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Table to text generation 
with accurate content copying
Yang Yang, Juan Cao, Yujun Wen* & Pengzhou Zhang

Generating fluent, coherent, and informative text from structured data is called table-to-text 
generation. Copying words from the table is a common method to solve the “out-of-vocabulary” 
problem, but it’s difficult to achieve accurate copying. In order to overcome this problem, we invent 
an auto-regressive framework based on the transformer that combines a copying mechanism and 
language modeling to generate target texts. Firstly, to make the model better learn the semantic 
relevance between table and text, we apply a word transformation method, which incorporates the 
field and position information into the target text to acquire the position of where to copy. Then we 
propose two auxiliary learning objectives, namely table-text constraint loss and copy loss. Table-text 
constraint loss is used to effectively model table inputs, whereas copy loss is exploited to precisely 
copy word fragments from a table. Furthermore, we improve the text search strategy to reduce the 
probability of generating incoherent and repetitive sentences. The model is verified by experiments 
on two datasets and better results are obtained than the baseline model. On WIKIBIO, the result is 
improved from 45.47 to 46.87 on BLEU and from 41.54 to 42.28 on ROUGE. On ROTOWIRE, the result 
is increased by 4.29% on CO metric, and 1.93 points higher on BLEU.

Natural language generation based on tabular data, also known as table-to-text generation, takes tabular data as 
input and generates human-like expressions of text. It has been applied in various scenarios, such as biography 
generation, NBA game generation, and weather  forecasting1–3. In general, table-to-text generation is divided 
into two subtasks: content selection and surface realization. Content selection mainly determines what content 
to select from the input table, whereas surface realization primarily generates text from the selected content. In 
recent years, algorithms based on neural networks have been developed that no longer solve these two subtasks 
separately, and they have achieved remarkable results in different  domains4–6.

Most existing table-to-text generation approaches are based on encoder-decoder frameworks, which are 
RNN-based  models7,8. Although significant progress has been made, we believe that there are four key problems. 
Firstly, there are a lot of attribute information and noise data in the table, but they rarely appear in the text. 
Although the RNN-based models can obtain position information, they are unable to capture the long-term 
relationships between the table and the text. Therefore, a model is needed to handle the correlation between the 
table and the text. Secondly, tables for different application scenarios, such as the ROTOWIRE dataset for NBA 
game  generation9 and the WIKIBIO dataset for biography  generation4, have different structures and types. For 
the ROTOWIRE dataset, there are 23 and 15 different types of values described in box-score tables and line-score 
tables, respectively, with a vocabulary size of 11.3 K words. Compared to the ROTOWIRE dataset, WIKIBIO 
includes more types of attribute information, with an average of 20 attributes per table, and a larger vocabulary 
of approximately 400 K words. So, a good algorithm is needed to express tabular data of different structures and 
types and obtain an accurate semantic representation of the source table. In addition, some proper nouns, such 
as names and places, often appear in tabular data, and they rarely appear in vocabulary; therefore, these nouns 
are called “out-of-vocabulary”. Using the copy  mechanism10 to copy words from a table to replace unknown 
words in the output text can lead to problems regarding inaccurate copying. Finally, at the text generation stage, 
a maximization-based search strategy, such as beam search, is used to select tokens with high probabilities as 
outputs, leading to text degradation. Humans would give human-like grammatical text a higher probability of 
being output than well-formed text, and problems such as repetitive and incoherent text occur.

In this paper, we aim to solve the above challenges. We propose a novel table-to-text generation framework 
and introduce two auxiliary learning tasks. Our contributions are as follows: 

1. We propose a novel transformer-based model to process various data-to-text generation tasks.
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2. we utilize multi-task learning with two auxiliary tasks, table-text constraint loss and copy loss. In detail, the 
table-text constraint loss task is introduced to process complex tabular data with different structures and 
types. Besides, we add a copy loss task to exactly guide model.

3. We change the search strategy for generated text to reduce the probability of generating repetitive text.

Experiments are conducted on the WIKIBIO dataset and ROTOWIRE dataset to demonstrate the effectiveness 
and generality of our model.

Related work
Table-to-text generation has attracted widespread attention, aiming to help humans better understand tabular 
data. We classify table-to-text generation into two groups: pipeline pattern and end-to-end methods. Early 
data-to-text generation methods follow the pipeline pattern that divides generation into content selection and 
surface realization. Pipeline pattern relies heavily on rule-based and template-based approaches, which typically 
involves selecting the correct rule set or retrieving the appropriate template for the generation task at  hand13,14.

