
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21675  | https://doi.org/10.1038/s41598-021-01005-y

www.nature.com/scientificreports

Analysis of the effectiveness 
of face‑coverings on the death 
ratio of COVID‑19 using machine 
learning
Ali Lafzi1*, Miad Boodaghi2, Siavash Zamani2, Niyousha Mohammadshafie3 & 
Veeraraghava Raju Hasti2

The recent outbreak of the COVID‑19 led to death of millions of people worldwide. To stave off the 
spread of the virus, the authorities in the US employed different strategies, including the mask 
mandate order issued by the states’ governors. In the current work, we defined a parameter called 
average death ratio as the monthly average of the number of daily deaths to the monthly average 
number of daily cases. We utilized survey data to quantify people’s abidance by the mask mandate 
order. Additionally, we implicitly addressed the extent to which people abide by the mask mandate 
order,  which may depend on some parameters such as population, income, and education level. 
Using different machine learning classification algorithms, we investigated how the decrease or 
increase in death ratio for the counties in the US West Coast correlates with the input parameters. The 
results showed that for the majority of counties, the mask mandate order decreased the death ratio, 
reflecting the effectiveness of such a preventive measure on the West Coast. Additionally, the changes 
in the death ratio demonstrated a noticeable correlation with the socio‑economic condition of each 
county. Moreover, the results showed a promising classification accuracy score as high as 90%.

The recent COVID-19 pandemic has affected millions of people worldwide and led to the tragic death of many 
innocent lives. The lack of a certain treatment at the beginning of the pandemic traumatized the populace. The 
only solutions were limited to preventive actions such as wearing face coverings, maintaining social distancing, 
washing hands, and self-quarantine. Owing to the high transmission rate, only in the US, the number of new 
daily cases increased from 6 to 22,562 during March 2020 according to CDC (Center for Disease Control and 
Prevention)1. There is still extensive ongoing research about the possible factors being effective in the pace of 
this spread; as of now, scientists have declared that meteorological factors such as temperature, wind speed, pre-
cipitation, and humidity are some of the critical environmental parameters in this  regard2. However, controlling 
environmental factors involved in the spread of COVID-19 are very challenging and sometimes impossible. As 
a result, state officials began to impose legislative guidelines, including mandatory use of masks and closure of 
businesses such as bars and restaurants. Shutting down different businesses has been sporadic due to its adverse 
economic impact, but obligatory face coverings order is still in effect across the US. In this respect, the effective-
ness of facial masks gains further importance and requires scientific studies.

Presenting a model that can measure the effectiveness of the mask mandate orders can pave the way for 
governments to take decisive actions during pandemics. The experimental data in tandem with mathematical 
modelings can be utilized to study the effects of facial coverings on the spread of viral infections. Many previous 
publications have tried to address the effectiveness of nonpharmaceutical interventions (NPIs) during pandemics, 
particularly for the spread of  influenza3,4. Deterministic models have been widely used to study the effects of facial 
masks on the reproduction number R0 . Indeed, the face mask is taken into account by its role in reducing the 
transmission per  contact5. The results of the deterministic model indicated that public use of face masks delays 
the influenza pandemic. On the other hand, some studies suggest that the use of a face mask does not substantially 
affect influenza transmission and there is little evidence in favor of the effectiveness of facial  masks6,7. As for 
the COVID-19, the efficacy of the facial mask in impeding the infectivity of the SARS-CoV-2 remains unclear. 
Considering the effects of mask in reproduction number R0 , Li et al.8 claimed that wearing face masks alongside 
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the social distancing can flatten the epidemic curve. Other studies also pinpointed that public use of a facial mask 
may reduce the spread of COVID-199. Despite these findings, the efficacy of face masks remains controversial.

The cardinal point that has not garnered enough attention is the relationship between the degree of exposure 
to the virus and its mortality rate. Some researchers presented the idea that the severity of the symptoms cor-
relates with the extent of exposure to justify the high death rate in healthcare  workers10. Unfortunately, there is 
no universal trend that can predict the relationship between the dose of the virus and the severity of the resulting 
symptoms. A study performed on the relationship between influenza and rhinovirus viral load and the sever-
ity in the upper respiratory tract infections reported a different behavior for those  viruses11. In fact, the results 
indicated that for influenza A and the rhinovirus, viral loads were not associated with hospitalization/ICU. On 
the other hand, for influenza B, viral load was higher in hospitalized/ICU patients. Furthermore, for respiratory 
syncytial virus (RSV), the viral load seems to correlate with the severity of symptoms as many studies in the 
literature suggest that a correlation  exists12–14. The same controversy holds for the COVID-19. Recently, some 
studies have tried to investigate the severity of COVID-19 with its load, where they found that the load tightly 
correlates with the  severity15,16. However, another study suggests that no such a correlation  exists17.

