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DeepGreen: deep learning 
of Green’s functions for nonlinear 
boundary value problems
Craig R. Gin1,5*, Daniel E. Shea2,5*, Steven L. Brunton3 & J. Nathan Kutz4

Boundary value problems (BVPs) play a central role in the mathematical analysis of constrained 
physical systems subjected to external forces. Consequently, BVPs frequently emerge in nearly 
every engineering discipline and span problem domains including fluid mechanics, electromagnetics, 
quantum mechanics, and elasticity. The fundamental solution, or Green’s function, is a leading 
method for solving linear BVPs that enables facile computation of new solutions to systems under 
any external forcing. However, fundamental Green’s function solutions for nonlinear BVPs are not 
feasible since linear superposition no longer holds. In this work, we propose a flexible deep learning 
approach to solve nonlinear BVPs using a dual-autoencoder architecture. The autoencoders discover 
an invertible coordinate transform that linearizes the nonlinear BVP and identifies both a linear 
operator L and Green’s function G which can be used to solve new nonlinear BVPs. We find that the 
method succeeds on a variety of nonlinear systems including nonlinear Helmholtz and Sturm–Liouville 
problems, nonlinear elasticity, and a 2D nonlinear Poisson equation and can solve nonlinear BVPs at 
orders of magnitude faster than traditional methods without the need for an initial guess. The method 
merges the strengths of the universal approximation capabilities of deep learning with the physics 
knowledge of Green’s functions to yield a flexible tool for identifying fundamental solutions to a 
variety of nonlinear systems.

Boundary value problems (BVPs) are ubiquitous in the sciences1. From elasticity to quantum electronics, BVPs 
have been fundamental in the development and engineering design of numerous transformative technologies of 
the 20th century. Historically, the formulation of many canonical problems in physics and engineering result in 
linear BVPs: from Fourier formulating the heat equation in 18222 to more modern applications such as design-
ing chip architectures in the semi-conductor industry3,4. Much of our theoretical understanding of BVPs comes 
from the construction of the fundamental solution of the BVP, commonly known as the Green’s function5. The 
Green’s function solution relies on a common property of many BVPs: linearity. Specifically, general solutions 
rely on linear superposition to hold, thus limiting their usefulness in many modern applications where BVPs 
are often heterogeneous and nonlinear. By leveraging modern deep learning, we are able to learn linearizing 
transformations of BVPs that render nonlinear BVPs linear so that we can construct the Green’s function solu-
tion. Our deep learning of Green’s functions, DeepGreen, provides a transformative architecture for modern 
solutions of nonlinear BVPs.

DeepGreen is inspired by recent works which use deep neural networks (DNNs) to discover advantageous 
coordinate transformations for dynamical systems6–15. The universal approximation properties of DNNs16,17 
are ideal for learning coordinate transformations that linearize nonlinear BVPs, ODEs and PDEs. Specifically, 
such linearizing transforms fall broadly under the umbrella of Koopman operator theory18, which has a mod-
ern interpretation in terms of dynamical systems theory19–22. There are only limited cases in which Koopman 
operators can be constructed explicitly23. However Dynamic Mode Decomposition (DMD)24 provides a numerical 
algorithm for approximating the Koopman operator25, with many recent extensions that improve on the DMD 
approximation26. More recently, neural networks have been used to construct Koopman embeddings6,8–13,15. 
This is an alternative to enriching the observables of DMD27–33. Thus, neural networks have emerged as a highly 
effective mathematical tool for approximating complex data34,35 with a linear model. DNNs have been used in 
this context to discover time-stepping algorithms for complex systems36–40. Moreover, DNNs have been used to 
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approximate constitutive models of BVPs41. Recent works have used neural network architectures for identifying 
operators of BVPs42 and learning manifolds43 on which high-dimensional PDEs can be solved. However, these 
works fail to guarantee discovery of an invertible operator or linearize nonlinear systems.

