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Effect of the finite speed of light 
in ionization of extended molecular 
systems
I. A. Ivanov1*, Anatoli S. Kheifets2 & Kyung Taec Kim1,3

We study propagation effects due to the finite speed of light in ionization of extended molecular 
systems. We present a general quantitative theory of these effects and show under which conditions 
such effects should appear. The finite speed of light propagation effects are encoded in the non-dipole 
terms of the time-dependent Shrödinger equation and display themselves in the photoelectron 
momentum distribution projected on the molecular axis. Our numerical modeling for the H+

2

 molecular 
ion and the Ne

2
 dimer shows that the finite light propagation time from one atomic center to another 

can be accurately determined in a table top laser experiment which is much more readily accessible 
than the ground breaking synchrotron measurement by Grundmann et al. (Science 370:339, 2020).

Every quantum system evolves on its characteristic time scale which varies widely between molecules (femto-
seconds—10−15 s)1, atoms (attoseconds—10−18 s)2 and nuclei (zeptoseconds—10−21 s)3. A crossover between 
these time scales is very rare in nature. It was therefore quite unexpected to discover an ionization process in the 
hydrogen molecule that evolved on a zeptosecond time  scale4. An explanation of this phenomenon appeared to 
be quite simple. While it takes tens of attoseconds for an electron to trespass the H2 molecule, the incoming light 
wave sweeps from one molecular end to another orders of magnitude faster. This results in one of the constituent 
hydrogen atoms getting ionized a fraction of the attosecond sooner than its counterpart. Such a tiny ionization 
delay manifests itself quite noticeably in the two-slit electron interference that the H2 molecule readily  displays5. 
To discover a zeptosecond delay in molecular photoionization  in4 the authors needed to deploy an extremely 
bright synchrotron source of highly energetic  photons6. We demonstrate that even a table top laser experiment 
is capable of detecting a similar effect making it much more readily affordable.

In this work we present a general quantitative theory of the delay due to the finite speed of light propagation 
and we show under which conditions such effects should manifest themselves. In our numerical demonstra-
tions, we consider the H+

2  molecular ion and the Ne2 dimer. The H+
2  molecular ion has been scrutinized since the 

early days of quantum  mechanics7 and was recently used as a model for the study of the interference effects in 
photon-momentum transfer for the process of molecular  ionization8. Photoionization studies of Ne2 is a  novelty9. 
We subject both targets to an attosecond laser pulse that can be readily produced in high-order harmonics gen-
eration  sources10,11. The photoelectron flux encodes the timing information about the ionization process. This 
flux is reconstructed by solving the laser-driven time-dependent Schrödinger equation (TDSE). The numerical 
results obtained for H+

2  using the TDSE can be interpreted in a transparent qualitative way by considering a 
very simple heuristic tight-binding model (TBM). This gives us a tool for understanding the time delay caused 
by the finite speed of light propagation. We apply this tool to H+

2  and Ne2 and find the time delay of a fraction 
of attosecond that depends sensitively on the orientation of the molecular axis relative to the propagation and 
polarization directions.

Atomic units (a.u.) are used throughout the paper with the electron charge e, mass m and the Planck constant 
� all set to unity m = e = � = 1 . The speed of light in these system of units is c ≈ 137.036 a.u.

Results
Theoretical model. Our approach is based on the numerical solution of the three-dimensional TDSE

(1)i∂�(r, t)/∂t =
[

Ĥmol + Ĥint(t)
]

�(r, t) ,
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where Ĥmol is the field-free one-electron Hamiltonian and Ĥint(t) describes the field-target interaction. We con-
sider the hydrogen molecule ion H +2  in the ground state as a target. The ion interacts with a short (total duration 
of four optical cycles) pulse with the base frequency ω = 4.04 a.u. (photon energy of 110 eV) with the peak field 
strength E0 = 0.1 a.u. (intensity of 3.51× 1014 W/cm2 ). The pulse described by the vector potential A(t − x/c) 
propagates in the positive x-direction and is polarized in the z-direction.