In recent years, due to the emergence of massively parallel datasets such as WIKIBIO, end-to-end neural 
network methods have become a research focus.  In15 proposed the neural checklist model to address the problem 
of repeated information generation in structured data for recurrent neural network (RNN) models. The model 
is applied to the generation of menus, where dish names and ingredient lists are the inputs, and the machine 
outputs the corresponding recipes. Text generation based on structured data suffers from data sparsity, and 
many attributes and values in structured data rarely occur, making it challenging for the algorithm to learn the 
model.  In4 introduced the copy mechanism into the neural language model to cope with the problem of sparse 
data. Based on the conditional neural language model, the structured data are parsed locally and globally, with 
a focus on the attribute information in the data.  In16 introduced multiple decoders with hidden variable factors 
to specify which decoder generated the final text based on the classical sequence-to-sequence model. Learning 
is enhanced by setting up multiple submodels that are only responsible for processing specific data expressions. 
 In17 explicitly modeled content selection and content planning in an end-to-end neural network architecture. 
The generation task is divided into two stages by first conducting content selection and content planning opera-
tions to highlight the content and order of information that should be mentioned and then taking the generated 
content plan as input and outputting the text. Additionally, to increase the interpretability and controllability of 
the models, a number of models have recently emerged that combine end-to-end approaches with traditional 
rule-based and template-based approaches.  In18 used a hidden semi-Markov model (HSMM) to model text and 
parameterized all probability terms with a neural network. After completing the training of the model, the Viterbi 
algorithm is used to obtain templates for text generation.

Although the above algorithms have achieved promising results, the use of RNN-based models fails to capture 
long-term dependencies.  In19 used the transformer-based model for machine translation. The sentence-level 
agreement module is used to minimize the differences between the source and target sentences, resulting in a 
close distribution of sentence-level vectors between the source and target sides.  In20 presented a transformer-
based data-to-text generation model that learns content selection and surface realization in an end-to-end man-
ner. It improves the correctness of the output by modifying the input representation; it also adds an additional 
learning objective for content selection modeling and achieves good results on game summaries.  In21 proposed a 
few-shot table-to-text generation. Model uses a powerful pre-training model (GPT-2) and two auxiliary learning 
tasks, outperforming state-of-the-art baselines on three few-shot datasets. A template-based table transforma-
tion module is employed to convert the table into a sequence. Two auxiliary learning tasks of table structure 
reconstruction and content matching are used to solve the pre-training model’s lack of table structure modeling 
and text fidelity.  In22 proposed a general knowledge-based pre-training model (KGPT) to deal with various text 
generation tasks, and achieved powerful performance with few samples and zero samples. They first pre-train 
the model on the constructed knowledge-based KGTEXT dataset, and then fine-tune the model on downstream 
tasks like  WikiBio4,  WebNLG23 and  E2ENLG24.  In25 proposed a new algorithm to solve the problem of faithful 
table-to-text generation. Two faithful generation methods are proposed: generation according to the augmented 
plan and selection of training examples based on faithfulness ranking. In addition, two new metrics are intro-
duced to evaluate generation faithfulness.  In26 proposed an end-to-end model to generate entity descriptions. 
They adopt the joint learning of text generating and content-planning to deal with disordered input, and apply 
the content-plan-based bag of tokens attention mechanism to highlight salient attributes in an appropriate order.

Table-to-text generation
The task of table-to-text generation is to take a structured table, T = {(f1, v1), (f2, v2), ..., (fm, vm)} as input and 
output a natural language description that consists of a sequence of words y = {y1, y2, ..., yn} . Each input sen-
tence Ti = {fi , vi} consistsof a field fi and its corresponding sequence of word fragments vi = {w1

i ,w
2
i , ...,w

l
i} . 

Here, m is the number of fields and values, n is the number of words in each description, and l is the number of 
words in each value.

Figure 1 illustrates the overall framework of our model. Our model uses the encoder-decoder architecture. 
The encoder is composed of an input layer and N identical layers. Each layer has two sub-layers. The decoder 
consists of an input layer, N identical layers, a linear layer and a softmax layer. ”Nx” means a stack of N identi-
cal layers. In the experiment, we set N to 6. In ”Nx”, in addition to the two sub-layers of the encoder layer, the 
decoder layer adds a third sub-layer. The final output of the decoding is the probability distribution of the word 
at the corresponding position.
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The model is designed from two aspects: table content copying and language modeling to generate target 
texts. In the training process, we propose two auxiliary learning tasks: table-text constraint loss and copy loss in 
addition to the traditional generation task.