DeepGreen leverages the success of DNNs for dynamical systems to discover coordinate transformations that 
linearize nonlinear BVPs so that the Green’s function solution can be recovered. This allows for the discovery 
of the fundamental solutions for nonlinear BVPs, opening many opportunities for the engineering and physical 
sciences. DeepGreen exploits physics-informed learning by using autoenconders (AEs) to take data from the 
original high-dimensional input space to the new coordinates at the intrinsic rank of the underlying physics6,7,44. 
The architecture also leverages the success of Deep Residual Networks (DRN)45 which enables our approach to 
efficiently handle near-identity coordinate transformations15 by borrowing the concept of skip connections. 
Figure 1 highlights the deep learning approach which leverages a dual autoencoder architecture. DeepGreen 
transforms a nonlinear BVP to a linear BVP, solves the linearized BVP, and then inverse transforms the linear 
solution to solve the nonlinear BVP.

The Green’s function constructs the solution to a BVP for any given forcing by superposition. Specifically, 
consider the classical linear BVP5

where L is a linear differential operator, f is a forcing, x ∈ � is the spatial coordinate, and � is an open set. The 
boundary conditions Bv(x) = 0 are imposed on ∂� with a linear operator B. The fundamental solution is con-
structed by considering the adjoint equation

where L† is the adjoint operator (along with its associated boundary conditions) and δ(x − ξ) is the Dirac delta 
function. Taking the inner product of (1) with respect to the Green’s function gives the fundamental solution

which is valid for any forcing f (x) . Thus once the Green’s function is computed, the solution for arbitrary forcing 
functions can be easily extracted from integration. This integration represents a superposition of a continuum 
of delta function forcings that are used to represent f (x).

(1)L[v(x)] = f (x),

(2)L†[G(x, ξ)] = δ(x − ξ),

(3)v(x) = (f (ξ),G(ξ , x)) =

∫

�

G(ξ , x)f (ξ)dξ ,

Figure 1.   DeepGreen solves nonlinear BVPs by identifying the Green’s Function of the nonlinear problem 
using a deep learning approach with a dual autoencoder architecture. A nonhomogenous linear BVP can be 
solved using the Green’s function approach, but a nonlinear BVP cannot. DeepGreen transforms a nonlinear 
BVP to a linear BVP, solves the linearized BVP, and then inverse transforms the linear solution to solve the 
nonlinear BVP.
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There have been many recent works on learning kernel representations of operators46–49 including several that 
use deep learning algorithms50–53. The representation of the solution as an integration over a kernel function (3) 
has been recently exploited using deep learning algorithms50–53. Indeed, a representation of the Green’s function 
kernel is explicitly learned in Li et al.51 for linear, non-constant coefficent PDEs. A critical difference here is that 
we consider nonlinear BVPs for which one must learn a coordinate transformation and kernel representation 
jointly. This is a significant difference in outlook as we can turn nonlinear problems linear so as to exploit linear 
superposition. Indeed, in many modern applications, nonlinearity plays a fundamental role so that the BVP is 
of the form

where N is a nonlinear differential operator. For this case, the principle of linear superposition no longer holds 
and the notion of a fundamental solution is lost. However, modern deep learning algorithms allow us the flex-
ibility of learning coordinate transformations (and their inverses) of the form 

 such that v and f satisfy the linear BVP (1) for which we generated the fundamental solution (3). This gives a 
nonlinear fundamental solution through use of this deep learning transformation.

DeepGreen is a supervised learning algorithm which is ultimately a high-dimensional interpolation problem54 
for learning the coordinate transformations ψ(u) and φ(F) . DeepGreen is enabled by a physics-informed deep 
autoencoder coordinate transformation which establishes superposition for nonlinear BVPs, thus enabling a 
Koopman BVP framework. The learned Green’s function enables accurate construction of solutions with new 
forcing functions in the same way as a linear BVP, thus enabling the solution of nonlinear BVPs in a fraction of 
the time it takes to solve them using traditional solvers and without the need for an initial guess. We demonstrate 
the DeepGreen method on a variety of nonlinear boundary value problems, including a nonlinear 2D Poisson 
problem, showing that such an architecture can be used in many modern and diverse applications in aerospace, 
electromagnetics, elasticity, materials, and chemical reactors.

