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Impact of GAN‑based 
lesion‑focused medical image 
super‑resolution on the robustness 
of radiomic features
Erick Costa de Farias1, Christian di Noia2, Changhee Han3, Evis Sala4,5, Mauro Castelli1,6* & 
Leonardo Rundo4,5,6*

Robust machine learning models based on radiomic features might allow for accurate diagnosis, 
prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature 
extraction has hampered their clinical use. Since the radiomic features tend to be affected by low 
voxel statistics in regions of interest, increasing the sample size would improve their robustness in 
clinical studies. Therefore, we propose a Generative Adversarial Network (GAN)-based lesion-focused 
framework for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., cancer) 
patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-Constrained by 
the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). At 2× SR, the proposed model 
achieved better perceptual quality with less blurring than the other considered state-of-the-art 
SR methods, while producing comparable results at 4× SR. We also evaluated the robustness of 
our model’s radiomic feature in terms of quantization on a different lung cancer CT dataset using 
Principal Component Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-
based analysis were the most robust features extracted on the GAN-super-resolved images. These 
achievements pave the way for the application of GAN-based image Super-Resolution techniques for 
studies of radiomics for robust biomarker discovery.

Recently, medical image analysis has been revolutionized by available large-scale datasets and technology 
advancements in statistics and artificial intelligence. In particular, combining radiomics1—an approach to extract 
quantitative features from medical images—and machine learning has obtained meaningful clinical insights. 
Robust machine learning models based on large-scale radiomic features might allow for accurate diagnosis, 
prognosis, and medical decision-making; of course, thoroughly considering the whole radiomic processes is 
essential to obtain these reliable models.

Despite the potential of radiomics, high quantitative feature variability across different software implementa-
tions has hampered its clinical use2,3. This phenomenon derives from the lack of standardized definitions and 
extraction of radiomic features with validated reference values. To tackle this limitation and facilitate clinical 
interpretation, the Image Biomarker Standardization Initiative2 produced and validated the reference values for 
commonly-used radiomic features. However, as the paper’s authors highlighted, image features still need to be 
robust against differences in acquisition, reconstruction, and segmentation to ensure reproducibility. For this 
reason, recent studies have investigated the robustness of radiomic features in several scenarios and applica-
tions using heterogeneous datasets. Several sources of variability have been assessed, such as image and region 
of interest (ROI) perturbations4,5, slice thickness variations6,7, and different resampling strategies8. Since the 
radiomic features might tend to be affected by low statistics in ROI voxels, we hypothesize that increasing such 
a sample size would increase the robustness of radiomic features in clinical studies. Therefore, we aim to apply 
image Super-Resolution (SR) to increase the number of voxels used in the computation of radiomic features.

Generative Adversarial Networks (GANs) have been commonly exploited for Data Augmentation (DA), along 
with image SR9, thanks to their ability to improve feature robustness. Sandfort et al.10 used CycleGAN11-based DA 
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for Computed Tomography (CT) segmentation by translating contrast images into synthetic non-contrast ones. 
To maximize the DA effect with GAN combinations, Han et al.12 proposed a two-step GAN-based DA approach 
that generates and refines brain Magnetic Resonance (MR) images with/without tumors separately. Considering 
the GAN-based DA’s interpolation/extrapolation effect, GAN may remarkably help achieve reference values for 
radiomic features. The most prominent work on CT image SR is GAN Constrained by the Identical, Residual, 
and Cycle Learning Ensemble (GAN-CIRCLE)13, outperforming previous works14–17. GAN-CIRCLE can preserve 
anatomical information and suppress noise, leading to excellent diagnostic performance in terms of traditional 
image quality metrics13,18. For example, Guha et al.18 exploited GAN-CIRCLE to super-resolve trabecular bone 
microstructures and improved the structural similarity index. Meanwhile, GAN-based lesion-focused medical 
image SR can improve SR performance around lesions, especially for downstream radiomic analyses19. Along 
with GAN-based medical image SR, novel approaches based on progressive GANs20 and attention mechanisms21 
have been recently applied to video SR.