Transformer model. We adopt the transformer  model27 as our base model. The transformer is based solely 
on a self-attention mechanism, thereby removing the recurrence and convolution operations completely. The 
self-attention mechanism has two sublayers, the multi-head self-attention defined by Eqs. (1–3) and feedforward 
networks defined by Eq. (4). Our proposed transformer-based table-to-text generation model learns to estimate 
the conditional probability of a text sequence from a source table input, as shown in Eq. (5).

(1)MultiHead(Q,K ,V) =Concat(head1, ...headh)W
O

(2)headi =Attention(QW
Q
i ,KW

K
i ,VW

V
i )

Figure 1.  The framework of our model for table-to-text generation.
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where y<i denotes the decoded words from previous steps and θ is the learnable transformer parameter.

Constraint on source table and target text. Table representation. A table can be viewed as a record 
of multiple sets of field-value, where the values are word fragments corresponding to the fields. The structural 
representation of a table consists of field embeddings and context embeddings. We follow previous  work1 and 
define a field embedding Ẑenc = {fenc; p+enc; p−enc} ,where (p+enc , p−enc) includes the positions of the token counted 
from the beginning and the end of the field as the positional embedding of the token, replacing positional encod-
ing in the transformer model. Therefore, the field embedding Ẑenc and context embedding Ĉenc are concatenated 
to obtain the embedding representation of table X̂ = {Ẑenc; Ĉenc} . We define Renc as a table representation of X̂ 
via the self-attention layers in the encoder. Edec is the target text representation of y obtained by embedding lay-
ers in the decoder.

Table‑text constraint loss. In many table-to-text datasets, tables have a large number of attributes and much 
noise data, and complex-structured table representations cannot be accurately obtained using a simple encoder. 
Target text has similar meanings to the source table, and therefore, it is possible to use target text to constrain 
complex-structured tables. We are inspired by machine  translation19 to strengthen the source representation 
using a table-text constraint loss. Our table-text constraint loss LCL for measuring the distance between the table 
and target text is defined as:

where R̂enc = Mean(Renc) and Êenc = Mean(Edec) are the mean value embeddings of the source and target sen-
tences, respectively.

Pointer-generator network with copy loss. In this part, we use word transformation module and copy 
loss to guide the pointer-generation  network10 correctly copy the table content.

Pointer‑generator network. The pointer-generator network combines the seq2seq model with a pointer net-
work, which maintains pcopy to choose between copying from an input table or generating from a fixed vocabu-
lary list. Therefore, the final word probability distribution is

where Wh , Ws , Wx and b are learnable parameters; pvocab denotes the probabilities of generating the next word, 
ht =

∑

i a
t
i hi , hi are the hidden states of the encoder; and ynewt  , st , and ati are the input of the decoder, the hidden 

state and the attention weights returned from the encoder-decoder attention module, respectively.

Copy loss. To provide accurate guidance to the pointer-generator network, we employ word transformation 
methods and auxiliary learning tasks in the model.

We first use word transformation methods to process the target text. When matching the words in the target 
text with the values in the table, if the word yi in the target text appears in the table, yi is replaced with the field 
and position information of the value in the table, such as (name,position+,position-), where “position+” and 
“position-” indicate the positions of the token counted from the beginning and the end of the field, respectively. 
Words that do not appear in the table are replaced by the word ”empty”, and the position information is recorded 
as zero. Table 1 describes the target text transformation results. For example, when the word ”war” of the target 
text appears in the table, we replace the word ”war” with (genre, 1, 1).

Additionally, we find that the value corresponding to the “country” attribute often has different expressions 
as word aliases. If another name for the word in the target text appears in the table, it is processed as above to 
obtain the corresponding field and position information of the target text. As shown in Table 1 , ”United States” 
in the table and ”American” in the target text do not match, but they represent the same country, so the field of 
”United States” is used instead of ”American” in the target text. Finally, we concatenate the content embedding 
ŷdec , field embedding fdec , and position embedding (p+dec , p

−
dec) of the target text as inputs for the decoder.

At the position of the matching words, we maximize the pcopy . Our loss function is as follows:

(3)Attention(Q,K ,V) =softmax

(

QKT

√
dk

)

V

(4)FFN(x) =max(0, xW1 + b1)W2 + b2

(5)P(y|T; θ) =
n
�
i=1

P(yi|y<i ,T; θ)

(6)LCL = �R̂enc − Êdec�2

(7)p(yi) = (1− pcopy)pvocab(yi)+ pcopy
∑

i

ati

(8)pcopy = sigmoid(Whht +Wsst +Wxy
new
t + b)

(9)ynew = {ŷdec; fdec; p+dec; p
−
dec}
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where V represents the value in the table and yi represents the target text at the position i.