We apply the procedure previously used  in12 to study non-dipole effects in atomic photoionization. The lead-
ing order relativistic corrections to Ĥint(t) come from the linear term of the expansion of A(t − x/c) in powers 
of c−1 . Such an expansion leads to the following Hamiltonian describing the target-field interaction:

More detailed description of the derivation of the Hamiltonian (2) and details of the numerical procedure 
we used to solve the TDSE (1) can be found in the “Methods” section. The interaction Hamiltonian (2) can be 
related by a gauge transformation to the Kramers-Henneberger Hamiltonian used  in13.

An additional source of relativistic corrections in Ĥint is the interaction of the magnetic field of the pulse 
with the electron spin. These corrections cannot be obtained by a simple generalization of the minimal coupling 
Hamiltonian. To obtain them, one needs to consider systematically the transition of the Dirac equation to the 
non-relativistic  limit14. The inclusion of the electron spin, however, is not necessary for the present study where 
we keep only the c−1 terms as was done, for instance,  in12,15. The Breit–Pauli relativistic corrections to Ĥmol , such 
as the effects of the relativistic kinematics, spin––orbit interaction and the so-called Darwin term, are all of the 
order of c−2 and can also be safely  omitted16 .

For a weak electromagnetic field that we employ, we can also obtain an analytical expression for the ionization 
amplitude by using the perturbation theory (PT) and treating the operator (2) as a perturbation:

Here φ0 and φ−
p  are the initial and final molecular states with the corresponding energies ε0 and Ep.

We split the ionization amplitude (3) into the nonrelativistic part a(0)p  and the first order relativistic correction 
a
(1)
p  . By introducing the Fourier transforms A(t) = (2π)−1

∫

a(�)e−it� d� and A2(t) = (2π)−1
∫

b(�)e−it� d� 
we obtain for these amplitudes:

The second term on the right hand side of Eq. (5) can be neglected because the ratio of the second term and 
the first term in this expression is approximately b(�)/(a(�)p) , where p is the typical value of the momentum of 
the ionized electron. For the pulse parameters that we consider, this value can be estimated as E0/(ωp) ≈ 0.01.

It can be seen from Eq. (5) that the relativistic correction a(1)p  vanishes in certain cases. In particular, it is zero 
for an axially symmetric system with the field-free Hamiltonian that is invariant under rotations about the z-axis. 
Indeed, for such systems the scattering state φ−

p (r) is a function of the arguments z, pz , ρ, pρ and ρ · pρ , where 
z, pz and ρ , pρ are the components of the r and p vectors parallel and perpendicular, respectively, to the z- axis 
of the coordinate system that we employ. For an axially symmetric system, the ground state wave function φ0 in 
Eq. (5) (which we assume to be non-degenerate) is invariant under rotations about the z-axis. We obtain then 
from Eq. (5): a(1)(px , py , pz) = −a(1)(−px , py , pz) . Therefore the amplitude a(1)p  is zero in the plane px = 0 which 
encompasses the most important region of the momenta near the maximum of the momentum distribution.

The effect of the propagation correction (5) can be most easily illustrated within the tight-binding model 
(TBM) in which the ground state of H+

2 and Ne2 is represented by a Heitler-London wave function:

In the TBM, the overlap of the two terms is small and φ(r) is represented by a spherically symmetric atomic-
like state. Under these conditions, and by employing the Born approximation for the scattering state φ−

p  , one 
can show (the formal derivation is given in the section “Methods”) that Eq. (4) and Eq. (5) lead to the following 
expression for the ionization amplitude:

where δ = −κ · R/2 and κ = �c−1ex is the photon momentum, and ad(p) is the dipole amplitude which we 
would obtain if electrons were emitted from the state described by the single-center initial wave-function φ(r) 
centered at the origin. It is this phase factor δ in Eq. (7) that is responsible for the modified interference pattern 
observed and decoded  in4.

(2)Ĥint(r, t) = p̂zA(t)+
p̂zxE(t)

c
+ A(t)E(t)x

c
.

(3)ap = −i

∫ +∞

−∞
�φ−

p |Ĥint(τ )|φ0�ei(Ep−ε0)τ dτ ≡ a
(0)
p + a

(1)
p .