To unveil whether COVID-19 viral load is related to disease severity requires an in-depth study, which 
involves infecting volunteers with controlled doses of virus and monitoring their symptoms. However, experi-
mental challenges, in addition to the ethicality of these experiments, make this type of research very  challenging10. 
Although studies have not been convergent in whether  nose18 or  mouth19 is the primary site for COVID-19 
infection, they underscored the importance of wearing a facial mask as a barrier to the virus spread. Addition-
ally, although the protection level of different types of mask is different, wearing any mask, even a cloth mask, 
is better than wearing nothing at all, which can play a role in protection from the exposure to COVID-1920,21. 
As mentioned, conducting experimental studies to reveal the relationship between the extent of exposure and 
severity of COVID-19 is very challenging. One way to circumvent theses challenges is to conduct an indirect 
study by introducing a model that can capture changes in the mortality rate due to  wearing a facial mask. Indeed, 
if the ratio of the number of deaths to the number of cases decreases, this can support the hypothesis that there 
is a correlation between the viral load and the severity of symptoms. Thus, studying the effects of Mask Mandate 
order on the mortality rate gains extra importance.

A Machine Learning (ML) analysis can be instrumental in shedding light on the possible correlation between 
the public use of masks and changes in the mortality rate. The success of implementing ML and Artificial Intel-
ligence (AI) techniques in the previous pandemics has convinced researchers to use them as precious tools in 
fighting against the current  outbreak22. ML and AI can be used for prediction and forecasting in different regions 
so that the corresponding health officials can take necessary actions in  advance22. In addition, this technology is 
capable of enhancing the prediction accuracy for screening both infectious and non-infectious  diseases23. Six ML 
methods have been carried out to predict 1, 3, and 6 days ahead the total number of confirmed COVID-19 cases 
with errors in the ranges of 0.87%–3.51%, 1.02%–5.63%, and 0.95%–6.90%, respectively, in 10 Brazilian  states24. 
Moreover, an ML method like XGBoost model was capable of identifying 3 important biomarkers from 485 blood 
samples in Wuhan, China as the key mortality  parameters25. ML algorithms also have been used to capture the 
correlation between the weather data and COVID-19 mortality and transmission  rates26,27. Additionally, ML has 
been utilized to study the effects of mask mandate (MM) order on the number of daily cases, where no significant 
statistical difference was observed in the number of daily cases in the state-wise  analysis28. These studies confirm 
the strength of ML as a great tool to investigate the effects of MM order on mortality rates of COVID-19.

Another important factor regarding the effectiveness of MM order is society’s adherence to the regulations. 
One study that tried to quantify the public compliance with COVID-19 public health recommendations found 
notable regional differences in intent to follow health  guidelines29. In addition, some studies noticed a correla-
tion between the level of education and intent to voluntarily adhere to social distancing  guidelines29,30. However, 
not only the level of education but also the level of income and race can play a role in the adherence to the 
 regulations31. Based on these findings, it is important to take into account the features that might be correlated 
with people’s compliance with the MM order. Additionally, we will use data based on the survey provided by 
the New York Times (NYT) available on GitHub, which quantifies people’s adherence to the MM  order32. As a 
result, in this study, we will include factors that might play a role in people’s adherence to the MM order as our 
input features.

In the proposed work, utilizing different ML classification algorithms, we aim to unveil how the change in the 
mortality rate correlates with certain features. The features will be chosen in a way that they can reflect abidance 
by MM order in different counties. We will use the data provided by CDC to find the average monthly number 
of COVID-19 cases. Additionally, the exact dates of the executive orders signed by the state officials are avail-
able for each state—California: June 18th 2020, Oregon: June 19th 2020, Washington: June 26th 2020. To have 
appropriate unbiased data, similar to what Maloney et al.28 has done in his study of the effect of mask mandate, 
we will be using the data for one month after and before the executive orders for each preventive measure for the 
three states on US West Coast. With this data selection method, we limit the geographical region of the study to 
ensure that changes in the cases are highly attributed to the public use of masks rather than other factors such 
as environmental changes.