For the first time, in this paper, we evaluate the robustness of radiomic features extracted from super-resolved 
images by GAN-SR and bicubic interpolation. The authors incorporated Spatial Pyramid Pooling (SPP)22 into 
the discriminator of GAN-CIRCLE13 to handle different input CT image sizes for patch-focused training in 
lesions; we cropped the input CT images to their lesion bounding boxes to reduce training costs and improve 
image quality (e.g., fewer artifacts)19. Along with perceptual quality evaluation, we also assessed the robustness 
of radiomics, in terms of quantization, for our model against a bicubic interpolation baseline on a separate lung 
cancer CT dataset. We found that the most important radiomic features in our Principal Component Analysis 
(PCA)-based examination were the most robust features extracted on the GAN-super-resolved images.

To summarize, this work provides the following contributions:

•	 definition of the first GAN-based, lesion-focused, SR framework for CT images;
•	 comparison with state-of-the-art SR techniques highlighting the suitability of the proposed framework;
•	 at 2× SR, the images are characterized by better perceptual quality, as suggested by the peak signal-to-noise 

ratio and structural similarity index measures, on a large-scale dataset;
•	 at 4× SR, the proposed GAN-based model achieves comparable results to the ones obtained by state-of-the-

art SR techniques;
•	 the proposed GAN-SR framework improves the robustness of the most important radiomic features in an 

independent lung CT dataset.

Materials and methods
Analyzed CT datasets.  DeepLesion dataset.  As a subset of the DeepLesion dataset23, which contains 
10, 594 scans of 4, 427 patients, our study exploits 10, 000 CT slices with an image size of 512× 512 pixels and 
in-plane pixel spacing between 0.18 and 0.98 mm (median: 0.82 mm). The dataset contains diverse lesion images 
for various body parts with 2D lesion information on diameter measurements, bounding boxes, and semantic 
labels. We use the DeepLesion dataset to train a GAN-CIRCLE model for SR.

NSCLC‑radiomics dataset.  The Non-Small Cell Lung Cancer-Radiomics (NSCLC-Radiomics) dataset24 is a 
well-established publicly available dataset that contains CT slices from 422 NSCLC patients. For careful and reli-
able radiomic analyses, our study uses a highly homogeneous subset composed of 142 CT scans, accounting for 
17, 938 CT slices with an image size of 512× 512 pixels, in-plane pixel spacing of 0.98 mm, and slice thickness of 
3.00 mm. The B19f convolution kernel was applied on all the scans for CT image reconstruction.

The dataset provides annotated 3D tumor segmentation masks and clinical outcome data. The images are 
used to assess our proposed lesion-focused CIRCLE-GAN framework in terms of radiomic feature robustness.

The proposed GAN‑powered framework for radiomic feature robustness.  Pre‑processing.  For 
all the implemented SR approaches, the range of intensity for raw CT volumes was clipped to [−100, 400] Houns-
field Units (HU), and then normalized to [0, 1]. We generated the Low-Resolution CT (LRCT) counterparts 
from the High-Resolution CT (HRCT) images by degrading them through a Gaussian white noise process with 
a standard deviation of 0.25 and a Gaussian blur, with a kernel size of 8× 8 pixels and a bandwidth of 1.6. After-
wards, the images were downsampled with a scale of 2 and upsampled using the nearest neighbor interpolation, 
according to You et al.13. The upsampling step improves feature extraction by enforcing the same image size for 
LRCT and HRCT​25. As in the original GAN-CIRCLE13, for convenience in the training of our proposed network, 
we upsampled the LR image via proximal interpolation to ensure that input and output have the same size. Image 
patches were then cropped based on the lesion bounding box annotations in the metadata—the cropping pro-
cess leads to avoiding artifact generation out of the lesion area19. The preprocessing pipeline is displayed in Fig. 1.

By applying this procedure only on the Deeplesion dataset, we generated 10, 000 LRCT/HRCT patches with 
similar image sizes for training a CIRCLE-GAN-based SR model.