(4)a
(0)
p = −ia(�)�φ−

p |p̂z |φ0� , � = Ep − ε0

(5)
a
(1)
p = �c−1

(

a(�)�φ−
p |p̂zx|φ0� + b(�)�φ−

p |x|φ0�/2
)

≈ �c−1a(�)�φ−
p |p̂zx|φ0� .

(6)φ0(r) = [φ(r − R/2)+ φ(r + R/2)]/
√
2 .

(7)ap = a
(0)
p + a

(1)
p ≈ ad(p)

√
2 cos

(

p · R/2+ δ
)

,
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Appearance of this additional phase in Eq. (7) is due to an extra propagation time of the light wave from 
one end of the molecule to the other. This interpretation becomes yet more transparent if we use coordinate 
representation for the part of the wave-function describing the ionized wave packet:

Here φ−
p (r) are the molecular scattering states. To evaluate this integral in the limit t → ∞ , we rely on the 

saddle-point method (SPM) that is commonly used in description of  ionization17,18 or  scattering19 processes. 
By writing ad(p) = |ad(p)|eiη(p) in Eq. (7) and employing the SPM, we obtain from Eq. (8) (the details of the 
derivation are given in the section “Methods”):

The value p = p0 in Eq.  (9) is the momentum values satisfying energy conservation p20/2 = ε0 + ω , 
τ = ∂η/∂E is the usual Wigner photoemission time-delay20 and τ1 = ∂δ/∂E = −Rx/(2c) with δ = −κ · R/2 
from Eq. (7). The τ1 term represents an additional time-delay that it takes for the light pulse to cover the distance 
Rx = R · ex . The function G(u) in Eq. (9) is sharply peaked near the origin. Therefore the two terms in Eq. (9) 
describe two wave packets emitted from the two atomic centers r = −R/2 and r = R/2 at the times τ + τ1 and 
τ − τ1 , respectively.

For transparency of derivation, we omitted in Eq. (9) the Coulomb terms which would only add slowly vary-
ing (logarithmic) corrections in the arguments of G(u)17,18. These additional logarithmic terms are the same for 
the two wave packets and they would therefore cancel in the time delay difference between these wave packets.

We note that the dipole amplitude ad(p) in the Eq. (7) is essentially a product of two factors, the factor pz 
responsible for the angular dependence of the amplitude and the Gaussian factor exp

{

−b(p− p0)
2
}

 representing 
the energy conservation p20/2 = ε0 + ω . Such a Gaussian representation of the ionized wave packets emitted in 
the single-center problems is often used in studying temporal dynamics of atomic  ionization17,18. The parameter 
b determines the width of the wave packet and depends on the pulse parameters (more details are given in the 
section “Methods”). By employing the Gaussian ansatz for ad(p) we finally obtain from Eq. (7):

We use Eq. (10) to evaluate the photoelectron emission pattern and to compare it with the fully ab initio TDSE 
calculations for various orientations and different inter-nuclear distances of H+

2  . This comparison is presented in 
Fig. 1. The top row of panels illustrates the geometry of the ionization process. It is assumed that the molecular 
axis is confined to the xz-plane where the propagation and polarization vectors of the pulse belong, making an 
angle θ with the propagation direction. In (a-b), θ = 0 while in (c) θ = π/4 . The photoelectron momentum dis-
tribution is projected on the xz plane and computed as P(px , pz) =

∫

|ap|2 dpy with the amplitude ap obtained 
by projecting the TDSE solution on the set of the scattering states of H+

2  . The number and location of the bright 
spots in Fig. 1 reflect a simple two-center interference pattern governed by the cosine term in Eq. (10).

Discussion
Comparison of the TDSE calculations (the middle row of panels in Fig. 1) and results based on Eq. (10) (the bot-
tom row of panels) shows that the TBM reproduces the spectra adequately for the geometries that we consider. 
The TBM certainly has some limitations if we demand an accurate global representation of the spectra. For 
instance, for the case of the non-collinear orientation of the polarization vector and the molecular axis shown 
in Fig. 1, the ab initio TDSE and the TBM spectra exhibit some differences. One could improve, in principle, the 
visual agreement of the TDSE and the TBM results in this case by adjusting the value of the fitting parameter b 
in Eq. (10). The value of this parameter affects the tilt of the TBM distribution with respect to the x-axis, so we 
can rotate the TBM spectrum by varying this parameter. Achieving a good global agreement between the TDSE 
and TBM is, however, not needed for the purposes of the present work. For the procedure of the extraction of 
the relativistic delays that we describe below to work, we need Eq. (10) to accurately describe the spectra locally, 
in the vicinity of a maximum. We will see below that this lesser goal can be achieved. We will, therefore, analyze 
and interpret our TDSE results using the transparent TBM that is equally applicable to both H+