The rest of the paper is organized as follows. First, we will represent how our data was collected and arranged. 
Then we will explain the ML methods we have used for our prediction. Finally, we will describe and compare 
the results obtained from different ML methods.

Methodology
In this section, we will explain the collected data and the ML algorithms used for the training and prediction.
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Data. We defined the parameter of interest as the ratio of the monthly average number of deaths to the 
monthly average number of cases, referred to as the death ratio, which can be interpreted as a measure of the 
severity of the disease. The effective date of the executive orders by the governors, requiring mask mandate at all 
the counties in the three West Coast states of California, Oregon, and Washington, has been identified, which is 
publicly  available33. We used the average death ratio one month before and after the order to study the mortal-
ity rate. The rationale behind this selection is to minimize the effects of other factors that might play a role in 
changing the COVID-19 data. The raw dataset for the daily cases and deaths for all the US counties over time is 
extracted from the USAFACTS  website34, where county-level data is confirmed by the state and local agencies 
directly. After obtaining the daily values of death and case numbers for a month before and after the MM order, 
we divided the monthly average number of deaths by the monthly average number of cases for each county. 
Then we found the difference between the death ratio for one month before and after the MM order. Finally, we 
categorized the variation based on its sign to quantify whether the death ratio increases, decreases, or no change 
occurs. Out of the 130 samples, 47, 30, and 53 of them belong to the “decrease”, “increase”, and “no change” 
classes, respectively. We dropped the “no change” data as they all correspond to small counties, where there 
were zero reported COVID-19 cases and deaths, leaving 77 counties in total. Consequently, the two categories of 
increase and decrease in the death ratio remain for the prediction task. Figure 1 illustrates the number of samples 
in each category, which expresses that the available data for classification is not biased.

It is a hard task to directly determine the exact percentage of the population that follows the MM order and 
uses face coverings. As a result, it is necessary to come up with features that can indirectly capture how likely 
is an individual to follow the recommended practice. For bridging this gap, four main features are chosen as 
primary indicators, which are listed below: 

1. County population.
2. Median household income.
3. Education level.
4. Mask usage based on New York Times survey.

Population in each county is obtained from the most recent surveys for the year 2019. The income level is the 
median household income in US dollars and the education level is the percentage of people who have completed 
high school in each county in the years 2015–2019. The raw data for these features is obtained from the US 
Census  website35. The US Census measures the median income as the regular income received, excluding other 
payments like tax,  etc36. Furthermore, we used survey data provided by the New York Times that quantifies the 
mask usage from 7/2/2020 to 7/14/202032. Since the survey timeline lies within the month after the MM order 
for all three studied states, it is valid to use its data for our purpose. Finally, we will try to establish an AI-based 
relationship between the features and the sign of the change in the death ratios of the Pacific Coast states at the 
county level using nine different classification algorithms, provided in “Methods”.

Methods. In this study, we have developed machine learning models to employ the specified features men-
tioned in “Data” to shed light on the relationship between adherence to mask mandate and mortality rate.

Classic ML methods of Logistic  Regression37 and Naive Bayes  classifier38 are used. In addition, ensemble 
learning-based models, Random Forest and Extra Trees, are also  analyzed39. Moreover, the extreme boosting 
method, XGBoost is  explored40. Other methods such as Support Vector Machine, K-Nearest Neighbors (KNN)41, 
Decision  Trees42, and Neural  Network43 are additionally used for prediction of effect of Mask Mandate on 
the mortality rate.

Figure 1.  Histogram of change in death ratio for the three states.
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It should be noted that for carrying out the analysis, the data is split into training and test sets, with a test 
size of 20%44. A k-fold cross-validation scheme with five folds has been used to evaluate the performance of 
each method on the validation set and tune its hyper-parameters with the classification accuracy as the metric 
accordingly. The hyper-parameter tuning is done using either grid search or random search for all the meth-
ods. A statistical summary of the final dataset for binary classification is outlined in Table 1, which indicates 
a significant difference between the orders of magnitudes of the features. Therefore, min-max and max-abs 
scaling have been used to transform the input features and output, respectively, before passing the data to the 
ML algorithms for training. It should be noted that the data used in this article was accessed through publicly 
available sources as listed, and we confirm that all methods were performed in accordance with the relevant 
guidelines and regulations.