Results
The DeepGreen architecture, which features two autoencoders to learn invertible coordinate transformations 
that linearize a nonlinear boundary value problem, is highlighted in Fig. 2. The associated loss functions are 
discussed in the “Methods: deep autoencoders for linearizing BVPs” section. Here we demonstrate its success 
on a number of canonical nonlinear BVPs. The first three BVPs are one-dimensional systems and the final one 
is a two-dimensional system. The nonlinearities in these problems do not allow for a fundamental solution, thus 
recourse is typically made to numerical computations to achieve a solution. DeepGreen, however, can produce 
a fundamental solution which can then be used for any new forcing of the BVP.

One‑dimensional examples.  We first applied the DeepGreen methodology to three different one-dimen-
sional BVPs. The first problem is a nonhomogeneous second-order nonlinear Sturm–Liouville model with con-
stant coefficients and a cubic nonlinearity, thus making it a cubic Helmholtz equation. The differential equation 
is given by 

 where u = u(x) is the solution when the system is forced with F(x) with x ∈ [0, 2π] , α = −1 and ε = −0.3 . The 
notation u′′ denotes d

2

dx2
u(x) . The second system is governed by the nonlinear Sturm–Liouville equation

where ε = 0.4 controls the extent of nonlinearity, and p(x) and q(x) are spatially-varying coefficients

with x ∈ [0, 2π] . The final one-dimensional system is a biharmonic operator with an added cubic nonlinearity

where p = −4 and q = 2 are the coefficients and ε = 0.4 controls the nonlinearity.
Each dataset contains discretized solutions and forcings, {uk , Fk}Nk=1

 . The forcing functions used for train-
ing are cosine and Gaussian functions; details of data generation and the forcing functions are provided in the 
Supplementary Materials. The data is divided into three groups: training, validation, and test. The training 
and validation sets are used for training the model. The test set is used to evaluate the results. The training set 

(4)N[u(x)] = F(x),

(5)v = ψ(u),

(6)f = φ(F),

(7)u′′ + αu+ εu3 = F(x),

(8)u(0) = u(2π) = 0,

[−p(x)u′]′ + q(x)(u+ εu3) = F(x),

u(0) = u(2π) = 0,

p(x) =0.5 sin(x)− 3,

q(x) =0.6 sin(x)− 2,

[−pu′′]′′ + q(u+ εu3) = F(x),

u(0) = u(2π) = u′(0) = u′(2π) = 0,
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contains Ntrain = 8906 vector pairs uk and Fk . The validation set contains Nvalidation = 2227 pairs, and the test set 
contains Ntest = 1238 . Training and performance evaluation are discussed in the “Methods: deep autoencoders 
for linearizing BVPs” section.

Results for all the one-dimensional models are presented in Fig. 3. The model performance is quantitatively 
summarized by box plots and the Green’s function matrix is shown for each model. The results of Fig. 3 dem-
onstrate that the DeepGreen architecture enables the discovery of invertible, linearizing transformations that 
facilitate identification of a linear operator and Green’s function to solve nonlinear BVPs. Importantly, the learned 
operators and Green’s function matrices consistently exhibit a diagonally-dominant structure, which hints at 
the model’s preference to learn an optimal basis. The losses for the nonlinear cubic Helmholtz equation and the 
nonlinear Sturm–Liouville equation are similar which indicates that spatially-varying coefficients do not make 
the problem significantly more difficult for the DeepGreen architecture. In contrast, the losses for the nonlinear 
biharmonic equation are about an order of magnitude higher than the other two systems. This result implies 
the fourth-order problem is more difficult than the second-order problems. The linear operator loss L3 and 
superposition loss L4 are consistently the highest losses across all models. This indicates that DeepGreen easily 
identifies effective invertible autoencoding schemes and incurs most of its error from the discovered operator. 
This dynamic emphasizes the importance of finding an optimal operator during training that works well with 
the simultaneously discovered autoencoder transform.