2  and Ne2 . We 
will focus on the photoelectron momentum distribution projected on the (xz) plane and integrated over the 
momentum component p⊥ which is perpendicular to the molecular axis. Such a momentum distribution is a 
function of the momentum component p|| which is parallel to the molecular axis. By employing the Gaussian 
ansatz (10) we obtain:

We use the analytical expression (11) with adjustable parameters B, C and δ to fit P(p‖) obtained from the 
numerical TDSE calculations. The accuracy of the fitting procedure is illustrated in Fig. 2 where we display P(p‖) 
for various geometries and internuclear distances. In the cases of θ = 0 P(p‖) is simply the projection of the 2D 

(8)�ion(r, t) =
∫

apφ
−
p (r)e

−iEpt dp .

(9)

lim
t→∞

�ion(r, t) ≃
(
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2

)
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i
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r + R
2

)2( t
2 − τ − τ1

)
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+ iδ
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∣
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2
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i
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(10)ap = A exp
{

−b(p− p0)
2
}

pz cos
(

p · R/2+ δ
)

.

(11)P(p||) =
∫

P(p) dpydp⊥ ≈ B exp
{

−Cp2||
}

cos2
(

p||R

2
+ δ

)
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momentum distribution on the horizontal axis. We use the interval of the p� ∈ (−0.5, 0.5) for the fitting proce-
dure. As is seen in Fig. 2, the analytical fit with Eq. (11) represents the central maximum of the TDSE calculations 
with the corresponding R value quite accurately. This allows us to extract the phase shift δ accumulated due to 
the finite speed of light propagation.

In Fig. 3 we display thus extracted phase shifts δ for the molecular orientations and internuclear distances 
illustrated in Fig. 2. To enhance the relativistic effects, we artificially decrease the speed of light in the TDSE cal-
culations from its physical value c0 = 137.036 a.u. down to c = c0/10 . According to TBM, the phase shift should 
scale linearly as δ = αc0/c with the slope α = −Rxκ/2 . The predicted linear scaling is confirmed very accurately 
by the numerical values shown in Fig. 3 with only a small error margin. The time delay values corresponding 
to the physical speed of light c0 are shown in Table 1 in comparison with the estimate �t = 2Rx/c0 provided by 
the TBM. Agreement of the results can be deemed quite satisfactory given the relative simplicity of TBM. More 
importantly, the linear dependence of the TDSE results on the parameter c0/c clearly demonstrates existence of 
the finite speed of light effect in ionization of diatomic molecules.

Conclusions
In conclusion, our work was motivated by the synchrotron based  experiment4 which discovered a zeptosecond 
time delay in photoionization of the H2 molecule. We aimed to demonstrate that a similar delay, that is caused 
by the finite speed of light propagation from one constituent atom to another, can be detected in a much more 
accessible table top laser settings. In doing so, we developed a general theory of the finite speed of light propa-
gation effects in ionization of extended systems. As a simple case study, we considered the H+

2  molecular ion 
interacting with a short laser pulse. This target affords a very accurate numerical treatment within the time-
dependent Schrödinger equation. At the same time, an heuristic tight-binding model employing the Heitler-
London molecular ground state produces very similar results. TBM can be easily adopted to the Ne2   by a simple 
increase of the inter-atomic distance to R ≃ 6  a.u. Notably, the corresponding interference pattern displayed in 
Fig. 1b) is very similar to that obtained in the  experiment9 and the earlier SPM  modeling21.