Search strategy. The sentences generated in the decoder phase are repetitive, incoherent, and boring. Even 
with sufficient input from the state-of-the-art  BERT28 and  GPT29 language models, it is hard to generate high-
quality texts. The main reason for this phenomenon is the use of maximization-based search strategies, such as 
the beam search. The beam search algorithm takes the top n (width of the beam search) tokens at a time from 
the vocabulary with the highest probability, repeats the process until a terminator is encountered, and finally 
outputs the top n sequences with the highest scores. The algorithm usually assigns a higher probability to well-
formatted texts than to poorly-formatted texts, but in long texts, high probability outputs tend to yield generic 
and repetitive sequences.

To address this phenomenon, we use a combination of nucleus sampling (top-p sampling)12 and the top-k 
sampling  strategy11 as our search strategy. By truncating the unreliable tails of probability distributions, sampling 
from tokens containing the vast majority of high-probability words enables the model to avoid the generation 
of very low-ranked words and allows for dynamic selection.

Top‑k‑top‑p sampling. The top k words V (k) ∈ V  with the highest probabilities are selected from the vocabulary 
V to avoid generating very low-ranked words. The word in the vocabulary V (k) whose sum of probabilities is 
greater than the threshold p is then selected, and the original distribution is rescaled to a new distribution from 
which the next word is sampled. The size of the sampling set is dynamically adjusted according to the shape of 
the probability distribution at each time step.

Loss function. Our objective function L consists of three parts: table-to-text constraint loss function LCL , 
table-to-text generation loss function LGL and copy loss Lcopy:

where LGL = −logP(y|T; θ) , P(y|T; θ) is defined in Eq. (5), �1 and �2 are hyper-parameters.

Experiment
We use  WIKIBIO4 and  ROTOWIRE9 as benchmark datasets.

Experiment on WIKIBIO. Dataset and evaluation metrics. WIKIBIO contains 728,321 articles from the 
English version of Wikipedia. The first sentence of each article in WIKIBIO is extracted as the corresponding 
reference of the infobox. Table 2 shows the dataset statistics. There is an average of 26.1 tokens per reference, of 
which 9.5 tokens appear in the infobox. Each infobox has an average of 53.1 tokens and 19.7 fields. We divide 
the dataset into training (80%), validation (10%), and testing (10%) sets. The detail of dataset division is listed 
in Table 3. We use BLEU-4 and ROUGE-4 (F-measure) as automatic evaluation metrics. They are computed by 
NIST mteval-v13a.pl (BLEU) and MSR rouge-1.5.5 (ROUGE).

(10)Lcopy =
∑

yi∈V
1− p

copy
i

(11)p
′ =

∑

x∈V (k)

p(x|x1:i−1) ≥ p

(12)p
′
(x|x1:i−1) =

{

p(x|xi−1)

p
′ if x ∈ V (K)

0 otherwise

(13)L = LGL + �1LCL + �2Lcopy

Table 1.  Target text transformation results (bottom) based on Tabular data (top).

Field Value

Name Once an eagle

Author Auton,myrer

Country United States

Language English

Genre War

Publication_date 1968

. .

Target text Once an eagle is a 1968 war novel by American .

Transformation results name_1_3 name_2_2 name_3_1 empty_0 empty_0 publication_date_1_1 genre_1_1 empty_0 empty_0 coun-
try_0 .
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Implementation details. We use a transformer model, where the number of blocks is set to 6 and the number 
of heads is 8. The hidden units of are set to 512. The model dimensions in terms of word embeddings, position 
embeddings, and field embeddings are 452, 5, and 50, respectively.

We use an Adam  optimizer30 and GELU activation  function31 to train the model. For the hyper-parameters 
of Adam optimizer, the learning rate is initially set to 0.001. We half the learning rate when the model fails 
to improve performance on the validation sets in 2 epochs. The label smoothing factor is 0.05. We clip the 
 gradients32, the maximum norm of the gradients is 5. In the inference state, we adapt nucleus sampling with 
p=0.95 and top-k sampling with k=30. Beam size is set to be 5. The maximum length of the generated sentence is 
limited to 150 by counting the length of the reference text. According to the experimental results on the validation 
set, the weight �1 of the table-to-text constraint loss is 0.2, and the weight �2 of the copy loss is 0.5.

Baselines. We compare our model with six baseline models. For each of them, we use the same parameter set-
tings as the corresponding paper, and report the best experimental results of each baseline model, the baselines 
are as follows:

Table  NLM4 is based on the conditional language model and introduces a copy mechanism to solve the 
problem of sparse data. The structured data are parsed both locally and globally, with a focus on the attribute 
information of words. Furthermore, Wikipedia’s biographical dataset WIKIBIO is created.

