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Identification of ligand binding 
sites in intrinsically disordered 
proteins with a differential binding 
score
Qiao‑Hong Chen1 & V. V. Krishnan1,2*

Screening ligands directly binding to an ensemble of intrinsically disordered proteins (IDP) to discover 
potential hits or leads for new drugs is an emerging but challenging area as IDPs lack well‑defined 
and ordered 3D‑protein structures. To explore a new IDP‑based rational drug discovery strategy, 
a differential binding score (DIBS) is defined. The basis of DIBS is to quantitatively determine 
the binding preference of a ligand to an ensemble of conformations specified by IDP versus such 
preferences to an ensemble of random coil conformations of the same protein. Ensemble docking 
procedures performed on repeated sampling of conformations, and the results tested for statistical 
significance determine the preferential ligand binding sites of the IDP. The results of this approach 
closely reproduce the experimental data from recent literature on the binding of the ligand 
epigallocatechin gallate (EGCG) to the intrinsically disordered N‑terminal domain of the tumor 
suppressor p53. Combining established approaches in developing a new method to screen ligands 
against IDPs could be valuable as a screening tool for IDP‑based drug discovery.

Using computational algorithms to dock small molecules to proteins with ordered 3D structures to screen poten-
tial ligands is essential in a drug discovery process. The in silico screening is routinely applied in the early stages 
in rational structure-based approaches in selecting a ranked set of priority leads for experimental  validation1–3. 
Docking methods initially utilized rigid ligands against static protein structures, as in influenza  virus4 or HIV-1 
 protease5. As proteins sample multiple conformational sub-states, the ensemble docking approach notably 
advanced the virtual screening approaches closer to experimental  conditions6,7. Ensemble docking for drug 
discovery pipeline has become one of the critical elements in the arsenal to develop potential drug molecules, 
as exemplified by the recent applications to find drug targets for Covid-19  infection6,8–10.

Intrinsically disordered proteins (IDPs) emerge as promising druggable targets due to their functional asso-
ciation with various  diseases11. Screening ligands directly binding to an ensemble of IDPs to discover potential 
hits or leads for new drugs is exceptionally appealing because the ligands may directly block the undesired bio-
logical interactions mediated by the IDPs. However, to take advantage of the well-established structure-based 
rational drug design strategies, these methods need to be repurposed for IDPs that lack well-defined or ordered 
3D- structures.

It is advantageous to access well-defined, folded, and experimentally generated three-dimensional structures 
for a ligand docking protocol. However, the inherent complexity of the IDP’s conformational flexibility intro-
duces an increased complexity to ensemble docking procedures. Therefore, the methods to identify binding 
sites of potential drug molecules to IDPs are current challenges in structure-based rational drug discovery. For 
the intrinsically disordered proteins when represented as an ensemble of structures for a docking protocol, two 
critical factors need to be distinguished concerning other conventional studies involving an ensemble of struc-
tured proteins. The differential binding score (DIBS), the difference in probability between two sets of ensemble 
docking protocols, is proposed to address these two factors. First, given an ensemble of conformations posed 
by an IDP, a potential ligand will bind to a selective subset of IDPs at a given moment but not necessarily in the 
same configuration because the subset of proteins with similar affinity may not have the same binding defini-
tions to the ligand. The dynamic interconversion between the conformations of the protein is responsible for 
the differential binding events, leading to a probabilistic nature of protein–ligand interaction. A binding score 
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defined must reflect how many such events of receptor-ligand interactions occur from a reasonably large set of 
binding events sampled. The second factor investigates the specificity of the IDP-ligand binding events by test-
ing if similar events would occur if an ensemble of random coil structures represented the protein of interest. In 
combination, the procedure can then address that a particular ligand prefers a conformational subset posed by 
the IDP more specifically than random distribution, and the portions of the protein responsible for the interac-
tion can be deduced.