Our simulations demonstrate that the speed of light delay in ionization of diatomic molecular targets can 
be decoded from the photoelectron momentum distribution projected on the molecular axis. This method has 
a clear advantage over the earlier synchrotron measurement based on decoding the 2D interference  pattern4. 
Indeed, the bright interference spots have a finite angular width. To detect their shift due to the finite speed 
of light requires a sufficiently large photon momentum that should not be vanishingly small in comparison 
with the photoelectron momentum. This in turn requires very high photon energy (800 eV  in4). Fitting of a 

Figure 1.  (Color online) The photoelectron momentum distributions projected on the (px , py)-plane for 
different orientations and inter-nuclear distances of H+

2 illustrated in the top row of panels. The middle row 
of panels displays the numerical TDSE results while the bottom row exhibits the corresponding TBM results 
obtained using Eq. (7).
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(a) (b)

(c) (d)

Figure 2.  (Color online) The photoelectron momentum distribution projected on the molecular axis for 
various geometries and internuclear distances. The fit based on Eq. (11) and TDSE calculations are plotted with 
the solid and dotted lines, respectively.

Table 1.  Propagation delay for different geometries and internuclear distances.

R (a.u.) θ Fit (as) Rx/c (as)

2 0 0.46 0.35

2 π/4 0.18 0.24

6 0 0.90 1.05

6 π/4 0.67 0.72

Figure 3.  (Color online) Parameter δ in Eq. (11) for different geometries and internuclear distances.
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one-dimensional momentum distribution produces significantly reduced error bars. Thus smaller values of the 
photon energy of the order of 100 eV can be used. Driving pulses with the parameters employed in our simula-
tions (110 eV photon energy, intensity of 3.51× 1014 W/cm2 ) can be obtained by using relativistic high harmonic 
generation. It was  shown22 that even the Schwinger intensity ( 1029 W/cm2 ) can be reached by reflecting the 
currently available PW laser beam with intensity of 1022 W/cm2   on a plasma mirror. Intensities of the order of 
1021 W/cm2  can be reached by using a table-top 100 TW  system23. In addition, by projecting the momentum 
distribution on the molecular axis, we increase the count rate and improve statistics of the measurement. Hence 
the photon flux can be significantly reduced. This reduction of both the photon flux and energy makes the pro-
posed method much more readily accessible in desk-top conventional laser settings. This we hope will stimulate 
further speed of light delay determinations in diatomic molecules and other extended systems. Incidentally, the 
finite c delay measured in H2 deviates from accurate theoretical  modeling24. The proposed novel technique may 
shed an additional light on the nature of this disagreement.

Methods
Leading order relativistic corrections to the interaction Hamiltonian and details of the numer-
ical procedure. The leading order relativistic corrections to the non-relativistic Hamiltonian describing the 
target-field interaction arise from the vector potential being a traveling wave A(η)  with η = t − x/c  (we assume 
that the pulse propagates in the positive x-direction and is polarized in z-direction). The leading relativistic cor-
rection to non-relativistic interaction Hamiltonian can be obtained by substituting this expression for the vector 

potential into the standard minimal coupling Hamiltonian Ĥmin = 1

2
(p̂+ ezA(x, t))

216, and keeping the terms 

linear in c−1 . One arrives then at the expression for the interaction  Hamiltonian12:

where A(t) no longer depends on the coordinates, and E(t) = −∂A(t)

∂t
 is the electric field of the pulse. The last 

term on the r.h.s. of the Eq. (12) is a function of time only, and can therefore be removed by a unitary transfor-
mation of the wave-function.

To solve the TDSE with the interaction Hamiltonian (12) we use the procedure that we employed previously 
for the solution of the non-relativistic  TDSE25–27. Solution of the TDSE is represented as an expansion:

where Ylm(θ) are the spherical harmonics. The radial variable is treated by discretizing the TDSE on a grid with 
the step-size δr = 0.1 a.u. in a box of the size Rmax . The values of the parameters Rmax and lmax in Eq. (13) were 
chosen (after the necessary convergence checks) as: lmax = 10 , Rmax = 400 a.u.

For the vector potential in Eq. (12) we used the form:

with ω = 4.04 a.u. (photon energy of 110 eV), peak field strength E0 = 0.1 a.u. (intensity of 3.51× 1014 W/cm2 ), 
and total duration T1 = 4T , where T = 2π/ω - optical cycle corresponding to the base frequency ω.