Serving as an example, the cubic Helmholtz model is tested on data similar and dissimilar to the training 
data, and evaluated on the loss functions that guide the training procedure (see Fig. 6 in the “Methods: deep 
autoencoders for linearizing BVPs” section). The model appears to extrapolate beyond the test data, suggesting 
that the learned operator is somewhat general to the system.

Nonlinear Poisson equation.  We also tested our method on a two-dimensional system. The two-dimen-
sional model is a nonlinear version of the Poisson equation with Dirichlet boundary conditions 

(9)−∇ ·
[

(1+ u2)∇u
]

= F(x), x ∈ �,

(10)u = 0, x ∈ ∂�,

Figure 2.   DeepGreen architecture. Two autoencoders learn invertible coordinate transformations that linearize 
a nonlinear boundary value problem. The latent space is constrained to exhibit properties of a linear system, 
including linear superposition, which enables discovery of a Green’s function for nonlinear boundary value 
problems.
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 where � := (0, 2π)× (0, 2π) . Similar to the one-dimensional models, the forcing functions used to train the 
model are cosine and Gaussian functions, the details of which are provided in the Supplementary Materials. The 
sizes of the data sets are also similar to the one-dimensional data sets. The training data contains Ntrain = 9806 
vector pairs uk and Fk , the validation data contains Nvalidation = 2452 , and the test data contains Ntest = 1363.

The model was evaluated on test data containing cosine and Gaussian forcing functions. Figure 4a shows the 
true solution u(x) and forcing function F(x) as well as the network predictions for the example from the test data 
for which the model performed the best (i.e. the smallest value of the loss). The difference between the true and 
predicted functions is shown in the right column of Fig. 4a and is scaled by the infinity norm of the true solution 
or forcing functions. Figure 4b shows similar results but for the worst example from the test data. In both cases, 
the model gives a qualitatively correct solution for both u(x) and F(x) . Unsurprisingly, the network struggles 
most on highly localized forcing functions and has the highest error in the region where the forcing occurs.

Discussion
We have leveraged the expressive capabilities of deep learning to discover linearizing coordinates for nonlinear 
BVPs, thus allowing for the construction of the fundamental solution or nonlinear Green’s function. Our architec-
ture leverages two autoencoders to simultaneously learn coordinates and operators for expressing the solution in 
its kernel (Green’s function) representation. Much like the Koopman operator for time-dependent problems, the 
linearizing transformation provides a framework whereby the fundamental solution of the linear operator can 
be constructed and used for any arbitrary forcing. This provides a broadly applicable mathematical architecture 
for constructing solutions for nonlinear BVPs, which typically rely on numerical methods to achieve solutions. 
Our DeepGreen architecture can achieve solutions for arbitrary forcings by simply computing the convolution 
of the forcing with the Green’s function in the linearized coordinates.

Because solving in the linearized coordinates is so simple, the trained neural networks allow for significant 
speed advantages over traditional methods. In particular, we found that solving the one-dimensional systems 
with a traditional solver takes over 10,000 times longer than solving with DeepGreen. For the cubic Helmholtz 
equation, the speed up from using DeepGreen was over 50,000 times. For the two-dimensional system, the tra-
ditional method considered takes 126 times longer than DeepGreen which still provides significant advantages 

Figure 3.   Summary of results for three one-dimensional models. The models and the Green’s function learned 
by DeepGreen are given for (a) a nonlinear Helmholtz equation, (b) a nonlinear Sturm–Liouville equation, and 
(c) a nonlinear biharmonic operator. (d) A summary box plot shows the relative losses L1 , L2 , L3 , L4 , L5 , and L6 
for all three model 1D systems.
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for applications. More details on the speed test can be found in the Supplementary Materials. Another advantage 
of DeepGreen is that unlike many traditional BVP solvers, it does not require an initial guess and therefore its 
success is not dependent on obtaining a good enough initialization for convergence. In addition to providing 
a means to solving BVPs, DeepGreen gives access to an analogue of the Green’s function for nonlinear BVPs. 
Green’s functions give insight into properties of the BVP and the underlying physical system5 and can be used 
to devise fast and efficient numerical algorithms55–60. Therefore, the DeepGreen architecture opens the door to 
techniques that are already established for Green’s functions of linear BVPs.