Results and discussions
The change in death ratio from one month before to one month after the date of mandating face-covering in the 
three states is visualized for each county in Fig. 2. Two clusters of increase in death ratio can be seen, one near 
northern Washington and one near central California. Our first intuition was that by increasing the population, 
the chance of viral spread would increase. Therefore, we expected to see a positive change in the death ratio for 

Table 1.  Statistical summary of the final dataset before scaling. Columns are P: population, MI: median 
income, EL: education level. Mask usage—N: never, R: rarely, S: sometimes, F: frequently, A: always. DR: 
change in death ratio between one month before and after the corresponding MM order date.

P MI ($) EL

Mask usage

DR (%)N R S F A

Count 77 77 77 77 77 77 77 77 77

Mean 630,413.5 66,494.23 0.85 0.03 0.03 0.06 0.17 0.71 − 0.47

Std 1,297,275 18,484.92 0.07 0.02 0.03 0.03 0.05 0.09 2.83

Min 7208 43,313 0.67 0.001 0 0.004 0.07 0.31 − 12.9

25% 86,085 53,105 0.81 0.02 0.01 0.04 0.14 0.67 − 1.4

50% 219,186 62,077 0.88 0.02 0.02 0.06 0.16 0.72 − 0.44

75% 601,592 74,624 0.91 0.04 0.04 0.08 0.2 0.77 0.77

Max 10,039,110 124,055 0.96 0.11 0.21 0.21 0.3 0.87 7.69

Figure 2.  Change in death ratio in US West Coast states counties.
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more populated counties. However, as it can be seen from the map, there is inherent randomness that defies our 
initial intuition about the spread mechanism. Further, it is shown that more counties experienced a decrease in 
death ratio one month after the usage of face-covering was mandated by each state, as shown in Fig. 1. There-
fore, usage of face-covering is chosen as the main factor affecting the decrease of the change in death ratio. As 
explained previously, to quantify adherence to the mask mandate, other auxiliary features are chosen, namely, 
median income, and education level for each county.

The combined effect of features is analyzed on the death ratio. Then the performance of each algorithm is 
evaluated for test and train sets. The effect of each feature on the change of death ratio is visualized by the cor-
relation heatmap provided in  Fig. 3. Here, we have not presented the cross-correlations between features for a 
simpler visualization. Last element in each row of the complete correlation matrix is an appropriate indicator 
of how correlated the corresponding feature is with the change in death ratio, which is what Fig. 3 illustrates. A 
more negative value implies that the increase of that specific feature is positively correlated with a decrease in the 
change of death ratio. For instance, an increase in population, median income, and education level would result 
in a decrease in the change of death ratio. An interesting observation is the disordered correlation pattern for 
mask usage. As one expects, increasing the number of never and rarely mask users is positively correlated with 
a change in the death ratio. However, the data associated with frequently mask users have resulted in a positive 
correlation value. Such erratic correlation behavior necessitates the inclusion of other features in the analysis.

As a preliminary analysis, the relationship between the average values of the three auxiliary features and 
the change in death ratio has been visualized for each category separately in Fig. 4. Figure 4a expresses that the 
average percentages of people who have completed high school education in both categories of counties that 
have experienced an increase or decrease in their death ratios are almost the same. This could indicate why the 
correlation between this feature and output is very close to zero, as represented in Fig. 3. Further, a noticeable 
correlation is observed between average median income and the change of death ratio, presented in Fig. 4b. On 
average, the communities with less median income experienced a positive change in death ratio, meaning more 
mortality rate, which is in agreement with what is reported  in31. However, the strongest correlation is observed by 
considering county population, shown in Fig. 4c. The counties with fewer residents were affected more adversely 
by the pandemic compared to high-population counties. The counterintuitive relation between population and 
change in death ratio further corroborates the necessity of inclusion of the two other supplementary features.

To have an initial assessment of the variation of the percentage change in the death ratio, we plotted the change 
in the death ratio as functions of population, median income, and portion of the population that frequently uses 
mask, which has a relatively high correlation coefficient according to Fig. 3. Figures 5a–c show no detectable 
pattern between parameters of interest and change in the death ratio. As a result, it is not possible to predict the 
value of change in the death ratio using regression. On the other hand, as we will show, converting changes to 
categories of increase and decrease would pave the way for capturing the status of the change.