In the method proposed herein, the two criteria mentioned above are measured, first by repeated sampling 
of ligand interaction with an ensemble of IDP conformations generated by molecular dynamics simulations 
and an ensemble of random coil conformations. From a large number of conformations (1000) each, a subset of 
populations (100 structures each) is randomly sampled for the ensemble docking protocol. Each sampled popu-
lation is subjected to an ensemble docking for 24 independent docking routines to a total of 2400 runs for each 
sub-population. The same protocol is repeated three times separately for the IDP and random coil ensembles on 
a subset of conformations selected each time randomly. A differential binding score (DIBS) is defined based on 
the estimated binding affinity of each docking run and the number of times a particular amino acid is involved 
in the binding event. Secondly, linear modeling of the triplicate data was performed between the binding scores 
to identify residues that show significant differences leading to the identification of preferred binding sites on 
the IDP ensemble.

To demonstrate the utility of the approach, the method was tested on the binding of the ligand epigallocat-
echin gallate (EGCG) to the N-terminal domain of the tumor suppressor p53 (p53-NTD, an IDP)12. Zhao and 
Blayney et al. have revealed, based on their Surface Plasmon Resonance (SPR) and Nuclear Magnetic Resonance 
(NMR) studies, EGCG preferentially and directly interacts with the p53-NTD in a highly dynamic fashion with 
multiple binding interfaces. The DIBS supports these observations and the heterogeneous complex formation 
of EGCG with disordered  proteins12,13. Furthermore, the differential binding score (DIBS) for the p53-NTD 
binding to EGCG shows a close agreement with experimental chemical shift perturbation data reported by 
Zhao and Blayney et al.12.

Results
Profiles of the probability scores of the random coil and IDP ensembles of p53‑NTD. The 
ensemble of conformations of the MD simulations to represent the IDP populations and the corresponding 
random coil simulations are generated. Supporting information (Fig. S1) summarizes the characterization of the 
ensembles. The MD simulation analysis (Fig S1a, root-mean-squared deviation (RMSD) vs. time and Fig.S1b 
root-mean-squared fluctuation (RMSF) vs. AA #) shows a highly dynamic ensemble of conformations of p53-
NTD. The backbone RMSD of the MD simulations shows a rapid increase with high dynamic fluctuations dur-
ing the initial portion of simulations (Fig.  S1a). Though the RMSD values do not continue to increase with 
increasing simulation time, the IDP ensemble continues to be highly dynamic throughout the simulation period. 
The IDP ensemble exhibits a distinct distribution of radius of gyration (Rg) as compared with the random coil 
ensemble (Fig. S1c). In addition, RMSD values of the IDP ensemble have a similar distribution as the Rg values 
(Fig. S1d). The random coil ensemble shows a broad distribution with a mean value of Rg (~ 22 Å). The IDP 
ensemble shows two populations with a major population centered close to the random coil population (~ 25 Å) 
and a second ensemble of conformation at a slightly higher Rg value (~ 40 Å). A principal component analysis 
(PCA) of ensembles (Fig. S1e,f) shows that the IDP ensemble better discriminated along with the first compo-
nent, in comparison with the random coil ensemble (45.5% vs. 20.6%) and with similar discrimination along 
with the second component (~ 10%).

The affinity of the EGCG is hypothesized to be differential between the ensembles of conformations. During 
each binding run, the interaction of the ligand and the receptor will lead to a measure of the binding constant (in 
kcal/mol), and the amino acid residues encounter the ligand. A representative example of the first 100 docking 
run results is shown in Fig. 1. For the first 100 runs (top rank at the bottom), the intensity of each square is the 
binding energy of that particular run (rows) plotted as a function of the amino acid residue sequence number 
(Fig. 1a,b). The top-ranked run to the p53-NTD as the IDP ensemble (Fig. 1a, bottom-most row) has a binding 
constant of 8.30 kcal/mol, and a dissociation constant of 817.24 nM, with the following interacting residues: 
Q52, W53, Y55, E56, D57, P58, G59, P60, P64, K65, M66, P67, E68, A69, and A70 with EGCG. For the p53-NTD 
random coil ensemble, the top-ranked run yields a binding constant of 8.34 kcal/mol and a dissociation constant 
of 766.47 nM with the ligand interacting residues E3, P4, S6, D7, P8, E11, P12, L14, W91, P92, and L93. Even 
though the binding constants of EGCG to the IDP or random coil are similar (8.30 kcal/mol vs. 8.34 kcal/mol), 
the essential residues that interact in these two runs are not the same. In a single docking run (as performed in 
the traditional approach), these results would imply that both the protein structures have the same affinity to 
the ligand, which does not reflect the reality when the receptor is represented by an ensemble of conformations. 
Suppose the ligand prefers a specific region of the receptor; the conformational selection should then be expected 
with higher consistency for the IDP ensemble vs. the random coil ensemble. The differential binding score (DIBS) 
is designed to amplify these measures systematically. In the intensity plots of Fig. 1, the IDP ensemble (Fig. 1a) 
and the receptor-ligand interactions tend to be more specific to certain protein regions, while in the random 
coil (Fig. 1b) is dispersed and less specific.