CIRCLE‑GAN‑based image super resolution.  Network architecture.   We used a modified version of CIR-
CLE-GAN13 to tackle the SR problem effectively. The CIRCLE-GAN is a cycle-consistent adversarial model 
consisting of two non-linear generative mappings and their respective discriminators that are trained jointly for 
optimal convergence.

The first generative mapping G : LR → HR attempts to generate a realistic high-resolution image Ihr that a dis-
criminator DHR cannot distinguish from the real one, whereas a generative mapping F : HR → LR is responsible 
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for generating a realistic low-resolution image Ilr , not distinguishable by a discriminator DLR . This minimax 
game is formulated as follows:

The generator networks G and F share the same architecture, which consists of networks for feature extrac-
tion and reconstruction. The feature extraction network consists of twelve layers (i.e., feature blocks) of 3× 3 
convolution kernels, bias, Leaky Rectified Linear Unit (ReLU) activation, and dropout. Each block output is 
concatenated through skip connections before the reconstruction network to capture local/global image features. 
The number of output filters in each convolutional layer is set according to You et al.13. In the reconstruction 
network, two branches are stacked in a network-in-network fashion to increase non-linearity and potentially 
reduce the filter space dimension for faster computation. A transposed convolutional layer with stride = 2 is 
adopted for upsampling and the last convolutional layer combines all feature maps to produce the SR output.

The discriminators DHR and DLR also share the same network architecture, which is composed of four blocks 
of 4× 4 convolution kernel, bias, instance normalization, and Leaky ReLU activation followed by an SPP layer 
and then two dense layers. Inspired by He et al.26, the SPP layer was added to handle multi-sized LRCT/HRCT 
input patches, allowing for the training of a lesion patch-focused network. Figure 2 displays the discriminator 
and generator architectures used in our work.

Similar to GAN-CIRCLE13, the loss function combines four different loss terms to regularize the training 
procedure by enforcing the desired mappings:

•	 an adversarial loss term ( LAdv ) to enforce the matching of empirical distributions in the source and target 
domains;

•	 a ℓ1-norm cycle-consistency loss term ( LCyc ) to prevent degeneracy in the adversarial learning and promote 
forward and backward cycle consistency, defined as G(F(Ihr) ≈ Ihr and F(G(Ilr)) ≈ Ilr;

•	 a ℓ1-norm identity loss term ( LIDT ) to regularize the training process and promote the relationships 
G(Ihr) ≈ Ihr and F(Ilr) ≈ Ilr;

•	 a joint sparsifying loss term ( LJST ) to promote image sparsity and reduced noise.

Thus, the overall loss function used for training is defined as:

where �1 , �2 and �3 are weighting parameters to balance the different loss terms, respectively.

Implementation details.   The proposed network was trained in an end-to-end fashion to optimize the loss 
function; the convolution layers’ weights were initialized with a zero-mean Gaussian distribution, with a stand-

(1)min
G,F

max
DHR,DLR

LGAN(G,DHR)+LGAN(F,DLR).

(2)LCIRCLE = LAdv(DHR,G)+LAdv(DLR, F)+ �1LCyc(G, F)+ �2LIDT(G, F)+ �3LJST(G),

Figure 1.   CT image preprocessing pipeline for GAN training. The HU values of input CT images (a) were 
clipped to the range [−100, 400] HU and normalized to the unit range [0, 1] (b). To generate the low resolution 
CT image counterpart, the image was perturbed by noise addition (c) and Gaussian blurring (d), downsampled 
by a factor of 2× (e) and then upsampled to the original dimension (f) using a nearest neighbor interpolation 
method. Finally, the HRCT patch and LRCT patch were extracted from the lesion bounding box crops (g).
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ard deviation of 2/m, where m = f 2 × nf  , f is a filter size, and nf  is the number of filters; this initialization can 
relieve diminishing gradients and improve the convergence of deep network architectures27.