Order-plan  model5 uses a content-based and link-based hybrid attention mechanism to plan the form of 
the content, and on the decoding side, an RNN network with a copy mechanism is used to solve the out-of-
vocabulary problem.

Structure-aware Seq2seq  model1 involves field gating and dual attention mechanisms. In the encoding phase, 
field information is integrated into the table representation by adopting field gating, and a dual attention mecha-
nism consisting of word-level attention and field-level attention is proposed to effectively model the semantic 
information between the input tables and generated descriptions in the decoding phase.

FA+RL  method7 uses an attention-based approach to encourage decoders to focus on uncovered attribute 
information and avoid missing critical attribute information; this is done using reinforcement learning to gener-
ate descriptions that are informative and faithful to table inputs.

NCP  model17 is a two-stage model that combines content selection and content planning. First, a content 
plan is generated through the pointer generation network. Then, the content plan is employed as the input of 
the recurrent neural network to generate a description.

NCP+BAT35 is an end-to-end model that jointly learns the content planning and text generation. The content 
plan is integrated into the encoder-decoder model by using the coverage mechanism.

Overall experimental results. We carry out experiments on WIKIBIO dataset, and Table 4 shows the experi-
mental results of the various models. To determine whether our model results in a statistical difference for the 
evaluation metrics, we utilize the paired T-Test in Table 4. It can be concluded from Table 4 that our model is 
different from the baseline models at a significant level of 0.01. We further comparethe mean of our model and 
the baseline model. The mean values of our model are 46.87 and 42.28, respectively, which are higher than the 
mean values of all baseline models.

Transformer(base) represents a transformer-based data-to-text model without any learning task. Compared 
with the RNN-based Table NLM model, our Transformer model (base) uses the same input and search strat-
egy, but the BLEU value and ROUGE value of our model are improved by 9.63 (from 34.70 to 44.33) and 
14.32(from 25.80 to 40.12) , respectively. Thus, with sufficient data, the quality of text generation can be signifi-
cantly improved by applying the transformer-based model. The NCP model, NCP+BAT model and FA+RL model 
improve the performance of the model by allowing the decoder to focus on key attribute information. Compared 
with the baseline models, our model is much better on ROUGE and BLEU. We apply table-to-text constraint loss 
(row 9) to enhance the representation of the table content, which makes the semantics of the table content and 
the target text closer. The BLEU value and ROUGE value of the model increased by 1.6 and 1.24 respectively. 
The experimental results confirm our theory that appropriate learning objectives can enhance the performance 
of the model. We adopt target text preprocessing and copy loss in the model (line 10) to faithfully copy the 
contents of the table, the BLEU value and ROUGE value reached 45.28 and 41.09, respectively. Compared with 
the Transformer(base) model, our model achieved 0.95 points higher on BLEU value and 0.97 points higher on 

Table 2.  Statistics of WIKIBIO dataset.

WIKIBIO Tokens per reference Infobox token per refe. Tokens per infobox Fields per infobox

Mean 26.1 9.5 53.1 19.7

Table 3.  Dataset division of WIKIBIO.

WIKIBIO Train Valid Test

Ratio (%) 80 10 10

Number 582660 72831 72831
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ROUGE value. Experimental results show that LCL is more beneficial to text generation against the Lcopy . In the 
eleventh row of Table 4, we use a combination of top-p and top-k sampling instead of beam search sampling, and 
this improves the BLEU score from 44.33 to 44.79 and the ROUGE score from 40.12 to 40.57. The new sampling 
policy alleviates problems such as redundancy and inconsistency and improves the quality of text generated.

We visualize the process of generating a paragraph description based on an infobox in Fig. 2 , where the 
horizontal coordinate represents the value in the table, and the vertical coordinate represents the generated text. 
The table word corresponding to the largest attention weight is selected as the word generated at the current 
moment. For example, when generating the third token, the word ”general” in the table receives the largest atten-
tion weight, so ”general” is used as the generated word. Most of the attention weights in Fig. 2 yield the desired 
results, further confirming the importance of our model.