The potential energy in the field-free H +2  Hamiltonian:

was expanded in spherical harmonics. Using this expansion, Eq. (13) of the wave-function, and expressing all 
other operators in Eqs. (12) and (15) as irreducible tensor  operators16, one obtains a system of coupled equations 
for the functions flm(r, t) in Eq. (13). This system was solved using the Lanczos  algorithm28 (we used propaga-
tion stepsize �t = 0.05 a.u., and propagation algorithm of the order N = 30 ). The initial ground state of the H +2  
was prepared using the relaxation  procedure29, propagating variational estimate for the initial wave-function 
in the imaginary time. Differential ionization probabilities P(p) are calculated by letting the wave-function of 
the system evolve for some time after the end of the pulse so that the wave-packet describing ionized electron 
state leaves the region where r < R0 with some R0 (we use the value R0 = 80 a.u. in the calculations). In the 
region r > R0 the true scattering states of H +2  can be well approximated by the single-center Coulomb scattering 
states, and to calculate the differential ionization probabilities we can project the TDSE solution on the ingoing 
Coulomb scattering states, calculating all the the radial integrals starting from r = R0 . This procedure proposed 
 in30 helps to avoid possible non-orthogonality of molecular states belonging to bound and continuous spectra 
which is difficult to avoid in numerical  calculations31. We checked that results we obtain are stable against further 
increase of the cutoff parameter R0.

Details of the tight binding model. A general expression for the amplitude we obtained was:

(12)Ĥr
int(r, t) = p̂zA(t)+

p̂zxE(t)

c
+ A(t)E(t)x

c
+ A2(t)

2
,

(13)�(r, t) =
lmax
∑

l,m

flm(r, t)Ylm(θ) ,

(14)A(t) = −E0

ω
sin2

π t

T1
sinωt ,

(15)Ĥmol =
p̂
2

2
− 1

|r − R/2| −
1

|r + R/2|
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with

and

where � = Ep − ε0 , and a(�) , and b(�) are Fourier transforms of A(t) and A2(t) . These expressions can be 
simplified if we assume first that the momentum is large enough so we can replace the scattering state φ−

p  with 
the plane wave, and second, if we use a tight binding description for the bound state of H +2  , i.e., we assume initial 
state wave-function can be represented as φ0(r) = (φ(r − R/2)+ φ(r + R/2))/

√
2 , where support of φ(r) is 

some (sufficiently small) ball centered at the origin. We assume that φ(r) is spherically symmetric, i.e. describes 
an s-state. It is easy to see that under these approximations:

and

In Eq. (19):

is the dipole amplitude which we would obtain if electrons were emitted from the single-center initial wave-
function φ(r) centered at the origin.

From Eqs. (16), (19), and (20) we obtain:

where δ = −�Rx

2c
.

Origin of the Gaussian factor in Eq. (10). Derivation of the Eq. (10) was based on the assumption that 
the dipole amplitude ad(p) in the Eq. (7) can be represented as a a product of two factors, the factor pz responsi-
ble for the angular dependence of the amplitude and the Gaussian factor exp

{

−b(p− p0)
2
}

 , peaked around the 
expressing energy conserving momentum p20/2 = ε0 + ω . Possibility of such a representation can be seen if we 
examine a perturbative expression for ad(p) , which looks quite similar to the Eq. (4) above, with the difference 
that we should use a single-center wave-function φ(r) to calculate the matrix element:

where � = Ep − ε0 , and a(�) is the Fourier transform of the pulse vector potential. Assuming that the scat-
tering state in Eq. (23) can be approximated by a plane wave, and assuming for the moment Gaussian shape 
A(t) = A0e