A summary of the overall death ratios in the months before and after the mask mandate order for the three 
states is presented in Table 2. It can be observed that death ratio significantly decreases in California and Wash-
ington but slightly increases in Oregon. This result suggests an intrinsically complex pattern between the death 
ratio as the output and the selected inputs. Table 3 shows the changes in the average number of deaths and cases 
between the months before and after the MM order within the entire states. It can be seen that while the average 
number of deaths has decreased in Washington and increased in Oregon and California, the average number of 

Figure 3.  Correlations between the features and the output.
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cases has increased in all of them. This implies that the observed decrease in death ratios, as reported in Table 2, 
can be because of the effect of face coverings in reducing the severity of COVID-19 infection.

Furthermore, to get some insight about the observed pattern in Table 2, the average percentage of people who 
use masks with different frequencies across all the counties experiencing both increase and decrease in their death 
ratios is illustrated in Fig. 6. As expected, the average percentage of people who always wear a mask (Fig. 6a) 
is slightly higher for the decreasing category, but in both categories, the values are the smallest for Oregon. 
Moreover, the average percentage of people who never use a mask (Fig. 6e) is lower for the decreasing category 
in all 3 states, which is also intuitively sensible. Although there are no prominent and consistent patterns for the 
remaining mask usage frequencies, these observations could implicitly and partially describe why there is a small 
increase in the overall death ratio in Oregon. However, since the mask usage data is from an NYT survey over a 
limited period (12 days), the observations in Fig. 6 cannot explain the entire underlying phenomenon. According 
to a recent study, several factors are attributing to the possibility of a person following or not following the health 
guidelines set by the state  officials31. Therefore, three features among these parameters plus the aforementioned 
mask usage as the fourth feature have been used to conduct the current study.

All implemented algorithms in this study are capable of providing us with high classification accuracy, i.e, of 
predicting whether a county has experienced a decrease in its death ratio after the MM order or an increase. As 
provided in Table 4, it can be seen that, in general, most of the algorithms have relatively high accuracy scores 
for the test set. Despite the lack of sufficient training data set, Naive Bayes has an accuracy of 94%, and Random 
Forest, XGBoost, and Decision Tree have an accuracy of 88%. The selected hyper-parameters for XGBoost, 
Decision Tree, and Random Forest classifiers are shown in Table 5. The random search method has been done to 
tune these hyper-parameters for XGBoost, and grid search is used for Random Forest and Decicion Tree. Naive 
Bayes does not have any important hyper-parameter because of which, it has the capability of being generalized 
well. Besides, Random Forest, as a bagging method, and XGBoost, as a boosting method, have the popularity 
of rarely over-fitting the data. Moreover, the final hyper-parameters after tuning for the rest of the implemented 
algorithms are given in Table 6. Except for KNN where the elbow method is used to find the optimum number 
of nearest neighbors, the grid search method is applied for hyper-parameter tuning of the other methods in this 
table. Additionally, Table 4 includes the 95% confidence interval [denoted by CI (%)] for all algorithms. The 
interval is calculated based on the following:

(a) (b)

(c)

Figure 4.  Visualization of the combined data for California, Oregon and Washington. Change in death ratio 
and average of (a) education level (b) median income and (c) population.
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where z is the number of standard deviations from the Gaussian distribution and equals to 1.96 for 95% CI, score 
is the classification accuracy of the algorithm, and ntest is the number of test points in our dataset. As expected, 
we see this interval becomes narrower as the test set accuracy increases. By taking a closer look at the accuracy 

(1)CI = z

√

score(1− score)

ntest
,

(a) (b)

(c)

Figure 5.  Scatter plot of the percentage change in the death ratio as a function of (a) population (b) median 
income (c) portion of people frequently using masks.

Table 2.  Total death ratios in the month before and after the corresponding date of the mandatory face 
coverings executive order in each state.

State 1 month before MM order 1 month after MM order Change (%)

California 63.13 32.67 − 48

Washington 28.16 21.15 − 25

Oregon 38.03 39.14 + 3

Table 3.  Changes in the average cases and deaths between one month before and after the MM order across 
the entire states.

State Changes in the average cases Changes in the average deaths

California 4210.74 9.76

Washington 379.56 − 0.82

Oregon 172.85 0.75
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(a) (b)

(c) (d)

(e)

Figure 6.  Average percentage of people who (a) always, (b) frequently, (c) sometimes, (d) rarely, and (e) never 
use mask across all the counties experiencing an increase and decrease in their death ratios.