Table‑to‑text constraint loss effectiveness analysis. We study how the table-to-text constraint loss ( LCL ) affects 
the similarity of source and target sentences. We adopt the cosine  similarity37 to calculate the similarity between 
the source and the target sentences, where each sentence is represented by the mean value of word embedding, 
and the similarity calculation equation is defined as:

From the second to fourth columns of Table 5, it can be seen that the generation performance (BLEU and 
ROUGE) and sentence similarity (Sim) are higher than the transformer (base) by increasing the table-to-text con-
straint loss. This shows that there is a correlation between the performance of text generation and the similarity 
of sentences, the more similar the source and the target sentences, the better the performance of text generation. 
The experimental results prove that improving the similarity between the table and the target text is an effective 
method to improve the performance of the model.

We further analyze the efficiency of table-to-text constraint loss from the speed and performance of the model. 
Compared with the transformer (base), LCL achieves superior generation performance without any parameter 
increase. The BLEU value and ROUGE value are increased by 1.6 and 1.24 points, respectively, and the training 
speed is barely reduced approximately 1%. It shows that table-to-text constraint loss can improve the quality of 
text generation without sacrificing training speed.

Case study. Four of the generated texts are randomly selected for a comparison with the reference text, and 
the experimental results are shown in Table 6. More table-to-text generation examples are listed in Appendix A. 
”Reference” indicates the reference text, and ”Generation” indicates the generated text. As seen in Table 6, there 
is redundancy in the first and third generated texts. Although the second generated text is not consistent with the 
reference text, the text generated by our model is more faithful to the table’s contents. In addition, our model can 
learn the relationship between ”north carolina” and ”American” without external knowledge. The last line gener-
ates text that does not fully describe the reference text, but the missing parts do not appear in the table. There are 
slight differences between generated text and reference text, but most of the generated text exactly replicates the 
content of the table, which is primarily due to our copy loss.

From the above analysis, it is clear that our model more reliably describes the table contents than other mod-
els, although there is a small amount of redundancy. Therefore, it is worth exploring whether the generated text 
should be closer to the reference text or more faithful to the table input.

Experiment on ROTOWIRE. Experiments on the WIKIBIO dataset demonstrate the effectiveness of the 
model. In this part, we perform experiments on the ROTOWIRE dataset to prove the generality of the model. 
Compared with the WIKIBIO dataset, the ROTOWIRE dataset is basically in a digital format. Therefore, the 
model is required to understand the relationship between numerical data.

(14)sim = cos(Êenc , Êdec)

Table 4.  BLEU and ROUGE Scores on the WIKIBIO Dataset. For each model, we report the ”mean standard 
deviation”. Compare with our model, ∗p < 0.05 , ∗ ∗ p < 0.01.

Model BLEU ROUGE

Table  NLM4 34.70 0.36** 25.80 0.36**

Order-plan5 43.91 0.35** 37.15 0.24**

Structure-aware1 44.89 0.33** 41.21 0.32**

FA+RL7 45.47 0.25** 41.54 0.35**

NCP17 43.12 0.32** 38.82 0.25**

NCP+BTA35 45.46 0.28** 40.31 0.27**

Ours 46.87 0.33 42.28 0.29

Transformer (base) 44.33 0.27 40.12 0.35

+ LCL 45.93 0.34 41.36 0.33

+Lcopy 45.28 0.41 41.09 0.23

+ top-p+top-k 44.79 0.34 40.57 0.28
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Dataset and evaluation metrics. ROTOWIRE dataset consists of (human-written) NBA basketball game sum-
maries with their corresponding box-scores and line-scores. In the line-score tables, each team is described by 
15 types of values. In the box-score tables, each player has 23 different types of values, each row corresponds 
to a player in the game. The average length of the summary is 337.1 tokens, and the vocabulary size is 11.3K. 
The summaries have been randomly split into training, validation, and test sets consisting of 3398, 727, and 728 
summaries, respectively, the detail is shown in Table 7. We use BLEU-4 and several content-oriented  metrics9 
to evaluate model output. For content-oriented metrics, we apply the public IE  system17 to extract relations. 
Content-oriented metrics include three aspects:

• Content Selection (CS) evaluates the recall rate and precision of extracted relations in the generated descrip-
tion and gold description.

• Relation Generation(RG) evaluates the number and precision of extracted relations in the generated descrip-
tion and input dataset.

• Content Ordering (CO) evaluates the normalized Damerau-Levenshtein  Distance34 of the relations extracted 
in the generated description and the gold description.

Figure 2.  Weighted visualization results, with horizontal coordinates for the values in the table and vertical 
coordinates for the generated target text.

Table 5.  Table-to-text constraint loss effectiveness analysis on the WIKIBIO Dataset. “Speed” denotes the 
speed in the train phase. ”Param” represents trainable parameters number of the model (M is one million).