Cumulatively, the ensemble docking runs representing the p53-NTD binding to EGCG are given by the 
binding scores for the IDP ensemble (Fig. 1c) and random coil ensemble (Fig. 1d). When the ligand preferen-
tially selects a specific region of the receptor, the binding score over the multiple runs increases, similar to how 
the signal averaging increases the signal-to-noise ratio. Accordingly, the binding score for the IDP ensemble 
(Fig. 1c) selectively increases for specific amino acid locations involved in the binding process. In contrast, the 
ones that have fewer interactions average out to with a low binding score. Figure 1d shows the regions defined as 
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the transcription factor activation domain 1 (TAD1, P4-D41), transcription factor activation domain 2 (TAD2, 
D42-E56), and the proline-rich domain (PRD, A63-L93). Within the ensemble docking runs (Fig. 1), the IDP 
ensemble of the p53-NTD has preferred sites in both the TAD1 and PRD domains with higher binding scores 
than the same regions in the random coil ensemble.

The differential binding scores (DIBS) defined between IDP vs. random coil ensembles. The 
chemical shift perturbation data from Zhao and Blayney et al.12 is plotted in Fig. 2a. Instead of the changes in 
individual chemical shifts of either 15 N or 13C (Fig. S2), the effective chemical shift change that combines the 
15 N and 13C chemical shifts is plotted (ratio of p53-NTD EGCG = 1:4). The original chemical shift data and the 
prediction of the intrinsic disorder of p53-NTD are provided in the supplemental information (Figure S2a). The 
binding score of many of the amino acid residues match with the experimental data, and these include V10, 
W23, V31, L32, S37, Q38, A39 (in TAD1), residues P47, I50, E51, W53, F54, and T55 (in TAD2) and M66 and 
P72 (in PRD). W23 shows one of the most considerable chemical shift changes, while V10 shows the largest 
change in the binding score. Residues S33-L35 show chemical shift changes (13CO chemical shifts, Fig. S2b) do 
not show notable changes visually, while residues, P27 and N30 are past the cutoff for significance (vide infra).

The ensemble docking was performed on a set of conformations selected for the IDP, and random coil con-
formations show a notable difference in the profiles. Are these binding events are statistically significant? To 
measure the differential effect, the procedure (Fig. 1) was repeated three times for each of the IDP and random 
coil ensembles of p53-NTD binding to EGCG. Figure 2b shows the summary of the results. The average varia-
tion in the binding score as a function of the amino acid position of p53-NTD is plotted for the IDP ensembles 
(blue lines) and the random coil ensemble (red line) of Fig. 2b. The blue and the red ribbon represent the stand-
ard deviation of the binding score over the three ensemble docking runs. The binding score plot shows several 
selective residues of preferential interaction between the p53-NTD with EGCG in the IDP ensemble compared 
to the random coil ensemble. In particular, residues in the TAD1 (V10, P13, S15, L23, and L25), few residues in 
the smaller TAD2 (D49, and E51), and several residues in the PRD (G59, P64, M66, A70, P72, and A74) have 
preferential interactions with EGCG. In contrast, such interactions with the random coil ensembles are absent. 
The amino acid residues that tend to interact with EGCG also happen to be clustered at the N-terminal part of 
the TAD1, interface between the TAD2 and PRD, and the N-terminal domain of PRD.

