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Compound connection mechanism 
of Al2O3 ceramic and TC4 Ti alloy 
with different joining modes
Yan Zhang1,3*, YanKun Chen1, JianPing Zhou1, DaQian Sun2 & HongMei Li2

In this paper, laser welding-brazing of TC4 Titanium (Ti) alloy and Al2O3 ceramic dissimilar material 
was carried. The results showed that the Ti alloy and Al2O3 were joined by melting filler metal when 
the laser was concentrated in the Ti alloy side of the joint. The joint with one fusion weld and one 
brazed weld separated by remaining unmelted Ti alloy. Laser beam offset the Ti alloy 1.5 mm, Ti alloy 
would not be completely melted in joint. Through heat conduction, the filler metal melted occurred 
at the Ti-ceramic interface. A brazed weld was formed at the Ti-ceramic interface with the main 
microstructure of β-CuZn + Ti2Zn3, β-CuZn and Al2Cu + β-CuZn. The joint fractured at the brazed weld 
with the maximum tensile strength of 169 MPa.

Alumina (Al2O3) ceramics have excellent high temperature strength and corrosion and wear resistance, and are 
widely used in electronics, aerospace, nuclear, automotive and other industries1–3. Ti811 Ti alloy is an important 
part of the compressor blade of aviation engine, but its application is limited by its low surface hardness and poor 
wear resistance. A laser cladding composite coating was prepared on the Ti811 surface using the coaxial powder 
feeding method to improve the micro-hardness and wear resistance of the Ti811 alloy4. However, the inherent 
brittleness associated with Al2O3 ceramics limits their structural applications, particularly in the fabrication of 
complex geometries5,6. Therefore, the jointing of Al2O3 ceramics to themselves or to metals is usually preferred. 
Titanium-based (Ti) alloys have excellent high temperature strength, good creep properties and oxidation resist-
ance and can be used in high temperature environments. The successful combination of Al2O3 ceramics and Ti 
alloys to prepare ceramic metal components can give full play to the advantages of the two materials and is widely 
used in vacuum pipes, energy converters, semiconductor devices, missiles, rockets and satellites. However, the 
main difficulty to realize the effective jointing between Al2O3 ceramics and Ti alloy lies in the great difference 
of their physical and chemical properties. The difference of physical properties is manifested in the mismatch 
of elastic modulus and linear expansion coefficient, which will lead to large residual stress at the interface after 
welding7. The difference in chemical properties is mainly due to the fact that the bonding form of the Al2O3 
ceramic is mainly a covalent bond, and the Ti alloy is a metal bond.

Many jointing methods in the research of ceramic/metal connection technology has been reported, including 
brazing, diffusion welding, friction welding, local transition liquid phase jointing, ultrasonic welding, microwave 
welding, explosive welding, fusion welding, self propagating high temperature synthesis welding and hot press-
ing reaction sintering connection8–13. At present, brazing is one of the most effective ways to joint metal and 
ceramic materials. However, brazing of ceramics presents difficulties because conventional filler metals do not 
easily wet alumina. Recently, several welding techniques have been documented14, such as vacuum brazing15, 
diffusion bonding16, and partial transient liquid phase (PTLP) brazing17. Among these methods, active brazing 
is a relatively simple and reliable technology for bonding Al2O3 ceramics due to the improved wettability and 
joining quality by active elements in braze alloys18. In the brazing joint of metal and ceramic, active elements 
can be added to the brazing filler metal to improve the wetting ability of the brazing filler metal to the ceramic 
joint interface. The most commonly used active element in the solder is Ti, followed by Zr, V, Cr, etc.19. How-
ever, the conditions of use may make a particular process inappropriate. The vacuum brazing process generally 
takes a long time to implement. In addition, the required joint geometry may make brazing difficult to apply. In 
fact, the butt welding of Al2O3 and Ti alloy is technically convenient20. As an efficient and flexible non-contact 
welding technology, laser welding has made great achievements in the jointing of welding refractory materials 
and dissimilar metals.
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Based on the above analysis, two welding mechanisms (fusion welding and brazing) are combined to avoid 
melting and liquid mixing of the base metals during welding. Using laser as welding heat source and Cu-based 
fillers as interlayer material. The welding process was set up to ensure that the Ti alloy was partly melted as 
expected from previous work21. The melted Ti alloy formed a fusion weld. Meanwhile, a brazed weld was formed 
at the interface between unmelted Ti alloy and Al2O3. In this way, a peculiar joint was acquired. So far, this kind 
of joint has been rarely reported.

