differentiating the typical group from ASD children with and without ADHD using gaze-adjustment and 
significant spatial features (Table 3), the AdaBoost algorithm achieved a 17.5% lower accuracy rate than when 

Figure 2.  Extrapolating results of Auto-regressive model using the average of parameters. Gaze extrapolation 
results using mixed (A), Go positive (C) and negative (E), and NoGo positive (G) and negative (I) coefficients. 
(B,D,F,H,J) show respectively the extrapolated gaze-to-obj distance and velocity results for mixed (typical-avg: 
0.0161, ASD without ADHD-avg: 0.0150, ASD with ADHD-avg: 0.0160), Go positive (typical-avg: 0.0178, ASD 
without ADHD-avg: 0.0162, ASD with ADHD-avg: 0.0162) and negative (typical-avg: 0.0169, ASD without 
ADHD-avg: 0.0175, ASD with ADHD-avg: 0.0170), and NoGo positive (typical-avg: 0.0170, ASD without 
ADHD-avg: 0.0165, ASD with AD-avg: 0.0152) and negative (typical-avg: 0.0141, ASD without ADHD-avg: 
0.0111, ASD with ADHD-avg: 0.0140) coefficients. Solid and dotted green lines represent, respectively, typical 
children’s extrapolated gaze-to-obj distance and the negative of its first derivative (gaze-adjustment velocity) 
over time. Extrapolated gaze-to-obj distance and gaze-adjustment velocity of ASD children with and without 
ADHD symptoms are represented by purple and pink colors, respectively.

Table 1.  The AdaBoost algorithm obtained high performance when employing gaze-related features. 
Accuracy rate, MCC, and AUC scores of the AdaBoost algorithm with different modality as inputs (mean ± 
S.D.). “Significant” refers to features that differ significantly between the groups. “Performance” denotes game 
performance features that includes positive and negative Go and NoGo responses, response time, and response 
time variability.

Modality Accuracy (mean ± S.D.) MCC (mean ± S.D.) AUC (mean ± S.D.)

Spatial 65.1 ± 8.9 0.29 ± 0.17 0.67 ± 0.09

Gaze-adjustment 71.2 ± 7.9 0.40 ± 0.16 0.79 ± 0.11

Response-type-gaze 88.3 ± 4.9 0.79 ± 0.08 0.95 ± 0.02

Response-type-gaze+significant 88.6 ± 4.4 0.80 ± 0.07 0.90 ± 0.03

Response-type-gaze+significant+performance 84.4 ± 10.1 0.71 ± 0.19 0.90 ± 0.01

Table 2.  False-positive rate of the AdaBoost algorithm was higher than false-negative rate. Confusion matrix 
of classification results using response-type-gaze and significant spatial features as input of the AdaBoost 
algorithm.

Predicted: typical (%) Predicted: ASD (%)

Actual: typical 83.9 16.1

Actual: ASD 4.8 95.2
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classifying typical and ASD populations. Also, combining the gaze-adjustment features with significant features 
selected by ANOVA resulted in a 30.9% lower recognition rate. The MCC scores and the confusion matrix 
results (Table 4) suggested that the model had poor performance in recognizing ASD children with and without 
ADHD symptoms.
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Figure 3.  Star plots depicting four subjects’ response-type-gaze and significant spatial features.(A,B) Features 
representing correctly-classified and misclassified typical children. (C,D) Features representing correctly-
classified and misclassified ASD children. Black-line indicates zero values. 13 indexes represent reduced gaze-
adjustment features (1–5), velocity-sen, acceleration-avg, fixation-var, distance-sen, angle-sen, gaze-obj-en, 
gaze-obj-sen, and gaze-obj-spe.

Table 3.  Although the AdaBoost algorithm achieved a competitive accuracy rate, its low MCC score 
indicated high false positive and negative. Accuracy rate, MCC, and AUC scores of the AdaBoost algorithm in 
recognizing ASD and ASD with ADHD symptoms in children. “ANOVA” indicates that the significant spatial 
features are determined by referring to p-value of ANOVA.

