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Maternal vaccination with a type‑III 
glycoconjugate protects mouse 
neonates against Group B 
Streptococcus intranasal infection
Emiliano Chiarot1*, Eleonora Naimo1,2, Alessia Corrado1,3, Patrizia Giannetti1, 
Immaculada Margarit Y. Ros1 & Giuliano Bensi1

Group B Streptococcus (GBS) is generally an asymptomatic colonizer of human mucosa but it 
occasionally infects pregnant women and neonates through vertical transmission, causing disease 
during the first weeks of life with frequent and severe complications. Preclinical studies have shown 
that maternal vaccination with polysaccharide‑based vaccines protects mothers and offspring from 
GBS mucosal colonization and consecutive infection. In these models, bacteria were inoculated 
in mouse either intravaginally in the last trimester of pregnancy or systemically in pups. Here, we 
investigated whether maternal vaccination with glycoconjugate vaccines may also prevent GBS‑
mediated colonization and disease in neonates using an infection route that more closely mimics 
inhalation or ingestion of bacteria during human delivery. To address this point, mice aged less than 
two days were intranasally challenged with epidemiologically relevant GBS strains. Bacteria were 
found to colonize nose and intestine, reaching in some cases lungs and blood during the first days of 
life. Bacteria were also found in vagina of a fraction of colonized female mice within the first month 
of life. GBS‑specific IgG induced by maternal vaccination with a glycoconjugate vaccine formulation 
were found in blood and mucosal tissues of newborns. Finally, when intranasally challenged with GBS 
serotype III strains, pups delivered by vaccinated mothers were partially protected against mucosal 
colonization and deeper infection.

Group B Streptococcus (GBS) is normally an asymptomatic member of the vaginal mucosa and lower gastroin-
testinal tract in up to 30% of pregnant women, but is also able to infect mothers, fetuses in utero and neonates, 
most likely by inhalation or/and ingestion of bacteria occurring during  delivery1–3. Disease in the offspring 
may occur immediately after delivery or up to 6 months later, possibly leading to severe invasive manifestations 
including bacteremia, sepsis, pneumonia and  meningitis4,5. When the symptoms occur within one week post-
delivery it is defined as early onset disease (EOD) and as late onset disease (LOD) if later. Mucosal colonization, 
both in mothers and offspring, is considered one of the main risk factors for  infection6–11. Six major GBS sero-
types are responsible worldwide for up to 99% of EOD and LOD cases, but the most frequent one associated to 
LOD is serotype III and in particular ST-17 strains belonging to the clonal complex CC-17. These strains are 
often multi-drug resistant and hypervirulent and have been associated in some regions to almost 70% of LOD 
neonatal  infections12–15.Intrapartum antibiotic prophylaxis (IAP) in women carrying GBS in the rectovaginal 
tract during the latest weeks of pregnancy resulted in a decrease of EOD incidence, but it did not affect coloniza-
tion, maternal infection in previous stages of pregnancy or  LOD8,14,16. Moreover, the emergence of antibiotic-
resistant strains and possible adverse events for mothers and neonates underlined the need of different medical 
approaches, such as preventive  vaccination10,17–20. Capsular polysaccharides conjugated to protein carriers have 
been recognized in the past decades as an effective vaccine against this pathogen, also because the combination 
of a few serotypes would guarantee the coverage of most GBS-dependent  infections19,21,22. Preclinical models 
of GBS infection showed that these glycoconjugates could prevent maternal and offspring disease and reduce 
mucosal bacterial  carriage23,24. However, in these models, bacteria were inoculated intravaginally in pregnant 
mice a few days before delivery or intraperitoneally in newborns, leaving open the question whether the vaccine 
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had the capacity to confer protection to offspring against infection occurring during delivery when newborns 
can breathe or ingest bacteria. To address this question, we have developed a model of intranasal infection by 
bacterial inhalation in mouse neonates and we have followed bacterial spreading in several organs and tissues. 
GBS strains could colonize mucosal sites for at least one month post-infection and were transiently found also 
in lungs and blood. Remarkably, maternal vaccination with a polysaccharide type III glycoconjugate vaccine 
could protect mouse neonates against infection with a homologous GBS strain. A possible mechanism of action 
of the vaccine is proposed.