The discriminators’ learning rate γD was set to 10−5 equally for DHR and DLR , while the learning rate for the 
generators G and F was set to γG = γD/2 , following the Two Times Update Rule (TTUR)28, to improve GAN 
convergence under mild assumptions. Dropout regularization layers, applied in the generators, were initialized 
with the rate pDropout = 0.8 . Leaky ReLU layers were initialized with the negative slope coefficient α = 0.1 . The 
loss weights �1 , �2 , and �3 were set to 1, 0.5 and 0.00001, respectively.

The training used the Adam optimizer with exponential decay rates of β1 = 0.5 and β2 = 0.9 during 100 
epochs with batches of 16 images. On average, the training took 9-11 hours per iteration, using TensorFlow 
(version 2.3.0) on a shared HPC workspace with an Nvidia Tesla P100 Graphics Processing Unit (GPU). The 
implemented code is available under the GNU license on https://​github.​com/​erick​cfari​as/​SR-​CIRCLE-​GAN.

Model evaluation and comparisons.   To evaluate the trained model, conventional quantitative metrics—
namely, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM)—were calculated 
on 1, 000 CT images held out for performance evaluation. As a baseline for comparison, we also resampled the 
images using a Bicubic interpolation method.

To test the effectiveness of our framework, we compared it with other state-of-the-art methods, namely: Image 
Super-Resolution Network with an Expectation-Maximization Attention Mechanism (EMASRN21), Enhanced 
Deep Super-Resolution (EDSR29), Cascading Residual Network (CARN30) and Super-Resolution based on Dic-
tionary Learning and Sparse Representation (DLSR31). For the EMASRN model, we relied on the implementation 
available at https://​github.​com/​xyzhu1/​EMASRN, optimizing the network for ℓ1-norm loss during 1000 epochs 
with T = 4 , a batch size of 16, and a learning rate of 10−5 halved every 200 epochs. For the EDSR model, we 
trained the network with the Adam optimizer with β1 = 0.9 , β2 = 0.999 , optimizing for ℓ1-norm loss during 
500 epochs, a batch size of 16, and a learning rate of 10−5 halved every 100 epochs. For the CARN model, we 
trained the network with the Adam optimizer with β1 = 0.9 , β2 = 0.999 , optimizing for ℓ1-norm loss during 500 
epochs, a batch size of 16, and a learning rate of 10−5 halved every 100 epochs. For the DLSR model, we trained 
the dictionaries with a size of 2048 atoms, using 100, 000 randomly sampled patches, a sparsity regularization 
parameter � = 0.4 and 5× 5-pixel patches with an overlap of 4 pixels between adjacent patches. We varied the 
upscale rate to generate the 2× and 4× versions for all the tested models.

To further assess the performance of the proposed GAN-CIRCLE-based SR method, at 4× SR, we compared 
the native 4× GAN-CIRCLE SR against the sequential application of two GAN-CIRCLE instances at 2× SR, 
denoted as GAN-CIRCLEx.

Figure 2.   The discriminator and generator architectures devised for GAN-SR of medical images.

https://github.com/erickcfarias/SR-CIRCLE-GAN
https://github.com/xyzhu1/EMASRN
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Radiomic feature extraction.  The radiomic features considered in this study were computed using PyRadiom-
ics (version 2.2.0)32, an open-source Python package widely used for this purpose. Since this software requires 
image input to be in the Neuroimaging Informatics Technology Initiative (NIfTI) format33, a preliminary step 
was performed to convert the original Digital Imaging and Communications in Medicine (DICOM) scan and 
segmentation files to this format using custom software written in MATLAB (The Mathworks Inc., Natick, MA, 
USA) version R2019b.

Excluding the shape-based features and first-order features (since they are independent of the rebinning), 
75 3D radiomic texture features were calculated without any image filters applied from the following categories: 
Gray-Level Co-occurrence Matrix features (GLCM)34–36 (24), Gray-Level Dependence Matrix (GLDM)37 (14), 
Gray-Level Run Length Matrix (GLRLM)38 (16), Gray-Level Size Zone Matrix (GLSZM)39 (16) and Neighboring 
Gray-Tone Difference Matrix Features (NGTDM)40 (5).