Modality Accuracy (mean ± STD) MCC (mean ± STD) AUC (mean ± S.D.)

Response-type-gaze+significant 71.0 ± 5.3 0.449 ± 0.118 0.758 ± 0.098

Response-type-gaze+significant (ANOVA) 57.6 ± 7.6 0.180 ± 0.102 0.659 ± 0.113

Table 4.  Misclassification of ASD populations were higher than that of typical subjects. Confusion matrix 
of classification results using response-type-gaze and significant spatial features as input of the AdaBoost 
algorithm in differentiating typical from ASD subjects with and without ADHD.

Predicted: typical (%)
Predicted: ASD without ADHD 
(%)

Predicted: ASD with ADHD 
(%)

Actual: typical 96.8 0.0 3.2

Actual: ASD without 
ADHD 54.5 18.2 27.3

Actual: ASD with ADHD 30.0 20.0 50.0
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Discussion
This study evaluated whether features extracted from response and gaze behavior during Go/NoGo task can 
be used to identify ASD symptoms in children. We utilized the CatChicken  game20 to measure the response 
and gaze modulation of 21 ASD and 31 typical children. During the game, the children should respond to the 
chicken character (Go stimulus) by pressing a space bar but should inhibit their action towards the cat character 
(NoGo stimulus).

The game outputs four variables: response types and times, and the stimulus and gaze locations over time. 
Statistical analyses using Student t and Mann-Whitney U tests were performed on spatial and gaze-adjustment 
features extracted from those variables.

As we expected, we found a significant difference in gaze modulation between ASD and typical children. 
Previous studies found that ASD children’s gaze movement differed significantly from typical children’s in terms 
of variability of the gaze  pattern27, the fixation time spent on the  stimulus13, and duration of the first fixation to 
the  target12. Our results suggest lower accuracy and greater randomness of the ASD subjects’ visual tracking of the 
target: the relative gaze-to-object difference was less steady over time than for typical subjects, and predictability 
of ASD subjects’ gaze was lower as measured by sample entropy of both distance and angle. A greater irregularity 
of gaze distance and angle may indicate that ASD children over-interpreted the information of a given stimulus, 
thereby causing more unintentional viewing  behavior28. The higher value of ASD children’s gaze-to-object entropy 
suggested less structured tracking in a spatial sense, while a greater value of sample entropy value demonstrated 
lowered predictability of the gaze-to-object difference as a function of time. Likewise, greater spectral entropy 
indicated less structure of the frequency content of ASD subjects’ gaze signals.

Compared to typical subjects, we observed that ASD subjects without ADHD symptoms tended to perform 
worse while the children with ADHD had less structured gaze modulation. Nevertheless, the results demonstrated 
that the game performance of ASD subjects without ADHD did not differ significantly from that of the subjects 
with ADHD symptoms. We found that the ASD children without ADHD symptoms tended to fixate their gaze 
on the stimulus position longer than the children with ADHD symptoms.

Second, statistical analysis using the Mann-Whitney U test demonstrated significant differences in the gaze-
adjustment features among the groups. The extrapolation results show that children with ASD symptoms, on 
average, adjusted their gaze more slowly to the stimulus location than their typical peers. When ASD children 
reacted incorrectly towards the stimulus, their extrapolation results tended to be slower at the beginning; these 
results were also observed when comparing the ASD group with ADHD to the group without it. The results, 
however, did not signify that typical subjects’ gaze movement was faster, as an insignificant difference in gaze 
velocity was observed between the groups.

In contrast, gaze trajectory area and the entropy of gaze distribution showed no significant differences between 
typical and ASD populations. While our previous  work20 found greater dispersion of gaze movement in ASD 
children, the results of the present paper suggest that global measures of gaze behavior are similar in the two 
groups. The discrepancy may be due to the greater size of the sample available for the present paper. Swanson 
and  Siller12 also observed that total gaze allocation of ASD and typical children did not differ but their temporal 
gaze movement (duration of the first fixation to the target) did. Our present findings and theirs provide compel-
ling evidence that the gaze behavior of ASD children may differ from the typically developing children in the 
temporal aspect; the difference was more pronounced between typical and ASD children with ADHD symptoms.