Given the critical role that BVPs play in the mathematical analysis of constrained physical systems subjected 
to external forces, the DeepGreen architecture can be broadly applied in nearly every engineering discipline since 
BVPs are prevalent in diverse problem domains including fluid mechanics, electromagnetics, quantum mechan-
ics, and elasticity. Importantly, DeepGreen provides a bridge between a classic and widely used solution technique 
to nonlinear BVP problems which generically do not have principled techniques for achieving solutions aside 
from brute-force computation. DeepGreen establishes this bridge by providing a transformation which allows 
linear superposition to hold. DeepGreen is a flexible, data-driven, deep learning approach to solving nonlinear 
boundary value problems (BVPs) using a dual-autoencoder architecture. The autoencoders discover an invert-
ible coordinate transform that linearizes the nonlinear BVP and identifies both a linear operator L and Green’s 

Figure 4.   Model predictions for the (a) best and (b) worst examples from test data with Gaussian and cosine 
forcings. In both (a,b), the top row shows the true solution u(x) , the predicted solution using the Green’s 
function, and the difference between the true and predicted solution. The bottom row shows the true forcing 
function F(x) , the predicted forcing function, and the difference between the true and predicted forces. In order 
to account for the difference in scale between u(x) and F(x) , the differences are scaled by the infinity norm of 
the true solution or forcing function ( Difference = (True− Predicted)/||True||∞).
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function G which can be used to solve new nonlinear BVPs. We demonstrated that the method succeeds on a 
variety of nonlinear systems including nonlinear Helmholtz and Sturm–Liouville problems, nonlinear elasticity, 
and a 2D nonlinear Poisson equation. The method merges the strengths of the universal approximation capa-
bilities of deep learning with the physics knowledge of Green’s functions to yield a flexible tool for identifying 
fundamental solutions to a variety of nonlinear systems.

Despite the success of the presented method and architecture, there are a few limitations that should be 
discussed regarding the architecture and the assumptions made in the design of the network. For example, the 
network assumes that the nonlinear system described by the data can be transformed from a nonlinear manifold 
to a linear manifold via the autoencoder architectures. It is possible that for some systems the transform does not 
exist, in which case we expect the architecture to approximate the manifold that linearizes the system. Experi-
ments provided in the Supplementary Materials indicate that 100 experiments on the same system with the same 
data learned different transformations by the autoencoder. This indicates that the autoencoder learns different 
transforms from different initializations and implies that the learned transform is not unique. Additionally, the 
network can struggle with systems where the governing BVP does not have unique solutions. In this case, it is 
unclear how a training data set can be constructed which can appropriately guide the network to discovering an 
accurate transform. For example, consider a BVP that may have multiple or infinite solutions. The training data 
consists of vector pairs {uk , Fk} . However, for any given Fk there are multiple solutions uk which satisfy the BVP. 
Which one should be selected to use for training? These latter two limitations are the most important drawbacks 
of the current architecture: (i) the learned transform is not unique, and (ii) the architecture does not work on 
systems where multiple solutions can satisfy the BVP. For the BVPs considered here, the DeepGreen method was 
able to successfully generalize to be able to solve the BVPs for a cubic polynomial forcing function even though 
it had only been trained on cosine and Gaussian forcing functions. However, as stated by Mallat54, “Supervised 
learning is a high-dimensional interpolation problem.” Therefore, this type of generalization can only be achieved 
with a diverse enough set of training data. Additionally, the method cannot be expected to have accurate predic-
tions for forcing functions with magnitude outside the range of magnitudes used for training.