The radiomic features were extracted from the NSCLC radiomics CT dataset by using different quantization 
configurations: the number of bins varied in {8, 16, 32, 64, 128, 256} . By relying upon the slice thickness, which 
is the same for all CT scans included in this homogeneous subset of the whole NSCLC dataset, 3D feature com-
putation without any resampling was used to avoid interpolation artifacts.

Radiomic feature robustness analysis.  The intraclass correlation coefficient (ICC) was computed to identify 
which features are correlated with the number of bins used during the quantization step. Given k multiple 
measurements to be compared (i.e., 6 different rebinnings), ICC(3, 1)41 for a two-way random-effects (or mixed 
effects) model was used:

where MSR and MSE are the mean square for rows and mean square for error, respectively.
According to the ICC values42, we divided the features into:

•	 Poor robustness: ICC ≤ 0.5;
•	 Moderate robustness: 0.5 < ICC ≤ 0.75;
•	 Good robustness: 0.75 < ICC ≤ 0.9;
•	 Excellent robustness: ICC > 0.9.

We investigated how the robustness of the textural features (in terms of ICC) varies according to the different 
groups of images. For each group, with the aim of identifying the most robust features, the ICC was calculated 
by varying the number of bins considered {8, 16, 32, 64, 128, 256} . By doing so, we determined the number of 
robust features by varying the number of bins in the quantization step. After determining the features showing 
excellent robustness, we aimed to identify the most relevant features for the analysis at hand; for this purpose, 
we used in an agnostic way the most best known technique of dimensionality reduction: the PCA43. For this 
purpose, we had to select a specific quantization setting binning; therefore, the different number of bins were 
perturbed, via mathematical morphology operations, to select the most robust setting. With more details, the 
original ROIs were perturbed using morphological operators (opening and closing with a 3D spherical struc-
turing element of 1-pixel radius). Accordingly, we produced three versions for each ROI (i.e., original, opening, 
and closing). This procedure simulates ROI variations through consideration of intra-/inter-reader dependence 
during manual contouring44. The optimal number of bins was selected after the ROI perturbation process, by 
considering the rebinning with the highest number of robust features. It is worth noting that the optimal binning 
was selected on the Original images and not on the super-resolved ones, thus adopting the most conservative 
choice for fair comparisons.

With the goal of carefully analyzing these variations in terms of ICC, and after the selection of the optimal 
rebinning setting, we assessed the importance of these features by means of a ranking procedure: we performed 
a PCA and we calculated a weighted average of the features extracted from the Original images, according to 
the first three Principal Components (PCs), to assess their relative importance. In particular, we calculated the 
correlation matrix (as well as the eigenvectors and eigenvalues of the correlation matrix) to identify the PCs. PCs 
represent the directions of the data that explain a maximum amount of variance, i.e., the directions that capture 
most of the relevant and non-redundant information in the data. Then, to determine the relative importance of 
the features for the PCs considered, we used a quadrature sum for the individual features related to the differ-
ent PCs. In this way, we determined a ranking of the features by the study of their relative weights in the main 
components considered.

Results
Image super‑resolution results.  Figure 3 shows an example of both 2× and 4× super-resolved images 
obtained by the considered methods. This example provides a qualitative visual assessment of the super-resolved 
images. Figure 4 reports the boxplots of the PSNR/SSIM metrics for 1, 000 CT images. From the analysis of 
Fig. 4, one can see that, at 2× SR, the proposed GAN-CIRCLE-based method achieved higher median values 
than the other competitors for both the considered metrics (i.e., PSNR and SSIM). On the other hand, at 4× 
SR, the best SSIM and PSNR values were obtained with the EDSR and EMASRN SR methods. To assess the 
statistical significance of these results, we performed a Mann–Whitney test for pairwise comparisons (using 
α = 0.05 ). The p-values were adjusted via the Benjamini–Hochberg method for multiple comparisons. Based 
on the p-values yielded by the statistical test, at 2× SR, GAN-CIRCLE achieved significantly higher PSNR and 

(3)ICC(3, 1) =
MSR −MSE

MSR + (k − 1)MSE
,
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SSIM values than the other competitors. The only exception is represented by the Bicubic interpolation for which 
the differences of the median SSIM and PSNR values were not statistically significant. At 4× SR, GAN-CIRCLE 
showed statistically significant differences, in terms of SSIM and PSNR, when compared against the Bicubic 
interpolation method and DLSR. The differences were not statistically significant when we compared GAN-
CIRCLE against EDSR, EMASRN, and CARN. Finally, at 4× SR, GAN-CIRCLEx produced results comparable 
to the ones achieved with GAN-CIRCLE.