Another major finding of this study was that the performance of the game and response time of typical and 
ASD children did not differ significantly. Even though we observed greater Go and NoGo negative percentages 
and higher response time variance in ASD children, statistical analyses demonstrated an insignificant difference 
between the groups. The results contradict previous works that observed greater RT variability of go-response9 
and higher omission  error10 in ASD population than their typical peers. One interpretation of these findings is 
that the insignificant difference of RT occurred because this work computed RT of both Go and NoGo trials; 
Lee et.al29 found similar RT for ASD and typical subjects. Outlier removal in the pre-processing step of the pre-
sent work might affect the statistical results of game performance and RT variability, as well. Nevertheless, we 
observed that the ASD group without ADHD had a lower Go-positive score and higher response time variance 
than typical subjects.

Lastly, our classification results suggest the promising performance of more detailed spatio-temporal fea-
tures extracted from children’s gaze during the Go/NoGo task. Compared to previous works utilizing global 
 features16,17, our model yielded competitive results. Nevertheless, the accuracy rate of our model was lower than 
that of the previous work utilizing features from visual fixation and session  length18. The discrepancy might be 
affected by different features, experiment protocol, and subjects used in the previous study. Furthermore, our 
classification results show that using responses and gaze features together produced a higher recognition rate 
in differentiating ASD from typical children than using either type of information alone, as indicated by high 
accuracy rate, MCC, and AUC scores. The results, however, revealed that a promising performance could not be 
achieved to identify ADHD symptoms in ASD children. The results might be affected by unbalanced labels: the 
training data of each fold comprised 58.8% typical, 20.6% ASD with ADHD, and 20.6% ASD without ADHD.

Two limitations of this work are the relatively small sample size and the limited number of features. Also, 
since this work only measured response behavior by calculating response time and game performance, which 
represented the execution stage of response, the difference between groups in the preparation stage of response 
is unclear. Future studies should measure both the preparation and execution stages of participants’ responses. 
It would be of interest to consider subjects across a broader age range to enable capturing a greater variety of 
behaviors. This study involved 22 ASD and 35 typical children with a narrow age range and found that among 
these subjects only one gaze modulation existed: all subjects adjusted their gaze to the stimulus position. In 
contrast, the results of our previous  work20 suggested that older subjects were of two types by viewing behavior: 
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ones who adjusted their gaze (55.9% of total subjects) and ones who concentrated on the middle of the screen 
(44.1% of total subjects).

Conclusion
This study examined the difference in gaze behavior and response features of ASD and typical children during the 
Go/NoGo task. Contrary to our hypothesis, the experimental results of this paper showed higher performance 
in differentiating ASD from typical children using gaze behavior alone, as compared with a combination of 
gaze behavior features with features extracted from participants’ responses. Even though the use of the features 
showed promising performance in identifying ASD symptoms, it yielded poor performance in identifying ADHD 
symptoms in ASD children.

Methods
CatChicken game. The  CatChicken20 game was utilized to measure children’s response and gaze movement 
during a Go/NoGo task. The Go/NoGo task was used to measure a person’s inhibitory control; a subject should 
respond to the Go stimulus but inhibit their action towards the NoGo  stimulus8. The game represented the Go 
and NoGo stimuli as “Chicken” and “Cat” characters, respectively. A stimulus appeared randomly in one of nine 
locations for a fixed duration of time (Fig. 4). The interval between two consecutive stimuli was set by configur-
ing the minimum and maximum waiting-time values.