Methods: deep autoencoders for linearizing BVPs
Deep AEs have been used to linearize dynamical systems, which are initial value problems. We extend this idea 
to BVPs. To be precise, we consider BVPs of the form 

 where � is a simply connected open set in Rn with boundary ∂� , N is a nonlinear differential operator, F(x) is 
the nonhomogeneous forcing function, B is a boundary condition, and u(x) is the solution to the BVP. We wish 
to find a pair of coordinate transformations of the form (5) and (6) such that v and f satisfy a linear BVP 

 where L is a linear differential operator and x̂ is the spatial coordinate in the transformed domain ̂� with bound-
ary ∂ ̂� . Although this work uses zero Dirichlet boundary conditions, there is nothing in the network design 
which prohibits use of the DeepGreen architecture with other types of boundary conditions. Because L is linear, 
there is a Green’s function G(x̂, ξ) such that the solution v to the BVP (13) and (14) can be obtained through 
convolution of the Green’s function and transformed forcing function

The coordinate transformation along with the Green’s function of the linearized BVP provide the analog of a 
Green’s function for the nonlinear BVP (11) and (12). In particular, for a forcing function F(x) , the transformed 
forcing function is f = φ(F) . The solution to the linearized BVP can be obtained using the Green’s function 
v =

∫

G(ξ , x̂)f (ξ)dξ . Then the solution to the nonlinear BVP (11) and (12) is obtained by inverting the coordi-
nate transformation u = ψ−1(v) to obtain the solution to the nonlinear BVP, u(x).

The question that remains is how to discover the appropriate coordinate transformations ψ and φ . We lever-
age the universal approximation properties of neural networks in order to learn these transformations. In order 
to use neural networks, we first need to discretize the BVP. Let u be a spatial discretization of u(x) and F be a 
discretization of F(x) . Then the discretized version of the BVP (11) and (12) is 

Neural networks ψu and φF are used to transform u and F to the latent space vectors v and f

(11)N[u(x)] = F(x), x ∈ �,

(12)B[u(x)] = 0, x ∈ ∂�,

(13)L[v(x̂)] = f (x̂), x̂ ∈ ̂�,

(14)̂B[v(x̂)] = 0, x̂ ∈ ∂ ̂�,

(15)v(x̂) =

∫

̂�

G(ξ , x̂)f (ξ)dξ .

(16)N[u] = F,

(17)B[u] = 0.

(18)v = ψu(u),
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 where v and f  satisfy the linear equation

for some matrix L , which is also learned. In order to learn invertible transforms ψu and φF , we construct the 
problem as a pair of autoencoder networks.

In this construction, the transforms ψu and φF are the encoders and the transform inverses are the decoders. 
The network architecture and loss functions are shown in Fig. 2. The neural network is trained using numerous 
and diverse solutions to the nonlinear BVP (16) and (17), which can be obtained with many different forcings 
Fk . Consider a dataset comprised of pairs of discretized solutions and forcing functions {uk , Fk}Nk=1

 . The loss 
function for training the network is the sum of six losses, each of which enforces a desired condition. The loss 
functions can be split into three categories: 

1.	 Autoencoder losses We wish to learn invertible coordinate transformations given by Eqs. (18) and (19). In 
order to do so, we use two autoencoders. The autoencoder for u consists of an encoder ψu which performs 
the transformation (18) and a decoder ψ−1

u  which inverts the transformation. In order to enforce that the 
encoder and decoder are inverses, we use the autoencoder loss 

	   Similarly, there is an autoencoder for F where the encoder φF performs the transformation (19). This 
transformation also has an inverse enforced by the associated autoencoder loss function 

2.	 Linearity losses In the transformed coordinate system, we wish for the BVP to be linear so that the operator 
can be represented by a matrix L . The matrix L and the encoded vectors v and f  should satisfy Eq. (20). This 
is enforced with the linear operator loss 

	   The major advantage of working with a linear operator is that linear superposition holds. We use a linear 
superposition loss in order to further enforce the linearity of the operator in the latent space 

3.	 Cross-mapping losses The losses described above are theoretically sufficient to find coordinate transforma-
tions for u and F as well as a linear operator L . However, in practice the two autoencoders were not capable 
of generating the Green’s function solution. To rectify this, we add two “cross-mapping” loss functions that 
incorporate parts of both autoencoders. The first cross-mapping loss enforces the following mapping from 
u to F . First, one of the solutions from the dataset uk is encoded with ψu . This is an approximation for vk . 
This is then multiplied by the matrix L , giving an approximation of fk . Then the result is decoded with φ−1