Results
Intranasal administration of GBS to mouse neonates results in long‑lasting mucosal coloni‑
zation. Inhalation of bacteria during delivery has been recognized as the preferred route of EOD infection 
in human  neonates25. We wondered whether this condition could also be reproduced and used in preclinical 
murine models of neonatal disease. Independent groups of mouse pups aged less than two days were inoculated 
intranasally with 1–5 ×  104 colony-forming units (CFUs) of three epidemiologically relevant GBS strains (sero-
type Ia strain 515, serotype III strain M781 and serotype V strain CJB111) and then followed up to six weeks 
(15 days only for serotype Ia) to measure bacterial burden in nasal and intestinal mucosae as well as in lungs and 
blood. Between the 4th and the 6th week of life, vaginal swabs of GBS serotypes III and V infected females were 
also collected to check possible colonization. Bacteria were consistently found in nose and intestine during the 
first weeks following infection without significant differences among the three strains. While colonization of the 
nose decreased with time reaching a quantitative level of about 1 ×  103 CFU/wash in two weeks (Fig. 1A), coloni-
zation of the intestine peaked after seven days (1 ×  106 CFU/organ) and then slowly but progressively decreased 
with time (Fig. 1B). Importantly, spreading of bacteria to vaginal mucosa was also observed with type III and V 
strains (serotype Ia not tested, data reported in Table 1). GBS was also able to reach lungs, with bacteria being 
measured in 50–60% of pups during the first 15 days after infection, without evident peaks and major differences 
among the three serotypes (median values of the first two weeks of observation were 0.62 ×  102 CFU/organ for 
serotype Ia, 4.2 ×  102 CFU/organ for serotype III, 7.2 ×  102 CFU/organ for serotype V). Finally, only few animals 
experienced a transient bacteremia during the first days of life (Fig. 1C) and none of them died consecutively 
to the infection. In particular, the presence of bacteria in the blood of intranasally infected pups peaked within 

Figure 1.  Intranasal infection with GBS resulted in long lasting colonization of nasal and intestinal mucosa 
and transient bacteremia in mouse neonates. Colony Forming Units (CFUs) enumerated during the time in 
nasal washes (A), intestinal homogenates (B) and blood (C) of mouse pups intranasally infected with Group 
B Streptococcus (GBS) within the first two days of life. Three different GBS strains were tested belonging to 
serotype Ia (515), III (M781) and V (CJB111). Four to six samples were displayed at each time point from two/
three independent experiments. Each dot represents the median value of the group and the bars depict 25 and 
75 percentiles. In panels (A,C), the dotted grey line is the lowest detectable value.

Table 1.  GBS vaginal colonization of intranasal infected animals occurred during the first weeks of life.

GBS serotype Week after delivery Tested animals—females (no.) Positive samples (no.)

III 4th 8 1

V 4th 8 0

III 5th 11 0

V 5th 13 5

III 6th 10 2

V 6th 10 4



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21384  | https://doi.org/10.1038/s41598-021-00941-z

www.nature.com/scientificreports/

the first 7 days after infection for all the strains tested but with some differences. GBS serotype Ia bacteraemia 
peaked at day 7 (3 out of 8 pups), serotype III on day 4 (3 out of 4) but was still significantly present at day 7 (22 
out of 47 pups), serotype V was found in blood of infected mice only at day 1 (3 out of 6 pups) and, partially, 
day 4 (1 out of 4).