Figure 5 shows a randomly selected example from the Deeplesion dataset to endorse the quality of the pro-
duced images and assess the generalization ability of the investigated SR methods. Although PSNR/SSIM are 
widely adopted evaluation metrics, some studies19,45 have demonstrated their limitations on medical image SR 
tasks since images with low perceptual quality could exhibit high PSNR/SSIM values. Overall, at both 2× and 
4× SR, the GAN-generated images were less blurry, with better texture, sharper edges, and visually more similar 
to the ground truth, as shown in Figs. 3 and 5.

In the downstream radiomic analyses, we focused our attention on the Original images, the super-resolved 
images via the proposed GAN-SR framework (based on SPP and GAN-CIRCLE), and the Bicubic interpolation 
method. The Bicubic interpolation method obtained, at 2× SR, the best performance (i.e., in terms of PSNR and 
SSIM) among the considered SR techniques. Moreover, it is commonly available and used in medical image 
processing.

Results of the robustness analysis.  In this section, we describe and discuss the results of the robustness 
analysis related to the textural features (in terms of ICC) according to different image groups (i.e., Original, Bicu-
bic, and GAN-SR). Table 1 reports the features with excellent robustness for the considered methods. According 
to these values, one can observe that all the techniques taken into account produced ten features with excellent 
robustness. Interestingly, our GAN-SR method shows superior performance in terms of ICC for four features. 
Moreover, the GAN-SR technique, as well as the Bicubic interpolation, achieved moderate to good robustness 
for GLRLM LongRunLowGrayLevelEmphasis and GLDM DependenceEntropy, while the features extracted 
from the Original images resulted in excellent robustness.

Table 2 reports the most important features according to the implemented PCA-based procedure. These four 
features are related to the GLCM matrix (the GLCM characterizes the texture of an image by calculating the 
occurrences of voxel pairs with specific values in a defined spatial relationship36) and, in particular, are the follow-
ing: Correlation, IDMN, IDN, SumEntropy (Feature IDs: #1, #3, #4, #6). Of particular interest is the SumEntropy 
feature, defined as the sum of neighborhood intensity value differences, which showed excellent robustness with 
the GAN-SR method, while it showed good robustness in Original and Bicubic.

Table 2 shows the relative difference (in terms of ICC) on the most important radiomic features between 
GAN-SR and the Original/Bicubic versions. With reference to the most important features, the GLCM Cor-
relation denotes the linear dependency of gray-level values to their respective voxels in the GLCM; the Inverse 
Difference Moment Normalized (IDMN) is a measure of the local homogeneity of an image that normalizes the 
square of the difference between neighboring intensity values by dividing over the square of the total number of 
discrete intensity values; the Inverse Difference Normalized (IDN) is another measure of the local homogeneity 
of an image that normalizes the difference between the neighboring intensity values by dividing over the total 
number of discrete intensity values.

According to the procedure designed for robustness in the radiomic feature, the optimal binning was found 
with 64 bins after the perturbation process.

In Fig. 6, the plots in the left column justify the use of the first three PCs, as the first three eigenvalues cover at 
least 85% of the trace of the covariance matrix in each group. The plots in the second column show the weights of 
the original features on the first three PCs, while the third column shows the relative importance of the features 

Figure 3.   Perceptual quality comparison, on the DeepLesion test images 2× and 4× super-resolved held out for 
performance evaluation, obtained by the investigated SR methods. The PSNR and SSIM values are shown at the 
bottom of each super-resolved image. In the case of 4× SR, GAN-CIRCLEx denotes the sequential application of 
two GAN-CIRCLE instances at 2× SR.
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in the first three PCs. The most important features (in descending order), for the three groups of images, were 
as follows:

•	 Original: #1, #5, #6, #2, #10;
•	 Bicubic: #1, #5, #6, #2, #11;
•	 GAN-SR: #1, #5, #2, #6, #4.