Experimental
The TC4 alloy plates (88 wt.% Ti, 6.06 wt.% Al and 4.03 wt.% V) and Al2O3 ceramic plates (Al2O3 96%, SiO2 2%, 
B2O3 0.5% and C3H5NO 0.8%) were 1 mm thick, the sample plates size were 40 mm × 20 mm × 1 mm. The filler 
metal was 0.2 mm Cu-based filler (61.2 wt.% Cu, 37.2 wt.% Zn, 0.28 wt.% Si, and 0.89 wt.% Sn). The specimen 
was mechanically and chemically cleaned before welding. The gap between the Ti alloy and the ceramic was 
important for adequate heat transfer and prevention of pore formation. In order to minimize the gap between 
the edges, the test pieces were clamped to each other. A continuous laser with an average power of 1.20 KW, a 
wavelength of 1080 nm and a spot diameter of 0.1 mm was used. The welding process is shown in the Fig. 1a,b. 
In order to ensure that the Ti alloy was not completely melted, the laser beam was focused on the Ti alloy plate 
with a distance of 1.5 mm from the Ti-filler metal interface. The welding parameters were: laser beam power 
of 420 W, defocusing distance of + 5 mm, welding speed of 550 mm/min. After welding, the surface of the joint 
was polished to a smooth state to perform corrosion and optical microscope tests. The specimens and tensile 
specimens were machined by wire electrical discharge machining. Tensile strength of the joints was measured 
by using universal testing machine (MTS Insight 10 kN) with cross head speed of 0.2 mm/min. Argon gas with 
the purity of 99.99% was applied as a shielding gas with total flow of 20 L/min at top of the joint.

Figure 1.   (a) Schematic diagram of the welding process; (b) design scheme of one pass laser welding joint; 
(c) optical image of the cross section of the joint; (d) optical image before corrosion of the Ti alloy-Al2O3 alloy 
interface.
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Results and discussion
The optical microscope (OM) image of the cross section of the joint is shown in the Fig. 1c. It could be seen that 
the joint was divided into three parts: the fusion weld formed at the Ti alloy side, unmelted Ti alloy and the brazed 
weld formed at the Ti-Al2O3 interface. The average width of fusion weld, unmelted Ti alloy and brazed weld was 
1.2 mm, 0.55 mm and 0.25 mm, respectively. Local heating on the Ti alloy side produced an uneven volume 
expansion and thermal stress, which helped to obtain a close joining between the Ti alloy, filler metal and Al2O3 
interface. The high temperature and the close contact at the Ti-Al2O3 interface provided favorable conditions 
for atomic diffusion, which leads the brazing process at the Ti-Al2O3 interface very well. The microstructure 
of fusion weld was quite different from that of braze weld, and the brazed weld became black after corrosion. 
Figure 1d shows the OM image of the brazed weld before corrosion. It was not found the pores, macro-cracks 
and other defects. In addition, the eutectic joining between Ti and filler was realized by heat conduction, and 
the Cu-based filler has good ductility, it was beneficial to alleviate and adjust the thermal stress of the Ti-Al2O3 
joint, which was beneficial to improve the mechanical properties of the joint.

In order to obtain a good joint, it was especially important to precisely control the position of the laser spot. 
When the laser spot was away from the Ti alloy interface, it could not be brazed at the Ti-Al2O3 interface. When 
the laser spot was close to the Ti alloy interface, the Ti alloy and Cu filler began to melt in the braze weld, and the 
content of the brittle intermetallic compound was greatly increased, and the joining of the Ti/Al2O3 dissimilar 
material could not be achieved.

Figure 2 shows the physical model formed of the joint. When the laser beam was fixed to the side of the Ti 
alloy plate at a certain distance from the interface of the Ti alloy, a molten pool with small holes was generated 
inside the Ti alloy plate, thereby absorbing a large amount of heat, as seen in Fig. 2a,b. Due to the high absorption 
of the laser in the small holes, the Ti alloy at the boundary of the small holes was sharply melted, but the Ti alloy 
side was not completely melted22. The temperature of the unmelted Ti alloy increased rapidly with the increase 
of the heat of the small hole boundary, and was transmitted to the Al2O3 side, as seen in Fig. 2c. Therefore, the 
unmelted Ti alloy had a sufficiently high temperature to promote melting of the filler metal at the Ti-Al2O3 inter-
face, as seen in Fig. 2d. The solidification of the weld pool and the liquid filler metal in the joint could start from 
the Ti alloy side, resulting in a composite joint between the fusion weld and the braze weld, as seen in Fig. 2e,f.