F  . 
This gives an approximation of Fk . The u to F cross-mapping loss is given by the formula 

	   We can similarly define a cross-mapping from F to u . For a forcing function Fk from the dataset, it is 
encoded with φF , multiplied by the Green’s function ( G = L

−1 ), and then decoded with ψ−1
u  to give an 

approximation of uk . The F to u cross-mapping loss is 

Note that this final loss function gives the best indication of the performance of the network to solve the 
nonlinear BVP (16) and (17) using the Green’s function. The strategy for solving (16) and (17) for a given dis-
crete forcing function F is to encode the forcing function to obtain f = φF(F) , apply the Green’s function as in 
Eq. (15) to obtain v , and then decode this function to get the solution u = ψ−1

u (v) . The discrete version of the 
convolution with the Green’s function given in Eq. (15) is multiplication by the matrix L−1.

(19)f = φF(F),

(20)Lv = f ,

(21)L1 =
1

N

N
∑

k=1

∥

∥uk − ψ−1
u ◦ ψu(uk)

∥

∥

2

2

�uk�
2
2

.

(22)L2 =
1

N

N
∑

k=1

∥

∥

∥
Fk − φ−1

F ◦ φF(Fk)

∥

∥

∥

2

2

�Fk�
2
2

.

(23)L3 =
1

N

N
∑

k=1

�fk − Lvk�
2
2

�fk�
2
2

.

(24)L4 =
1

N2

N
∑

j=1

N
∑

i=1

∥

∥(fi + fj)− L(vi + vj)
∥

∥

2

2
∥

∥fi + fj

∥

∥

2

2

.

(25)L5 =
1

N

N
∑

k=1

∥

∥

∥
Fk − φ−1

F ◦ L ◦ ψu(uk)

∥

∥

∥

2

2

�Fk�
2
2

.

(26)L6 =
1

N

N
∑

k=1

∥

∥uk − ψ−1
u ◦ L−1 ◦ φF(Fk)

∥

∥

2

2

�uk�
2
2

.
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For the encoders φ and ψ and decoders φ−1 and ψ−1 , we use a residual neural network (ResNet) architecture45. 
The ResNet architecture has been successful in learning coordinate transformations for physical systems15. The 
use of ResNets is motivated by near-identity transformations in physics. We express each coordinate transforma-
tion as the sum of the identity transformation and a nonlinear residual transformation in the form of a neural 
network. The linear operator L is constrained to be a real symmetric matrix and therefore is self-adjoint. Addi-
tionally, L is initialized as the identity matrix. Therefore, L is strictly diagonally dominant for at least the early 
parts of training which guarantees L is invertible and well-conditioned. For more information on the network 
architecture and training procedure, see the Supplementary Materials.

Training the model: cubic Helmholtz.  The architecture and methodology is best illustrated using the 
cubic Helmholtz equation as a basic example. The autoencoders used for the cubic Helmholtz equation are 
constructed with fully connected layers. In both autoencoders, a ResNet-like identity skip connection connects 
the input layer to the layer before dimension reduction in the encoder, and the first full-dimension layer in the 
decoder with the final output layer. The model is trained in a two-step procedure. First, the autoencoders are 
trained, without connection in the latent space, to condition the networks as autoencoders. In this first phase, 
only the autoencoder loss functions listed in Fig. 2 are active ( L1 and L2 ). After a set number of epochs, the 
latent spaces are connected by an invertible matrix operator, L , and the remaining 4 loss functions in Fig. 2 
become active ( L3–L6 ). In the final phase of training, the autoencoder learns to encode a latent space repre-
sentation of the system where properties associated with linear systems hold true, such as linear superposition.

Figure 5a shows a typical training loss curve. The vertical dashed line indicates the transition between the two 
training phases. The models in this work are trained for 75 epochs in the first autoencoder-only phase and 2750 
epochs in the final phase. The first-phase epoch count was tuned empirically based on final model performance. 
The final phase epoch count was selected for practical reasons; the training curve tended to flatten around 2750 
epochs in all of our tested systems.