Considering that p53-NTD is an IDP (Fig. S2a), even at a spectrometer frequency of 800 MHz, it is impos-
sible to identify all the NMR chemical shifts assignments due to an overlap of resonances or line broadening 

Figure 1.  Docking runs and the binding score of p53-NTD interaction with EGCG. Top panels (a,b): the 
intensity plot shows the binding energy (BE) from low (blue) to high (red) for each docking run (rows) for each 
of the amino acids that come in contact for that particular run. A representative set of top 100 binding runs is 
shown for ensembles with the MD generated (a) and the random coil (b). Lower panels (c,d): plot of the binding 
score (Eq. 1) plotted as a function amino acid residue position of p53-NTD. The transcriptional activation 
domains (TAD1 and TAD2) and the proline-rich domain (PRD) are marked.
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effects induced by the protein motion (Fig. S2). Besides, the lack of a proton in the proline residues sometimes 
leads to the absence of 15N chemical shift information (Fig. S2b). Because of these reasons, the chemical shift 
assignments of some of the residues may not be available. Therefore a residue-by-residue comparison between 
the two data sets (chemical shift perturbation vs. binding score) is incomplete.

Identification of the residues of differential significance due to EGCG binding. Repeated sam-
pling of the subset of conformations from the IDP and random coil ensembles allows testing if these measured 
effects have any statistical significance, such as testing for the null hypothesis. For example, a particular amino 
acid residue of p53-NTD is considered significant if the binding score in that residue in the IDP ensemble is 
higher than that of the random coil ensemble with a p-value of the statistical test less than 0.05. These measures 
are generally shown in a plot of the fold-change vs. p-value, known as the volcano plot. A volcano plot for the 
statistical measure between the random coil ensemble and the IDP ensemble for repeated measures (three times 
each) is shown in Fig. 3. For a DIBS (fold change, (log2) > 2 and p-value < 0.05) are marked by the vertical and 
horizontal dashed lines, respectively (Fig. 3). In addition, the amino acids that pass the significance threshold 
are marked. Residues found at the upper right corner of the plots are the most significant, having the largest 
fold change with a low p-value. The opposite side of a typical volcano plot is missing in Fig. 3. No residues show 
higher binding affinity to a random coil ensemble than the IDP ensemble (negative fold change). Figure 3 indi-
cates that P4, V10, and P92 significantly influence the preferential binding of EGCG. Other residues of varying 
importance are also noted in Fig. 3. The blue dots show the residues with p-values < 0.05, but the fold changes 
are not > 2.0, while the black symbols are residues that do not play a role in the differential binding. The residues 
that show a significant differential binding tend to be clustered more in the TAD1 and PRD than in the TAD2, 
also seen in Fig. 2.

Statistical analysis of the results from the ensemble docking runs to identify potential interactions between 
p53-NTD and EGCG is an essential element of the approach. This requirement confirms that EGCG has a higher 
affinity for IDP conformations than the sampled random coil conformations.

Discussion
A differential scoring approach distinguishes the ensemble docking results between intrinsically disordered vs. 
the random coil states of a receptor. When the method is applied to assess the binding of p53-NTD with EGCG, in 
addition to providing a close match with the NMR-based chemical shift perturbation studies (literature results), 
other residues are also identified. Typically, docking studies are performed only with a specific receptor or with 
an ensemble representation. The value of the method relies on the fact that the differential binding score (DIBS) 

Figure 2.  Comparison of the experimental chemical shift perturbation data with the binding scores. (a) 
Cumulative change in the chemical shifts of p53-NTD interaction with EGCG defined by weighted Euclidian 
distance of 15N and 13CO chemical shifts of the particular residue. Blanks correspond to missing experimental 
data. (b) A plot of the predicted binding scores of the IDP ensemble docking of p53-NTD with EGCG 
(blue) and the random coil ensemble of p53-NTD docking with EGCG (red). The average values of the three 
independently repeated measures are given by points, and the ribbons show the corresponding standard 
deviations of the measurements. The transcriptional activation domains (TAD1 and TAD2) and the proline-rich 
domain (PRD) are marked on the top. Amino acid positions that show a close match between the experimental 
(a) and the predicted (b) values are shown by the vertical lines (green).
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establishes a means to identify binding sites selected explicitly by the ligand on an intrinsically disordered ensem-
ble over a random coil ensemble. Multiple sampling of conformations and a systematic statistical test suggest that 
this method could serve as a screening tool to identify potential ligands that bind to IDPs.