The OM image of the fusion weld is shown in Fig. 3a,b, and there were no defects in it. The fusion weld mainly 
consists of acicular α’ martensite. The SEM image of the brazed weld is shown in the Fig. 3c. The results showed 
that the brazed weld was a layered structure, which could be divided into three zones I, II and III according to 
the shape and color, as shown in the Fig. 3c. Figure 3d–f correspond to the three zones in Fig. 3c, respectively. 
The composition of each reaction zone (indicated by the letters A-C in Fig. 3) was investigated by SEM–EDS, 
and the composition of the reaction product was measured. The results were shown in in Table 1. According to 
the previous analysis, the microstructure of the brazed weld was mainly composed of molten filler metal. The 
composition of A point in the Zone I was consistent with the filler metal. According to the results of the energy 

Figure 2.   (a) Laser beam was focused on the Ti alloy plate; (b) formation of welding pool on Ti alloy side; (c) 
heat was transferred from welding pool to the Ti alloy-Al2O3 interface; (d) atomic interdiffusion at Ti alloy-
Al2O3 interface; (e) formation of fusion zone on Ti alloy side; (f) formation of brazed weld on Ti alloy-Al2O3 
interface.
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spectrum analysis and the Cu–Zn phase diagram, the main microstructure of the zone I was determined to be 
β-CuZn phase. When the laser beam was focused on one side of the Ti alloy, elemental diffusion between the 
matrix material and the filler occurred immediately, resulting into their composition to deviate from the original 
composition. Therefore, liquid phase formation and elemental diffusion occurred simultaneously. As the solid 
phase dissolved into the liquid phase, impurities in the liquid phase diffused into the Al2O3 and Ti alloy to form 
a solid phase reaction layer, which existed only in a small area of the interface. As shown in the Fig. 3e,f, zones II 
and III were reaction layers formed by elemental diffusion. According to the Cu–Zn–Ti phase diagram17,23, it was 
determined that the microstructure of the zone II and the zone III was β-CuZn + Ti2Zn3 phase, Al2Cu + β-CuZn 
phase, respectively. Therefore, the main microstructures of brazed weld were β-CuZn + Ti2Zn3, β-CuZn and 
Al2Cu + β-CuZn. Oxygen was mainly distributed in the reaction layer on the ceramic side, and no TiOx-type 
phase was detected. Titanium was not detected in this compound, and the ceramic is melted and wetted by 
thermally conductive solder, but the filler itself does not contain titanium, and the titanium in the brazing weld 
comes from the Ti alloy.

Prepared three tensile specimens for each weld. The maximum tensile strength of the joint was about 169 MPa 
(Fig. 4a). There are minor differences in the processing of each sample, resulting in slightly different tensile 
strength. So the average tensile strength of the joint was about 147 MPa. The joint fractured in zone I of the brazed 
weld during tensile tests (Fig. 4b), which indicates that filler has good wettability on base materials. Figure 4c 
shows fracture surface of the joint exhibiting typical brittle characteristics. Moreover, as shown in Fig. 4d, XRD 
analyses of fracture surface detected β-CuZn phase. This confirmed the presence of β-CuZn phase at fracture 
surfaces. It should be noted that there was no Ti-Fe intermetallics in the brazed weld. The brazed weld became 
the weak zone of the joint, which led to the failure in the tensile test.

Conclusions
Due to the presence of unmelted Ti alloy, the formation of intermetallic compounds was not found in the fusion 
weld and brazed weld, which improved the mechanical properties of the joints. A brazed weld was formed at 
the Ti alloy-Al2O3 interface with the microstructure of β-CuZn + Ti2Zn3, β-CuZn and Al2Cu + β-CuZn. A great 
amount of atomic diffusion occurs at the Ti alloy-Al2O3 interface during welding, and the thickness of diffu-
sion weld can reach tens of micrometres. The tensile resistance of the joint was determined by brazed weld. The 
maximum tensile strength of joint was 169 MPa.

Figure 3.   (a) Optical image of fusion zone; (b) optical image of fusion line; (c) SEM image of the brazed weld; 
(d) SEM image of the zone I in (c); (e) SEM image of the zone II in (c); (f) SEM image of the zone III in (c).

Table 1.   The chemical composition of each phase (wt.%).

Region

Composition%

Potential phasesTi Al Cu Zn Si O V

A 57.3 39.6 β-CuZn

B 40.6 36.7 20.5 β-CuZn + Ti2Zn3

C 50.1 23.6 15.2 10.6 Al2Cu + β-CuZn
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