The system outputted the user’s response types and time, and stimulus and eye locations on the monitor 
(Fig. 5). A user responded to the stimulus by pressing the spacebar. The system categorized a subject’s response 
as one of four types: Go-positive if the subject responded to the Go character; Go-negative if they missed it; 
NoGo-positive if they inhibited their action in response to the NoGo character; NoGo-negative if they reacted to 
it. Different audio feedback was given when the subject responded correctly and incorrectly towards the stimu-
lus. The system was equipped with a Tobii 4C eye tracker that recorded the user’s eye position on the monitor 
continuously. The eye tracker sampling rate was 90 Hz (interlaced), and its operating distance was 50 cm to 95 
cm. The stimulus and eye locations on the monitor were normalized to the unit interval [0, 1] by dividing the 
pixel coordinates by the window’s coordinate length.

Participants. Participants involved 22 autism spectrum disorder children (16 male and 6 female) and 35 
typical children (24 male and 11 female) with an average age of five years from two local schools in Japan 
(Table 5). All ASD subjects attended special education school and had been diagnosed by clinicians; 10 (+ one 
suspected) ASD children also had attention deficit symptoms, and seven of them were identified as having 
hyperactivity as well. Both ASD and typical children did not have any physical disorder. One ASD child (male) 
and four typical children (1 male and 3 female) were excluded because their data were corrupted. Therefore, this 
study only processed 21 ASD and 31 typical children’s data.

During the experiment, the subjects were seated in front of a notebook equipped with an eye tracker and 
web camera (Fig. 6). They responded to the stimulus by pressing the spacebar on the keyboard. The proportion 
of the Go and NoGo stimuli was uniform and the order of appearance was set in advance; their appearance time 
was 700 ms; the minimum and maximum of the waiting period were 700 and 1000 ms.

A

CB

Figure 4.  Game interface of the CatChicken system. (A) Nine red flowers representing the locations in which a 
stimulus can appear; (B) Go and (C) NoGo characters.
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Figure 5.  Information measured by the CatChicken system. While playing the Go/NoGo game, CatChicken 
records children’s response types and times, and locations of stimulus and gaze over time. The response types are 
Go-positive (green), NoGo-positive (blue), Go-negative (orange), and NoGo-negative (red). The values of object 
and gaze locations are normalized to range from 0 to 1.

Table 5.  Differences for age and Development Quotient (DQ) were insignificant ( p > 0.05). The average and 
standard deviation (STD) of age and DQ score of typical and ASD groups. All children participated in this 
study were Japanese.

Male/Female Age in years (Mean ± STD) Mean of DQ scores (Mean ± STD)

Typical 24/11 5.0 ± 0.6 96.1 ± 3.0

ASD 16/6 4.6 ± 0.4 95.7 ± 10.4

Student t-test – 0.234 0.913

Webcamera

Spacebar

Eyetracker

Figure 6.  Experimental protocol of this study. The distance between the child and the monitor was about 60 
cm. The notebook was equipped with a web camera and an eye tracker.
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Before starting the experiment, the eye tracker was calibrated and an instructor explained the game and its 
rules to the subject; the instructor asked the subjects to respond immediately when the stimulus appeared. All 
subjects participated in a one-minute training session before taking a four-minute evaluation.

Ethics statement and consent. Before participating in the experiment, informed consent was obtained from 
teachers and parents on behalf of the children. The study was approved by the Research Ethics Committee of the 
Prefectural University of Hiroshima (letter no: 15MH070) and was conducted in accordance with the amended 
Declaration of Helsinki.

Features. Figure 7 shows the pipeline for extracting spatial and gaze-adjustment features from response and 
gaze data. Before extracting the features, preprocessing was performed to eliminate noise and redundant data.

The responses whose RT was less than a threshold were considered as outliers; 6.6% of typical and 7.3% of 
ASD data were removed. The threshold was the RT’s median absolute  deviation30 (104.75 ms) multiplied by a 
constant scale factor of the normal distribution (1.4826): 1.4826 × 104.75 = 155.30 ms. The data were down-
sampled from 144 to 72 Hz to remove redundancy; a Savitzky-Golay  filter31 ( n = 5 and poly = 2 ) was used to 
perform smoothing to prevent artifacts during numerical differentiation.