The study has limitations from the fundamental assumptions upon the ensemble docking concept that con-
siders that the ligand selects a protein conformation based on the induced fit  model14 and conformational 
selection and population fit  models15–17. The presumption of success of this method depends on the hypothesis 
that the conformations generated and used for repeated sampling for the ensemble docking runs are sensitive 
enough for the EGCG to bind to the IDP than the random coil ensemble preferentially. However, in a broader 
sense, considering the number of conformations sampled by a protein typical of the size of p53-NTD in either 
the IDP or random coil ensemble is much larger than the size of the conformations used in the study. Thus, 
through the selection of a more extensive set of conformers might by itself not rectify the problem, the number 
of conformations sampled (1000), the number of conformations re-sampled (three times at 1/10th of the total), 
and the ensemble docking runs of these conformations are limited by the computational resources available to 
the authors. The calculations were done on a Linux (Ubuntu 18.04.5 LTS) system with eight cores and a single 
GPU (GTX 1070). The two computationally expansive steps are generating the ensemble of IDP conformations 
using the molecular dynamics simulations and the ensemble docking routines required.

The apparent validity of DIBS is based on a broader agreement with the experimental NMR chemical shift 
changes (Fig. 2a and Fig S2). It demonstrates that EGCG prefers the conformations sampled by the IDP ensem-
ble over the random coils. As noted from the distribution of Rg values (Fig S1c), the IDP conformations show 
two distinct populations of conformations, a large set (~ 25 Å) and a smaller group (~ 40 Å). In one of the early 
experimental investigations, Dawson et al. suggest that p53-NTD might function synergistically by combining 
both unfolded and folded  conformations18. It is further hypothesized that the p53-NTD domain contains the 
proline-rich region (PRD residues A63-L93), which tends to adopt a stiff polyproline II (PPII) structure to keep 
the transactivation domain (TAD1) away from the core domain of the full-length  p5319. The extended confor-
mations sampled by the MD simulation are consistent with the hypothesis in generating the sub-population of 
extended conformations. Remarkably, DIBS (and the experimental data) identify only the region close to P70 
with a possible binding region in the span of 30 residues of the PRD. A multiscale ensemble modeling of the 
various areas in the p53-NTD by Terakawa and Takada indicates that including the PRD, the Rg values shift more 
towards extended  conformations20. Taken together, it is reasonable to consider that the molecular dynamics of 
the IDP conformations of p53-NTD reflect the functional diversity of the TAD domains with a second distinct 
sub-population for conformers due to PRD.

Recently, in the case of NUPR1, a multifunctional IDP similar to the p53-NTD (82 AA), MD simulations 
typically in the range of 80–200 ns have been  utilized21. The RMSD plots of the simulations (Fig. S1a) show sig-
nificantly lesser variability during the time frame of the sampling compared to the starting structures. This means 
that many intramolecular interactions that occur within the time scale of 500 ns are averaged out. Although 
molecular dynamics simulations up to 500 ns using an explicit water model could be considered sufficient, a 

Figure 3.  Volcano plot for the differential binding score (DIBS). The plot of the DIBS (fold change in log2) and 
the p-value on the differential preference of EGCG over the ensemble of IDPs than the random coil ensemble 
of the p53-NTD. The significance is defined with fold change > 2 and p-value < 0.05, marked by vertical and 
horizontal dashed lines. The black symbols represent residues that do not differentiate between IDP and random 
coil ensembles, blue symbols fulfill the p-value cutoff (< 0.05) and not the fold change (< 2.0) and the red 
symbols fulfill both the conditions for significance (fc > 2.0 and p-value < 0.05).
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longer time scale, multiple simulations (with a different random seed), and an increase in the repeated sampling 
would be preferable.