Figure 4.   Boxplots comparing PSNR and SSIM metrics for 1000 CT images held out for performance 
evaluation, super-resolved at 2× and 4× by using the investigated SR methods. In the case of 4× SR, GAN-
CIRCLEx denotes the sequential application of two GAN-CIRCLE instances at 2× SR.
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Intriguingly, the features with a lower ICC in the GAN-SR method were those of less importance in terms of 
the PCA. Our GAN-SR method, therefore, increased the robustness of the most important features, compared 
to the Original and Cubic groups. These highly robust features are expected to generalize well on other and 
unseen imaging datasets.

Discussion
This paper presented the first application of GAN-based image SR to radiomic studies. As a proof-of-concept, 
CT images were considered. In particular, the DeepLesion23 dataset was used for training and testing the GAN-
SR performance in terms of PSNR and SSIM. The performance of the proposed method was compared against 
recent state-of-the-art methods for image SR. To quantitatively assess the performance of the proposed frame-
work and compared it against the considered state-of-the-art SR techniques, we relied on two commonly used 

Figure 5.   SR example ( 2× and 4× factor) using the investigated SR methods from a sample slice randomly 
selected from the Deeplesion dataset (held-out set). In the case of 4× SR, GAN-CIRCLEx denotes the sequential 
application of two GAN-CIRCLE instances at 2× SR.

Table 1.   Features that obtained an excellent robustness for at least of the Original, Cubic and GAN-SR image 
groups.

Feature ID Feature name Original Bicubic GAN-SR

#1 GLCM Correlation 0.980 0.979 0.984

#2 GLCM DifferenceEntropy 0.846 0.911 0.910

#3 GLCM IDMN 0.996 0.996 0.997

#4 GLCM ID 0.997 0.995 0.998

#5 GLCM MCC 0.633 0.938 0.923

#6 GLCM SumEntropy 0.822 0.897 0.905

#7 GLRLM LongRunLowGrayLevelEmphasis 0.926 0.560 0.631

#8 GLRLM LowGrayLevelRunEmphasis 0.967 0.952 0.944

#9 GLRLM ShortRunLowGrayLevelEmphasis 0.97 0.973 0.925

#10 GLDM DependenceEntropy 0.910 0.870 0.895

#11 GLDM LargeDependenceLowGrayLevelEmphasis 0.985 0.976 0.890

#12 GLDM LowGrayLevelEmphasis 0.986 0.986 0.950

#13 GLDM SmallDependenceLowGrayLevelEmphasis 0.902 0.955 0.946

Table 2.   Relative difference (in terms of ICC) of the GAN-SR against the Original and Bicubic versions on the 
most important radiomic features according to PCA analysis.

Feature name Original Bicubic GAN-SR GAN-SR vs. Original (%) GAN-SR vs. Bicubic (%)

GLCM Correlation 0.980 0.979 0.984 0.41 0.51

GLCM IDMN 0.996 0.996 0.997 0.1 0.1

GLCM IDN 0.997 0.995 0.998 0.1 0.3

GLCM SumEntropy 0.822 0.897 0.905 10.1 0.89
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metrics: PSNR and SSIM. Moreover, to carefully assess the performance of the proposed GAN-CIRCLE-based 
SR method at 4× SR, we compared the native 4× GAN-CIRCLE SR against the sequential application of two 
GAN-CIRCLE instances at 2× SR (i.e., GAN-CIRCLEx). Experimental results showed that, at 2× SR, the pro-
posed GAN-CIRCLE-based method achieved better performance (with statistical significance, except for the 
Bicubic interpolation) than the other competitors for both the considered metrics. On the other hand, at 4× SR, 
the best SSIM and PSNR values were obtained with the EDSR and EMASRN SR methods. Still, the performance 
of the proposed framework was comparable (i.e., no statistically significant difference) to the two best perform-
ers. According to the results achieved, we can state that the proposed SR framework can obtain competitive 
performance with respect to the considered competitors across the tested SR factors. Additionally, the visual 
assessment of the super-resolved images showed that, in general, the GAN-CIRCLE-based method produced 
images with better texture and sharper edges, and they looked visually more similar to the ground truth HRCT.