Table 4.  Performance metrics for all the studied algorithms.

Algorithm Test (%) Train (%) CI (%)

Support Vector Machine 69 74 23

Extra Trees 75 93 21

KNN 81 75 19

Logistic Regression 81 79 19

Neural Net 81 80 19

Decision Tree 88 93 16

Random Forest 88 85 16

XGBoost 88 95 16

Naive Bayes 94 70 12
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scores on the train set and comparing them with those of the test set, we note that none of the implemented 
methods overfits the data.

Additionally, to further compare the predictive power of the algorithms, the receiver operating characteristic 
ROC curve is shown in Fig. 7. The ROC curve shows the performance of a classification model at all classification 
thresholds. The diagonal red dashed lines demonstrate the no-discrimination line, which corresponds to the 
values of a random guess. As evident, for all algorithms, the ROC curve is above the line of no-discrimination. 
The area under ROC Curve (AUC) values demonstrate an aggregate measure of performance across all possible 
classification thresholds. In other words, the AUC values measure how accurate the model predictions are, and 
the values close to 1 are desirable. The measured AUC values, as shown in Fig. 7, suggest that the Naive Bayes 

Figure 7.  ROC plots of all the algorithms.

Table 5.  Model Parameters for XGBoost, Random Forest, and Decision Tree. Columns of XGBoost—CSbT: 
column sample by tree ratio, G: gamma, LR: learning rate, MD: maximum depth of each tree, NE: number 
of estimators, S: subsamples ratio. Columns of Random Forest—MD: maximum depth of each tree, MF: 
maximum number of features for best split, MSS: minimum number of samples to split an internal node, NE: 
number of estimators. Columns of Decision Tree—MD: maximum depth of each tree, CR: criterion to measure 
the quality of a split, MSS: minimum number of samples to split an internal node.

Extreme Gradient Boosting(XGBoost)

CSbT G LR MD NE S

0.9605 0.4735 0.0975 4 119 0.6232

Random Forest

MD MF MSS NE

7 2 2 10

Decision Tree

MD CR MSS

4 Gini 2
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algorithm leads to the best prediction. The AUC values are also in agreement with the testing accuracy, as shown 
in Table 4, where also the Naive Bayes algorithm has the highest testing accuracy.

The trend of high accuracy on test data signifies the existence of a pattern between the chosen features and 
the change in death ratio in the proposed model. Moreover, against the common belief that highly populated 
areas might experience harsher effects of COVID-19, on the west coast of the United States, the areas with lower 
populations endured worse conditions. Additionally, such a modeling approach could be used to optimize the 
distribution of services and media coverage for possible future adversities. A possible solution for decreasing 
the effect of future pandemics such as COVID-19 would be improving media coverage and public knowledge, 
especially in more vulnerable areas.

Conclusion
In this body of work, we have analyzed the effect of mask covering on the intensity of spread of the COVID-19 
virus by considering the death ratio at the county level to be the primary indicator. To bridge the gap between 
level of adherence to mask mandate, we use four main features as input data: population, income, education 
level, and the survey results on mask usage from the New York Times. The change in the death ratio is used as 
the metric to quantify the effectiveness of face-coverings on the COVID-19 spread. After extracting and refin-
ing the data-set from reliable sources, we analyzed the information using nine different algorithms. Among all 
the methods used, Random Forest, XGBoost, Decision Tree, and Naive Bayes had the best performance with a 
classification accuracy of around 90%. Such a high accuracy shows the legibility of chosen features as influential 
criteria for modeling purposes. The obtained hyper-parameters for these models, along with the selected features, 
can now be used to predict future conditions of the spread of the virus.

The results show a connection between adherence to the mask mandate and change in death ratio in the 
majority of studied counties. The findings of this work emphasize the potential role that the immediate legisla-
tive action can play in improving the society’s well-being during pandemics. It is hoped that the results of this 
work could further clarify the importance of preventive measures such as mask mandate order and highlight 
the importance of socioeconomic conditions on the behavior of different communities, which could be complex 
and counter-intuitive. However, it is important to note that the results we presented here are valid only for a 
specific geographic location, which in this study was the West Coast of the United States. Any generalization of 
our findings should be interpreted according to the overarching guidelines and applicable studies.
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