Spatial features. The spatial features comprised 24 attributes (Table 6) that can be grouped into three categories: 
game performance, absolute gaze position, and gaze-to-object movement.

Game performance features consisted of subjects’ average response time  (Rt) and variance  (Rt-var) and the 
percentages of their positive and negative responses towards the Go and NoGo stimuli.  Rt (Eq. 1) measured the 
time difference between when the character appeared ( ta ) and when the subject reacted to it ( tr ); while RT-var 
was the standard deviation of  Rt. The RT of the Go and NoGo stimuli were not separated.

Gaze position features measured the absolute position of subjects’ gaze during the experiment. The gaze 
trajectory area was calculated using the Convex Hull  algorithm32, and its value was normalized into 0 to 1. Gaze 
velocity and acceleration along the x and y axes were calculated respectively as the Savitzky-Golay smoothed first 
and second time-derivatives of the corresponding coordinate locations. Gaze distance (Eq. 4) and angles (Eq. 5) 
were the Euclidean distance and angle between gaze positions (g(t) and g(t + 1) ). The gaze spatial distribution 
was estimated using a 2D histogram algorithm, using 100 cells along each of the x and y axes.

Gaze-to-object movement comprised the features that computed the relative position between subjects’ gaze 
position and the stimulus position. Fixation time was measured as the time difference between when the sub-
ject’s gaze entered and when it left the stimulus area; the area was a circle of radius 0.25 (measured by Euclidean 
distance) from the center of the stimulus. Gaze-to-object difference was subjects’ gaze positions minus object 
positions when the latter appeared on the screen. Kernel density estimation and Welch’s  method33 ( nperseg = 32 ) 
were employed to estimate the probability and spectral densities of the difference, respectively. The probability 
distribution of the gaze-to-object difference was computed using 50 cells along each of the x and y axes.

(1)Rt = ta − tr

(2)v =
√

∂tx2 + ∂t y2

(3)∂v =
√

∂2t x
2 + ∂2t y

2

(4)d(t) = |g(t + 1)− g(t)|

(5)a(t) = arccos

(

g(t + 1) · g(t)
|g(t + 1)| · |g(t)|

)

Raw object locations

Raw gaze locations

Response time

Outlier removal 

(MAD)

Response

Downsampling

(72Hz)
Savitzky-Golay filter

Gaze-adjustment-features

Spatial Features

Preprocessing

Figure 7.  Features extraction pipeline used in this study. The inputs consists of gaze and object locations, 
response, and response time.
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Regularity of gaze distribution was computed using Shannon  entropy34 and expressed as:

where p(x, y) was the probability density of a state in a two-coordinate plane; while for power spectral density, 
p(x, y) was the sum of squared magnitudes of the Fourier transforms of the respective x and y components. 
Greater entropy indicates less intentional viewing  behavior28 and suggests greater gaze dispersion. The final value 
of gaze entropy was normalized by diving by the maximum possible entropy log2(N) , in which N was the total 
number of states; in this study, N equaled to the total number of cells along the x and y axes.

Temporal randomness of gaze movement was measured by sample entropy (sen). Sen is equal to the negative 
natural logarithm of the probability that two subsequences of equal length m that are similar will remain similar 
at the next time  step35; higher sample entropy means lower predictability within the original sequence. This study 
set m to two and estimated the distance between two template vectors with Chebyshev distance.

Gaze‑adjustment features. Gaze-adjustment measured the distance between participants’ gaze and stimulus 
positions during times when the stimulus was presented onscreen. Euclidean distance was used as the distance 
metric, with values ranging from 0 to 

√
2 . Since the appearance time of each stimulus depended on the subjects’ 

RT, which varied, each gaze-adjustment was represented by auto-regressive parameters (Eq. 7). The model’s lag 
L was set to two (average of AIC: −9.129 ); hence, each gaze-adjustment was represented by three variables: α , 
θ2 , and θ1.