Maternal immunization with CPSIII‑CRM reduces GBS colonization and the risk of developing 
bacteremia in mouse pups. After showing that mouse intranasal infection with GBS resulted in nasal and 
intestinal colonization and transient deeper infection, we aimed at using this model to assess protection induced 
by maternal vaccination. Female mice were intraperitoneally immunized three times with either GBS-type III 
capsular polysaccharide (CPS) conjugated with a detoxified form of diphtheria toxin  (CRM197) and adjuvanted 
with aluminium hydroxide (alum/CPSIII-CRM) or with alum alone as negative control. After mating and deliv-
ery, pups were intranasally challenged with the GBS serotype III M781 (ST-17) strain within the following two 
days and their weight was measured daily for the following four days as a parameter reflecting the general health 
condition of the animals. When mice were born from vaccinated mothers, they grew significantly faster as com-
pared with mice born from mothers vaccinated with adjuvant alone (Fig. 2). After seven days of observation, 
pups were euthanized to measure CFU counts and to perform serological analyses. Interestingly, as shown in 
Fig. 3 panel A, maternal vaccination with alum/CPSIII-CRM resulted in a lower colonization of nose and intes-
tine and in a reduced bacterial burden in the lungs. Even if not statistically significant, as assessed by the Fisher’s 
exact test (P = 0.17), bacteria were found in the blood of only three out of 24 neonates from vaccinated mothers 
(13%) and in eight out of 25 pups from the control group (32%). To better elucidate whether vaccination could 
also be effective in preventing the likelihood to develop bacteremia and to confirm data obtained with the M781 
strain, the hypervirulent type III COH1 strain (ST-17) was used to challenge pups and CFU in the blood as 
well as in mucosal sites and lungs were enumerated seven days after infection. As expected, a higher number of 
neonates developed bacteremia as compared to those infected with the M781 strain, but whereas bacteria were 
found in 7 out of 30 mice (23%) of the vaccinated group, 22 out of 36 (61%) neonates from non-vaccinated moth-
ers were bacteremic (Fisher’s exact test; P = 0.0028, Fig. 3B). Moreover, a significant decrease of GBS colonization 
in the nose and intestine pups from vaccinated mothers was observed, while CPSIII-CRM/Alum vaccine did not 
reduce bacterial load in the lungs at the assessed time point (Fig. 3B). Additionally, when the pro-inflammatory 
status of mouse neonates was assessed by measuring the concentration of inflammatory cytokines in the blood 
of infected animals, a statistically significant lower concentration of inflammatory/anti-inflammatory mediators, 
such as interleukin (IL)-10, granulocyte colony-stimulating factor (G-CSF) and interferon (IFN)- was found in 
animals born from vaccinated mothers (Fig. 4).

CPSIII‑CRM maternal vaccination induces specific antibodies that are detected in sera and 
mucosa of newborns. The protection conferred to newborns could be explained by the induction in 
vaccinated mothers of type III polysaccharide-specific antibodies that are transferred to pups both through 
the placenta and with  feeding26. To better support this hypothetical protection mechanism, an enzyme-linked 
immunosorbent assay (ELISA) was set up to measure type III polysaccharide-specific IgG in neonatal tissues 
and organs. Specific IgG against GBS polysaccharide III were found in both sera and homogenates of intes-
tine collected from pups born from mothers vaccinated with alum/CPSIII-CRM (Fig. 5), but not in their nasal 
washes (data not shown). No CPSIII-specific antibodies were measured in pups born from mothers immunized 
with adjuvant only (Fig. 5).

Figure 2.  Maternal vaccination prevented weight loss in pups challenged with GBS M781 serotype III strain. 
Computed AUC (area under the curve) of normalized body weights of pups from alum/CPSIII-CRM- or 
alum-vaccinated mothers within the first 4 days following intranasal challenge with GBS M781 serotype III 
strain. Data were analyzed as increment of weight as compared with the initial weight of single animals (100%—
normalized data) and finally AUC were calculated. Each dot represents the value of a single mouse. Data from 
9 to 10 pups/group from one mother are reported. The Mann–Whitney U test was used to assess statistical 
significance.
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Discussion
Group B Streptococcus (GBS) is part of the normal commensal flora but is also recognized as a serious infectious 
threat especially during pregnancy and in the first weeks of life of  neonates27–29. Chorioamnionitis, for example, 
is a common inflammatory disease during pregnancy, regardless of gestational week, and GBS carriage to the 
amniotic cavity has been recognized as one of the major risk  factors6,30–34. Intrapartum antibiotic prophylaxis 

Figure 3.  Pups from vaccinated mothers were protected against GBS colonization and deeper infection. 
CFU counts in nasal washes (Nose), intestinal homogenates (Intestine), lung and blood of mouse neonates 
from mothers immunized with alum/CPSIII-CRM or alum alone seven days after intranasal challenge with 
GBS serotype III strains M781 (A) or COH1 (B). Data from 24 to 30 mice/group and two–three independent 
experiments are reported for each strain tested. Each dot represents a single animal and the red horizontal line is 
the median value of the group. In the graphs reporting data from the blood, the percentage of pups experiencing 
bacteremia are also shown. When present, the grey dotted horizontal line depicts the lowest detectable value 
(ldv). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 (Mann–Whitney U test or Fisher’s exact test for blood 
only).