−βt2 sinωt for the pulse vector potential we obtain from Eq. (23):

where φ(p) is Fourier transform of the single-center wave-function φ(r) . We do not write explicitly unimportant 
constant factors in Eq.  (24), and we omitted in Eq.  (24) exponentially small term proportional to 

exp

{

− (�+ ω)2

4β

}

 . For long enough pulse (small value for the β-parameter) exponential factor in Eq. (23) is 

sharply peaked about the energy conserving value of Ep , and we can neglect the much slower momentum depend-
ence of the Fourier transform of φ(r) (since φ(r) is assumed to represent an s-state its Fourier image φ̃(p) depends 
only on |p| ). For the same reason we can rewrite the exponential factor in Eq.  (24) as: 

exp

{

− (�− ω)2

4β

}

= g(p) exp

{

−p20(p− p0)
2

2β

}

 with p0 such that p20/2 = ε0 + ω , is the energy conserving 

value of momentum, and g(p) is a function which varies much slower than the exponential factor in the region 
where the total expression is non-negligible, so that we can neglect its momentum dependence. That gives us the 
expression for the amplitude ad(p) we used above. In the present calculation we used the pulse shape (14) dif-
ferent from the Gaussian shape, but one can see that near the photo-electron distribution maximum (p close to 
p0 ) we can still use the Gaussian shape for the amplitude (this corresponds again to assuming that we neglect 
p-dependence of all slowly varying functions near p = p0).

(16)ap = a
(0)
p + a

(1)
p ,

(17)a
(0)
p = −ia(�)�φ−

p |p̂z |φ0�

(18)a
(1)
p ≈ �c−1a(�)�φ−

p |p̂zx|φ0� ,

(19)a
(0)
p = ad(p)

√
2 cos

(

p · R
2

)

,

(20)a
(1)
p = −�

c

∂

∂px
a
(0)
p .

(21)ad(p) = −ia(�)�p|p̂zφ�

(22)ap = a
(0)
p + a

(1)
p ≈ ad(p)

√
2 cos

(

p · R
2

+ δ

)

,

(23)ad(p) = −ia(�)�φ−
p |p̂z |φ� ,

(24)ad(p) = const × φ̃(p)pz exp

{

− (�− ω)2

4β

}
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Derivation of Eq. (9). To derive Eq. (9) we substitute expression (10) for the amplitude into Eq. (8), and 
assume that at large distances, which interest us, the scattering states can be approximated by the plane waves. 
As we mentioned above, this assumption is not true if the Coulomb interaction is present. We make it only to 
simplify the derivation. The Coulomb interaction would add slowly varying logarithmic corrections which could 
easily be included into consideration. These Coulomb corrections, however, are not important for us as long as 
we are interested in the time delay difference between the wave packets. Representing the dipole amplitude as 
ad(p) = |ad(p)|eiη , we obtain then the following integral for the wave-function describing ionized wave-packet 
(ignoring the unimportant constant factors):

where

and we use notation I1 , I2 for the integrals with the exponential functions eiS1(p,r,t) and eiS1(p,r,t) , correspondingly. 
In Eq. (26) η is the phase of the dipole amplitude ad(p) and δ = −κ · R/2 - is the phase due to the non-dipole 
effects from Eq. (7).

For large t the integrals in Eq. (25) can be computed using the saddle point method. Computing derivatives 
with respect to p and taking into account that both δ and η (for the case of the single-center wave-function φ(r) 
describing an s-state) are functions of |p| , we can write the saddle point equation for the integral I1 as follows:

where psp is the saddle point momentum, τ = ∂η/∂E is the Wigner photoemission time-delay20 and 
τ1 = ∂δ/∂E = −Rx/(2c) is the time delay due to the relativistic non-dipole effects. Then, for t → ∞ we obtain 
for the integral I1:

where psp is the root of the saddle-point equation (27). As we mentioned above, the dipole amplitude ad(p) is 
essentially a product of two factors, the factor pz giving the angular dependence of the amplitude and the factor 
depending on the momentum magnitude |p| , which is peaked around the momentum value p = p0 satisfying the 
energy conservation p20/2 = ε0 + ω . We can write therefore, using the expression (27) for psp:

where we absorbed all the constant factors in the definition of the function G. Basing on the properties of the 
ad(p) we discussed above, we may conclude that the function G(u) in Eq. (29) is sharply peaked around the value 
u = 0 . It describes, therefore, a wave-packet propagating from the point r0 = −R/2 and delayed by the amount 
τ + τ1 . For the integral I2 in Eq. (25) we obtain quite analogously:

with similar interpretation. Adding contributions (29) and (30) we obtain Eq. (9).
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