Model BLEU ROUGE Sim(%) Param Speed(tokens/s)

Transformer(base) 44.33 40.12 15.9 63.8M 4847

+LCL 45.93 41.36 25.8 63.8M 4736
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Implementation details. We use a transformer model, where the number of blocks is set to 6, the number of 
heads is 8 and hidden units are 512. In the data preprocessing stage, the input table is converted into a fixed-
length sequence of records. Each record consists of four types of information (entity, type, value and game 
information), the record embedding size is 128. Since there is no order relationship in the records, only learn the 
position embedding of the decoder in the transformer. Our model is trained with GELU  activationfunction31 
and Adam  optimizer30. The learning rate is fixed to 0.0001 in the Adam optimizer. The label smoothing factor 
is 0.05. In the inference state, we adapt nucleus sampling with p=0.95 and top-k sampling with k=40. The maxi-
mum length of the generated sentence is limited to 600 by counting the length of the reference text. According 
to the experimental results on the validation set, the weight �1 of the table-to-text constraint loss is 0.2, and the 
weight �2 of the copy loss is 0.5.

Experimental results. On the ROTOWIRE dataset, we use five baseline models. For each of them, we adopt the 
best experimental results in each paper. GOLD represents the experimental results on the gold summary. The 
baseline models are as follows:

CC9 adopts a conditional copy mechanism in the encoder-decoder model. Template is a template-based gen-
erator model same as the one used  in9 which generates 8 templated sentences from the training set: a sentence 
about the teams playing in the game, 6 highest-scoring players sentences and a conclusion sentence. The NCP 
 model17 combines content selection and content planning in a neural network architecture. The RCT  model33 
considers the row, column, and time dimension information in the input table, and then combines the three-
dimensional representations into a dense vector through the table cell fusion gate. The Hierarch-k  model36 
employ a novel two-level Transformer encoder to hierarchically capture the structure of the data. Two variants 
of hierarchical attention mechanism are used to get context as the input of decoder.

Table 8 displays the automatic evaluation results of the ROTOWIRE dataset on the validation set. Our model 
achieves significantly higher results than all other baseline models in BLEU, CS precision and CO metrics. Our 
model generates almost the same number of records as the baseline model CC, but has a significant improve-
ment in other metrics. Comparing to CC model, our model is 12.58% higher on CS precision, 12.99% higher 
on CS recall, 11.42% higher on RG precision, 8.39% higher on CO metric, and 4.95 points higher on BLEU. 
Comparing to NCP and RCT, our model is better on CS precision, Content Ordering metric and BLEU. This 

Table 6.  Results of the comparison between the reference text and generated text.

Field Value Text (R:Refrernce G:Generation)

Name Marie Stephan
R: marie stephan , -lrb- born March 14, 1996 -rrb- is a professional squash player who represents france.

Birth date 14 March 1996

Birth place France
G: marie stephan , -lrb- born March 14, 1996 in france -rrb- is a professional squash player who represents france.

Residence Nîmes: France

Name Darren m. swain

R: darren m.swain is an american politician, a democrat and a member of the maryland house of delegates.Birth date 06 may 1970

Birth place North carolina

Party Democrat

G: darren m. swain -lrb- born May 6, 1970 -rrb- is an american democratic party and the member of the maryland house of delegates.Order Maryland house

Of delegates

Name Jim melrose
R: jim melrose -lrb- born 7   october   1958 -rrb- is a scottish retired professional footballer who played as a striker.

Birth date 7 october 1958

Birth place Glasgow: scotland
G: jim melrose -lrb- born 7 october 1958 in glasgow -rrb- is a former scottish footballer who played as a striker.

Position Striker

Honorific prefix Brigadier-general

R: brigadier-general sir smith hill child, 2nd baronet, -lrb- 19 September 1880–11 November 1958 -rrb- was an officer in the british army 
and a conservative party politician.

Name Sir smith hill child

Honorific suffix 2nd baronet

Birth date 19 september 1880

Death data 11 november 1958
G: brigadier-general sir smith hill child, 2nd baronet -lrb- 19 september 1880–11 november 1958 -rrb- was a senior british army officer 
during the first world war.Battles First world war

Branch British army

Table 7.  ROTOWIRE dataset division.

ROTOWIRE Train Valid Test

Ratio (%) 70 15 15

Number 3398 727 728
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may be due to the fact that our model generates almost the same number of relations as the gold summary, 
reducing the normalized DL  Distance34 between the two sequences of relations. However, our model performs 
lower RG precision and lower CS recall with the number of relations decreases. Experimental results on the test 
set are shown in Table 9. As can be seen from Table 8 and Table 9, the experimental results of the test set and the 
validation set are not significantly different. Compared with all other contrast models, our model gets higher 
CS precision, CO metric and BLEU. Our model yields a more outstanding BLEU value (19.43 vs. 17.50) against 
the best baseline Hierarch-k. This shows that the text generated by our model is closer to the gold summary and 
can generate more fluent target text.