Figure 4.  Maternal vaccination reduced systemic inflammation in pups after infection with serotype III GBS. 
Concentration of inflammatory cytokines (pg/ml) in the blood of infected pups seven days after challenge with 
GBS M781 serotype III strain. Data from 20–23 mice/group and three independent experiments are reported 
as geometric mean + 95% confidence intervals. Black bars report data from the negative control group (alum), 
white bars data from vaccinated group (alum/CPSIII-CRM). The lowest detectable value for each cytokine is 
represented by the grey dotted line. The Mann–Whitney U test was used to assess significance and the P value 
for each couple is reported above the graph.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21384  | https://doi.org/10.1038/s41598-021-00941-z

www.nature.com/scientificreports/

(IAP) has significantly decreased the number of maternal and neonatal infections that occur immediately before 
or after delivery but it has proven to be ineffective against mucosal colonization, late infections in neonates or 
maternal disease during the first trimesters of  pregnancy25,35. Several evidences, both in humans and preclinical 
animal models, indicate that maternal vaccination may be an effective strategy to overcome these issues. For 
example, an inverse correlation was shown between anti-capsular antibody titres in mothers (and therefore in 
fetuses) and neonate infection, while vaccination with polysaccharide-based vaccines could significantly reduce 
the rate of non-protected mothers and  offspring36,37. Moreover, when tested in humans, glycoconjugate vaccines 
showed an acceptable safety profile, were immunogenic and able to induce pro-opsonic  antibodies10,36,38–40. Over-
all, these observations support their use as promising candidates and a 5/6-valent vaccine has been proposed to 
prevent around 99% of all perinatal infections, making its development extremely  desirable32,41.

Preclinical rodent models of neonatal sepsis and perinatal diseases have also been used to show that mater-
nal vaccination with glycoconjugate vaccines is able to protect both mothers and pups against GBS-mediated 
 infection23,42,43. Interestingly, in a model of chorioamnionitis, mothers vaccinated with a GBS-type III polysaccha-
ride conjugated to a protein carrier developed functional antibodies able to reach mucosal tissues and pregnant 
animals infected intravaginally a few days before delivery were protected against infection and mucosal carriage, 
as well as their fetuses and  newborns23. What remained unclear was the effect of vaccination with glycoconjugate 
vaccines against neonatal infection that occurs during delivery.

The data presented here aimed at filling this gap. In the present manuscript, we report the use of a murine 
model in which pups were intranasally challenged early after delivery (most often within 24 h of life), better 
mimicking common conditions for infection which occur in  humans27,28. For example, the delivery of bacteria 
was followed by a long-lasting carriage in the nose and in the intestine, which eventually evolved in vaginal 
colonization. Only half of the pups showed a deeper spread of bacteria (lungs and blood) and in all the cases 
this progression was transient and asymptomatic. The reason why the infection did not progress even if bacteria 
reached blood and lungs is still under investigation, but it may be the consequence of the very low bacterial 
load measured in these organs. Especially in the initial phases of colonization, we may envisage that bacterial 
spreading is actively counteracted by the reaction of the innate immune system, which could result in a positive 
outcome for the host if the bacterial load is initially too low to trigger the disease.