This study computed the average value of each coefficient for typical and ASD groups using the arithmetic 
means over the respective groups. Also, the average coefficients were calculated for each response type to inves-
tigate the difference between ASD and typical children’s gaze adjustment characteristics in more detail.

Data analyses. Statistical analysis. The comparison between groups was computed using unpaired Stu-
dent t and Mann-Whitney U21 tests. While multiple comparison was performed with ANOVA test. The effect 
size was calculated with Cohen’s d  36; typical and ASD subjects were treated as the first and the second groups, 

(6)Hs = −
∫

p(x, y) log2(p(x, y))dxdy

(7)yt = α +
L

∑

i=1

θiyt−i

Table 6.  The list of spatial features extracted from response and gaze behavior. Average was computed with 
arithmetic mean and variance with standard deviation.

# Detail

Go-positive The percentage of Go response

Go-negative The percentage of Go-negative response

NoGo-positive The percentage of NoGo response

NoGo-negative The percentage of NoGo-negative response

RT The average of a subject’s response time

RT-var The standard deviation of a subject’s response time

Trajectory-area The gaze trajectory area

Velocity-avg The average velocity of a subject’s gaze

Velocity-var The standard deviation of the velocity of a subject’s gaze

Acceleration-avg The average acceleration of a subject’s gaze

Acceleration-var The standard deviation of the velocity of a subject’s gaze along the y-axis

Fixation-avg The average of a subject’s fixation time

Fixation-var The standard deviation of a subject’s  fixation time

Distance-avg The average of gaze distance

Distance-var The standard deviation of gaze distance

Angle-avg The average of gaze angle

Angle-var The standard deviation of gaze angle

Distance-sen Sample entropy of a subject’s  gaze distance

Angle-sen Sample entropy of a subject’s gaze angle

Velocity-sen Sample entropy of gaze velocity

Spatial-en The entropy of a subject’s gaze distribution

Gaze-obj-en The entropy of the difference between a subject’s gaze and stimulus position

Gaze-obj-sen Sample entropy of the Euclidean distance between a subject’s gaze and stimulus position

Gaze-obj-spe Spectral entropy of the difference between a subject’s gaze and stimulus position
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respectively. The Benjamini-Hochberg  procedure37 was utilized to control the false discovery rate associated 
with multiple comparisons, at the level 0.05.

Classification. Classification was performed to verify how informative the spatial and gaze-adjustment features 
are for differentiating ASD children from the typical ones. Instead of using raw gaze-adjustment features, this 
study computed the gaze-adjustment features’ skewness, kurtosis, average, and standard deviation. Then, the 
features’ dimension was reduced with Neighborhood Component  Analysis38 and five components were retained; 
Principal Component Analysis was employed to initialize the transformation.

Spatial and gaze-adjustment features were normalized using z-normalization. The  AdaBoost22 with decision 
tree base estimators was employed to distinguish the features of ASD children from those of typical children. 
The model’s hyper-parameter values were optimized using a grid search algorithm. In particular, this study vali-
dated the max-depth of the estimator in the set {1, 3, 5, 7}, the max-leaf of the estimator in {3, 5, 7}, the number 
of estimators in {15, 25, 50, 75}, and the AdaBoost’s learning-rate in {0.5, 0.75}. The max-feature-proportion of 
the decision tree was set to 0.5 for higher and lower proportion decreased the overall accuracy performance.

Accuracy, the Matthews Correlation Coefficient (MCC)23, and Area Under the Curve (AUC)24 were used as 
classification performance metrics. The decision threshold for classification was set to 0.5, thereby predicted 
probability greater or equal to 0.5 was converted to ASD class and typical class, otherwise. Three-fold cross-
validation was used to validate the model.

Furthermore, this study examined the use of those features to identify ADHD symptoms in ASD children. 
The experiment utilized the same protocol as the classification of typical and ASD children.
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