Molecular dynamics trajectories are often clustered to identify sub-groups of structures that share similar 
conformational properties. However, in an extensive study of ensemble docking of four G-protein-coupled 
receptors (in membrane environment), Falcon et al. found that ensembles generated from the clustered MD 
trajectories do not represent the conformations selected by the  ligands9. These results suggest that repeated 
independent sampling using random number generation perhaps does not bias the ensembles with pre-selected 
conformations by clustering.

In a comprehensive perspective, a team of experts led by Smith and co-workers discussed the broader issues 
related to problems, approaches, and opportunities in conformational sampling and selection of conformations 
for ensemble docking  studies6. Although this work, is not providing a solution to what are the ’selectable’ confor-
mations, the introduction of control variables such as the random coil ensemble may increase the sensitivity of 
the search parameters over the free-energy landscape of the apo-protein ensemble by considering a differential 
free energy selection (between IDP and random coil). If the sampling of conformations used for the ensemble 
docking between the IDP and random coil ensembles is similar, then EGCG may not differentiate between them. 
The statistical test suggests that the residues show a significant difference between the data set only on selected 
amino acid residues of p53-NTD. More importantly, a close match with the experimental results verifies the 
value of the approach.

DIBS can differentiate IDP ensembles over another (random coil) ensemble via ensemble docking protocols 
and can offer an alternative approach to conventional results that utilize only the IDP ensemble. The proposed 
differential probability increases the sensitivity of docking scores as statistical comparison identifies regions of 
the receptor that may be significantly different from the control set. The DIBS approach presented here would be 
of value to proteins that are intrinsically disordered or enzymes that have intrinsically disordered regions (IDR). 
The relatively high computational cost of DIBS compared to standalone docking protocols may be circumvented 
with scalable molecular dynamics on CPU and GPU architectures. The Eroom’s Law (the infamous Moore’s law 
backward) in drug discovery states that the cost for discovering a new drug doubles every nine  years22. With 
the increasing computational power towards the availability of exaFLOP machines in the near future, custom-
designed systems for MD simulations such as  ANTON23, as well high throughput simulations coupled with 
Markov State Models (MSMs)24, could make it viable to scale the DIBS. DIBS could be used as a rational screening 
to select a subset of potential ligands that prefer an ensemble of intrinsically disordered conformations, paving 
an avenue to the IDP-based drug discovery.

Methods
Molecular system. The 93 residues long N-terminal domain of the p53 `was obtained from the DISPROT 
 database25 in the FASTA format (DP00086r024)19. A three-dimensional structure of epigallocatechin gallate 
(EGCG) was downloaded from the PubChem (CID 65064). The EGCG structure was energy minimized and 
optimized using the DFT, BYLIP, and a basis-set of 6-31G (d) in the computational program  Gaussian26.

Generation of the ensemble of IDP conformations. Ensemble of conformations representative of 
the intrinsically disordered p53-NTD were generated using molecular dynamics simulations performed using 
the academic implementation  Desmond27 combined with the user interface for visualization Schrödinger’s 
 Maestro28. An extended conformation of the protein was generated within Maestro tools from the primary 
structure of p53-NTD. The protein-peptide preparation tools with Maestro were used to optimize the starting 
configuration of the protein structure. The molecular dynamics simulation system was built with an explicit 
solvent model of water  TIP4PD29. TIP4PD water model is preferred, as it tends to correct general deficiencies 
in standard water models, particularly for the disordered proteins in reproducing experimental ensembles. The 
MD simulations were performed using the default six-step  protocol28 and at standard conditions of isothermal-
isobaric (NPT) ensemble with pressure 1.013 bar (set by Martyna-Tobias-Klein method) and temperature 300 K 
(Nose–Hoover thermostat). Other simulation parameters are SHAKE algorithm with two fs each for bonded 
and near interactions and six fs for far interactions with OPLS-AA 2005 force field. Starting from an extended 
structure built from the primary sequence (FASTA format), MD simulations were performed for 500 ns, and the 
performance was evaluated using the built-in tools of Desmond. A total of 1000 conformations was collected 
after the first 100 ns to define the pool of IDP ensembles.