Pups from mothers vaccinated with the glycoconjugate vaccine were less susceptible to infection, showing 
an improved growth rate, a lower bacterial carriage at mucosal sites, in lungs and blood and a lower systemic 
inflammation. The latter observation should be pointed out since inflammatory conditions caused by GBS during 
pregnancy have been associated with neurological disorders of the offspring in preclinical  models44. Another 
important result is the reduction of GBS colonization in neonates. Indeed, mucosal carriage has been reported to 
play a significant role in the development of LOD and therefore the reduction of colonization due to vaccination 
could also be an added value of this preventing approach as compared with  IAP11. Specific IgG against GBS-
polysaccharide have been found in sera and mucosae of protected pups, suggesting a possible functional role of 
these antibodies, as previously  observed23,45. A possible effect against mucosal colonization of anti-capsule IgA 
induced by vaccination cannot be excluded. IgA could indeed be transferred from mothers to offspring as well 
as  IgG46. Nevertheless, we do not expect that high levels of anti-capsule IgA were induced by intraperitoneal 
administration of an Alum-adjuvanted glycoconjugate vaccine and, therefore, if any, the possible role of specific 
IgA should not have played a pivotal role in mucosal protection of mouse  pups47–49.

Taken together, the experimental data generated so far by using murine models support the hypothesis that 
use of glycoconjugate vaccines for maternal immunization at the beginning of pregnancy may significantly 
contribute to decrease the occurrence of maternal and neonatal GBS diseases.

Figure 5.  Antibodies against type III polysaccharide were found in blood and mucosal tissues of pups from 
vaccinated mothers. Anti-CPSIII IgG titres measured in the blood or intestinal homogenates (intestine) seven 
days after challenge with GBS are expressed as the intensity of absorbance at 405 nm. Each dot represents a 
single animal and the red horizontal line is the median value of the group. *P < 0.05; ****P < 0.0001 (Mann–
Whitney U test).
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Methods
Bacterial strains, growth conditions and preparation of CPSIII conjugates. GBS strains used for 
this work (type Ia, ST-23, strain 515; type III, ST-17, strain M781; type III, ST-17, strain COH1; type V, ST-1, 
strain  CJB11150) were grown in liquid Todd-Hewitt broth (THB, BD) and plated onto Granada medium (BD). 
To start liquid cultures, frozen bacteria (15% glycerol in THB medium) were diluted in fresh THB at an initial 
absorbance of 600 nm  (A600) = 0.05 in a standard 1-cm cuvette. They were then incubated statically at 37 °C with-
out  CO2 until reaching exponential phase  (OD600nm = 0.6), finally centrifuged (10 min at 3000 × g and 4 °C) and 
resuspended in fresh medium + 15% sterile glycerol to be stocked at − 80 °C (final concentration 3–4 ×  108 CFU/
ml). The capsular polysaccharide III was extracted from GBS COH1, purified and randomly conjugated to 
 CRM197 (CRM, detoxified diphtheria toxin) as previously  described51.

Ethical statements. Animal studies have been carried out following ARRIVE guidelines in an AAALAC 
accredited facility and in compliance with current Italian legislation on the care and use of animals in experi-
mentation (Legislative Decree 26/2014) and with the GSK Vaccines Animal Welfare Policy and Standards. Pro-
tocols were approved by the Italian Ministry of Health (authorization DM292-2013B) and by the local GSK 
Vaccines Animal Welfare Body. Animals were caged in Individual Ventilated Cages (IVC) conditions with food 
and water ad  libitum. Four-five mice were caged together until two days before delivery and then separated. 
Enrichment tools were used throughout all the experimental period. Sterile tap water was changed every seven 
days; cage and enrichment change was done every two weeks. In all the experiments, animals were monitored 
daily for the entire observation period and euthanized if they exhibited defined humane endpoints that had been 
pre-established for the study in agreement with GSK Vaccines Animal Welfare Policies.