Ablation studies. Next, we conduct ablation studies to evaluate the various components of our model. This is:

• The table-text constraint loss to constrain the complex structure of the table by the target text.
• The copy loss aiming at providing accurate guidance to the pointer-generator network.
• The search strategy to reduce the probability of problems such as sentence repetition and boring.

Removing the table-text constraint loss. In this configuration, we employ the same search strategy and copy 
loss as our model, but the model is trained without table-text constraint loss. It can be concluded from Table 10 
(-TT_CL) that almost the same number of records as our model have been extracted, but the accuracy is 
decreased by 6.93%. CS precision and CS recall are dropped by 4.25% and 4.34%, respectively.

Table 8.  Automatic evaluation results on the ROTOWIRE validation set using BLEU, relation generation (RG) 
number (#) and precision (P%), content selection (CS) precision (P%) and recall (R%), content ordering(CO). - 
: unavailable experimental results.

Model

RG CS CO

BLEU# P% P% R% DLD%

GOLD 23.32 94.77 100.00 100.00 100.00 100.00

Template9 54.23 99.92 26.60 59.13 14.39 8.62

CC9 23.95 75.10 28.11 35.86 15.33 14.57

NCP17 33.88 87.51 33.52 51.21 18.57 16.19

RCT 33 32.11 91.84 35.59 48.98 20.70 16.42

Hierarch-k36 – – – – – –

Ours 23.73 86.52 40.69 48.85 23.72 19.52

Table 9.  Automatic evaluation results on the ROTOWIRE test set using BLEU, relation generation (RG) 
number (#) and precision (P%), content selection (CS) precision (P%) and recall (R%), content ordering(CO). - 
: unavailable experimental results.

Model

RG CS CO

BLEU# P% P% R% DLD%

GOLD 24.14 94.89 100.00 100.00 100.00 100.00

Template9 54.21 99.94 27.02 58.22 15.07 8.58

CC9 23.72 74.80 29.49 36.18 15.42 14.19

NCP17 34.28 87.47 34.18 51.22 18.58 16.50

RCT 33 31.47 91.46 36.09 48.01 20.86 16.85

Hierarch-k36 21.17 89.46 39.47 51.64 18.90 17.50

Ours 24.12 87.05 40.43 48.42 23.19 19.43

Table 10.  Ablation results on the ROTOWIRE test set.

Model

RG CS CO

BLEU# P% P% R% DLD%

Ours 24.12 87.05 40.43 48.42 23.19 19.43

-TT_CL 24.20 80.12 36.18 44.08 21.58 18.98

-COPY 21.45 82.17 38.09 47.17 22.67 19.18

-DE_STR 25.89 84.03 37.98 46.53 21.83 18.76
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Removing the copy loss. At this stage, the copy loss is removed from our model. From the results in Table 10 
(-COPY), we can conclude that all evaluation results are degraded. However, the BLEU value did not change 
significantly. We can accurately copy words from tables by copy loss task.

Changing the search strategy. In this part, we keep the table-text constraint loss and copy loss of our model, 
replace our search strategy with beam search, and set the beam size to 4. Table 10 (-DE_STR) shows that, chang-
ing the search strategy, CS precision and CS recall are degraded by 2.45% and 1.89%, respectively, the content 
ordering metrics is degraded by 1.36%, and the RG precision is dropped by 3.02%. Experimental results show 
that the combination of top-p and top-k search strategies can improve the performance of the model.

Conclusions
In this paper, we propose a novel transformer-based table-to-text generation algorithm. We first apply the table-
text constraint loss operation to effectively learn the semantic representation of the table. Then, we propose a copy 
loss with target text processing to gain the precise positions in which we should copy. Finally, a combination of 
the top-p and top-k search strategies is adopted to improve the text generation quality of the model. Experiments 
are conducted on two datasets, Biography, and basketball game, in different domains. Our final model achieves 
state-of-the-art performance on BLEU, ROUGE and Content-oriented metics. We also use a paired T-Test to 
verify that our model is significantly different from other models. In addition, we conduct ablation experiments 
to further verify the effectiveness of the various components of our algorithm.In the future, we will research 
algorithms for optimizing multi-task learning weights, and use learnable weights instead of fixed weights.

Data availibility
All data included in this study are available upon request by contact with the corresponding author.
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