Generation of random coil ensembles. Starting from the primary sequence of p53-NTD, a representa-
tive ensemble of 10,000 random coil structures was generated using the  TraDES30,31. Then, a subset of 1000 
conformations was sampled randomly to define the random coil ensemble of p53-NTD.

Docking protocol. The molecular docking protocols were performed using the Autodock  VINA32,33, with 
the default parameters implemented within YASARA (version 19.1.27) molecular modeling  program34. The 
optimized structure of EGCG was imported into YASARA for an ensemble docking protocol using the built-
in macro (run_ensemble.mcr). For each ensemble of conformations, the EGCG (ligand) was docked 24 times 
against each of the 100 p53-NTD (receptor), giving rise to a table consisting of 2400 results ranked according to 
the binding energy (kcal/mol) and dissociation constant (pM). The results are clustered such that they all differ 
by at least 5 Å (heavy atom RMSD) along with the amino acid residues involved in the binding process.

The probability score  (PSk) for each amino acid residue (k) in a particular ensemble run is defined as follows:
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where  ni is the number of times the residue (k) encounters the ligand, N total number of the runs (typically 
number of docking runs × number of structures in the ensemble), and  DCi is the corresponding dissociation 
constant. Thus, Eq. (1) can be considered a weighted sum of the dissociation constant for each amino acid residue 
in the receptor. The probability factor will be between zero for a residue that does not involve binding events 
and one whence it is involved in all the binding runs. Each run generated a data set of 2400 (number of docking 
runs) × 93 (length of p53-NTD), repeated for three independent samplings of sub-structures from the pool of 
MD generated or random coil structures.

Statistical analysis. The ensemble docking on the p53-NTD either as an IDP or as random coil sampling 
generated three sets of probability scores for each. Next, a statistical test was performed between these two data 
sets to determine which amino acids are responsible for the differential effects between the random coil and 
the IDP ensembles. Although with three independent runs each, a t-test would be sufficient; a linear model was 
employed to determine the differential binding score (DIBS), the fold change, and significance (p-values). These 
statistical methods were based on established protocols and applied to other studies  previously35–37. Upon com-
pleting the statistical test, amino acid residues that are differentially affected between the random coil (control) 
and the IDP ensembles of p53-NTD are considered significant if fold change (log2) > 2.0 and p-value < 0.05.

Experimental data from the literature. Experimental NMR data for the p53-NTD have been presented 
previously by Zhao and Blayney et al.12 on the interaction of p53-NTD and EGCG. Chemical shift perturba-
tions of the p53-NTD in the presence of EGCG were measured by following the 15N and 13CO resonances and 
were available in the supplementary data provided by the above reference. The experimental data at a p53-NTD: 
EGCG of 1:4 were used. In addition to using these values directly, the chemical shifts were combined following 
a Euclidean distance of the measured chemical  shifts38.

where n = 15 N, c = 13CO, with δn and δc are the experimentally observed chemical shift changes due to ligand 
binding to the protein. Based on the data from  BMRB39, with the backbone 15N, and 13CO chemical shift 
range ~ 22.0 ppm and ~ 32.5 ppm, and defining αn = 22.5/(22.0 + 32.5) = 0.6 and αc = 32.5/(22.0 + 32.5) = 0.4, 
respectively. Equation (2) was useful as 15N and 13CO chemical shift changes are opposite due to ligand binding.

All the analyses were performed, and the plots were generated using the R-statistical  environment40. The 
protein structural data were analyzed using the tools available in  Bio3D41,42 and in-house written codes. The IDP 
or random coil structures’ principal component analysis (PCA) represents the maximal variance (percentage of 
the total mean square displacement of atom positional fluctuations) performed using Bio3D.
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