In vivo models of infection, immunization and protection. Glycerol stocks were diluted 1/10 in 
fresh medium and used to intranasally infect mouse neonates (< 2  day-old) CD1 mice (2  µl/nostril). Infec-
tive dose for each GBS strain was around 1.0–5.0 ×  104  CFU/mouse. To allow mice breathing the inoculum, 
they were slightly anesthetized for at least 10 min using isoflurane 1.5–2.0%. During this period, neonate body 
temperature was kept around 37° C . After infection, pups were housed again with the mothers and observed 
daily until they were euthanized. Males and females were separated 21 days after delivery and up to four (males) 
or five (females) animals were caged together. After euthanasia, nasal washes, intestine, lungs and blood were 
collected. All samples except blood and nasal washes were homogenized using gentleMACS Octo Dissociator-
(Miltenyi Biotec) following supplier’s instructions. Blood was collected after beheading up to two weeks of age, 
then from the cheek. Nasal washes in pups were performed through the pharynx after removal of the lower jaw 
with 200 µl of PBS using a capillary inserted on a 200 µl tip. Vaginal swabs were performed in infected females 
4–6 weeks after infection and diluted in 200 µl of PBS. For immunization experiments, five-week-old CD1 mice 
were injected three times intraperitoneally (200 µl) on days 0, 21 and 35. The vaccine was a glycoconjugate vac-
cine containing 1 µg of CPS-III conjugated with CRM197 and adjuvanted with 2 mg/ml aluminum hydroxide 
(alum). Females were then mated on day 38 after the first immunization and delivered pups were challenged 
within the first two days of life. Bleedings for collection of sera were performed, when necessary, two–three 
days before each immunization and serum was allowed to separate from the cellular part at room temperature 
for 4–6 h. Pups delivered from immunized mothers were weighted before infection and daily for four days after 
infection and weights were normalized based on the first measurement (100%) and plotted. Then the area under 
the curve (AUC) was computed based on the percentage of increase over time and data were reported as AUC 
for single animals. AUC from single animals was calculated using the following formula: ((normalized weight at 
time 0 + normalized weight at time 1) × (time 1 – time 0)/2) + ((normalized weight at time 1 + normalized weight 
at time 2) × (time 2 – time 1)/2) + ((normalized weight at time n + normalized weight at time n + 1) × (time n + 1 – 
time n)/2) etc.… Samples collected as described were plated on the selective Granada plates (BD) to count CFU. 
The remaining material was centrifuged at 21 000×g for 15 min to remove all the cellular debris and then filtered 
using a 0.22 µM filter. Sterilized samples were stored as previously described for ELISA and cytokine  analysis52.

ELISA for antigen‑specific antibody. Microtiter 96-wells plate (NUNC, Maxisorp) were coated with 
100 ng of GBS CPSIII conjugated to human serum albumin (CPS-III-HSA) via the spacer adipic acid dihy-
drazide in phosphate-buffered saline (PBS) pH 7.451. Plates were incubated overnight at 2–8 °C, washed three 
times with PBST (0.05% Tween-20 in PBS pH 7.4) and saturated with 250 µl PBST-B (2% bovine serum albumin 
[BSA] in PBST) per well for 90 min at 37 °C. Sera from pups were tested at 1/1000 dilution, homogenates from 
intestine prepared as described above were tested undiluted. Plates were incubated at 37 °C for 1 h, washed with 
PBST, and then incubated for 90 min at 37 °C with anti-mouse IgG-alkaline phosphatase (Sigma, M8642) diluted 
1:2000. After washing, the plates were developed with a 4 mg/ml solution of p-nitrophenyl phosphate (pNPP) 
in 1 M diethanolamine (DEA) pH 9.8, at room temperature for 30 min. After blocking with 7% w/v EDTA, the 
absorbance was measured using a SPECTRAmax plate reader with wavelength set at 405 nm. Absorbance meas-
ured in each single well was used as readout of the experiment.

Cytokine analysis. Cytokine analysis was performed using the Bio-Plex Pro mouse cytokine stand-
ard 23-plex panel, group I (Bio-Rad) following manufacturer’s procedures. Sera samples from mice infected 
with M781 strain were prepared as described above. Reactions were read with the Luminex 200 system. Only 
cytokines that showed a statistically significant difference between glycoconjugate-vaccinated mice and control 
group were reported. List of cytokines analyzed: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40, 
IL-12p70, IL-13, IL-17A, Eotaxin, G-CSF, granulocyte–macrophage colony-stimulating factor (GM-CSF), IFN-
γ, cytokine‐induced neutrophil‐attracting chemokine (KC, equivalent to human IL-8), monocyte chemoattract-
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ant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, Regulated upon Activation, Nor-
mal T Cell Expressed (RANTES), tumor necrosis factor (TNF)-α.

Statistics. Statistical analyses were performed using the GraphPad Prism 7 software. The Mann–Whitney 
U-test (two tailed) or the Fisher’s exact test (two tailed) were used as reported in figure legends to calculate 
statistical significance. P values < 0.05 were considered statistically significant. Legend: *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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