The experimental evidence allowed us to choose the proposed GAN-CIRCLE framework, integrating the SPP, 
as the most suitable approach for evaluating the impact of advanced image SR methods in oncological imaging. 
Therefore, the resulting GAN-SR model was leveraged to assess the robustness of the radiomic features extracted 
from the images of the TCIA NSCLC CT dataset46. This assessment required the computation of the ICC to 
identify the most robust features against the variations of the number of bins used in the quantization step. The 
ICC values, calculated for three different image groups (i.e., Original, Bicubic, and GAN-SR), showed that all the 
techniques obtained ten texture features with excellent robustness. Still, the proposed GAN-SR method presented 
superior ICC values in four of the ten features with excellent robustness. Finally, a PCA was performed to iden-
tify the relative importance of the radiomic features in the proposed GAN-SR technique. The results obtained 
from this analysis are particularly interesting as the features with the lowest ICC values are the ones deemed less 
relevant in terms of the PCA analysis. On the contrary, GAN-SR increased the robustness of the most important 

Figure 6.   PCA-based analysis of the importance of radiomic features for all image types: (a) Original; (b) 
Cubic; (c) GAN-SR. The first column shows the line plots of the values of the eigenvalues as a function of the 
number of eigenvalues. This is useful for the evaluation of the PCs required. The second column shows the 
relative weights of the original features on the first of three PCs, while the third column depicts the relative 
importance of the features (according to the IDs defined in Table 1) in the first three PCs.
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features compared to the Original and Bicubic groups. The result is relevant because the highly robust features 
identified by GAN-SR might generalize well on other CT datasets. The results of this study could pave the way for 
the application of GAN-based image SR techniques for studies of radiomics for robust biomarker discovery47,48.

Along with the novelties in lesion-focused GAN-based SR, this work belongs to the research strand dedicated 
to the analysis of robustness in radiomic features, with particular interest in oncological imaging. As a matter 
of fact, the investigation techniques used in our study were consistent with the state-of-the-art: the ICC was 
adopted in radiomic feature robustness analyses that assessed the impact of different imaging acquisition and 
reconstruction parameters6,7,49, as well as image perturbations4,5,8. Moreover, we identified the most important 
features in an agnostic manner, which is independent on a particular classification/prediction task at hand, by 
using a PCA-based investigation43.

The main limitation of the proposed SR method is inherent to its lesion-focused approach, which relies on 
a lesion detection step for ROI identification that limits the application of this method to datasets with a pre-
existing mapping of ROIs. Regarding this matter, our methodological approach could be extended to include a 
lesion detection task as in19, to allow for CT images without lesion annotations in the training process. Consider-
ing that our GAN-SR method currently performs only in-plane 2D image SR, to avoid the effect of slice thickness 
variability6,7, GAN-based SR along the z-axis (i.e., yielding thinner slices) might relieve the problem related to 
highly anisotropic voxels50,51. Moreover, since our GAN-SR model does not remarkably improve PSNR/SSIM 
values, we could conduct feature recalibration, such as via self-attention mechanisms, to obtain features more 
similar to the ones of the original images21,52–54. Concerning future radiomics applications, since we showed the 
results on a homogeneous subset of the NSCLC-Radiomics dataset, we plan to test the generalization ability of 
GAN-extracted radiomic features on the whole dataset, considering variations on CT image acquisition and 
reconstruction parameters. In particular, a classification/prediction modeling task for NSCLC staging and type 
would be beneficial24.
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