The autoencoder latent spaces are critically important. The latent space is the transformed vector space where 
linear properties (e.g. superposition) are enforced which enables the solution of nonlinear problems. In the one-
dimensional problems, the latent space vectors v and f  are in R20 . The latent spaces did not have any obvious 
physical interpretation, and qualitatively appeared similar to the representations shown in Fig. 5b. We trained 
100 models to check the consistency in the learned model and latent space representations and discovered the 
latent spaces varied considerably (see the Supplementary Materials). This implies the existence of an infinity of 
solutions to the coordinate transform problem, which indicates further constraints could be placed on the model.

Despite lacking obvious physical interpretations, the latent space enables discovery of an invertible operator 
L which describes the linear system L[vk] = fk . The operator matrix L can be inverted to yield the matrix G , 

Figure 5.   (a) Learning curve. This is a typical learning curve for the DeepGreen architecture. The vertical 
dashed line indicates where the training procedure transitions from autoencoders-only (only L1 and L2 ) 
to a full-network training procedure (all losses). (b) Latent space representations vk and fk . The autoencoder 
transformation ψu encodes uk to the latent space, producing the vector vk (orange). The forcing vector Fk is 
transformed by ψF to the encoded vector fk (blue). (c,d) Visualized operator and Green’s function. Discovered 
Green’s function G = L

−1 and corresponding linear operator L.
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where multiplication by G is the discrete version of convolution with the Green’s function. This allows computa-
tion of solutions to the linearized system vk = G[fk] . An example of the operator L and its inverse G are shown 
in Fig. 5c,d. The operator and Green’s function shown in Fig. 5 display an important prominent feature seen 
in all of the results: a diagonally-dominant structure. We initialize the operator as an identity matrix, but the 
initialization had little impact on the diagonally-dominant form of the learned operator and Green’s function 
matrices (see the Supplementary Materials). The diagonally-dominant operators indicate that the deep learning 
network tends to discover a coordinate transform yielding a nearly-orthonormal basis, which mirrors the com-
mon approach of diagonalization in spectral theory for Hermitian operators. Furthermore, diagonally-dominant 
matrices guarantee favorable properties for this application such as being well-conditioned and non-singular.

We emphasize that training parameters and model construction choices used in this work were not extensively 
optimized. We expect the model performance can be improved in a myriad of ways including extending training 
times, optimizing model architecture, modifying the size of the latent spaces, restricting the form of the operator, 
and applying additional constraints to the model. The range of possibilities is combinatorially large and such 
an exploration is not the main scope of the present work; our focus is to illustrate the use of autoencoders as a 
coordinate transform for finding solutions to nonlinear BVPs.

Evaluating the model: cubic Helmholtz.  The goal for this model is to find a Green’s function G for com-
puting solutions uk to a nonlinear BVP governed by (11) and (12) for a given forcing function Fk . Similarly, we 
can estimate the forcing term, Fk , given the solution uk . The model is consequently evaluated by its ability to use 
the learned Green’s function and operator for predicting solutions and forcings, respectively, for new problems 
from a withheld test data set.

Recall the original model is trained on data where the forcing function is a cosine or Gaussian function. 
As shown in Fig. 6a, the model performs well on withheld test data where the forcing functions are cosine or 
Gaussian functions, producing a cumulative loss around 10−4 . The solutions uk and forcing Fk are depicted for 
the best, mean, and worst samples scored by cumulative loss. It’s important to note the test data used in Fig. 6a 
is similar to the training and validation data. Because ML models typically work extremely well in interpolation 
problems, it is reasonable to expect the model to perform well on this test data set.

As an interesting test to demonstrate the ability of the model to extrapolate, we prepared a separate set of test 
data {uk , Fk}Nk=1

 containing solutions where Fk are cubic polynomial forcing functions. Explicit formulas for the 
cubic polynomial forcing functions are found in the Supplementary Materials. This type of data was not present 
in training, and provides some insight into the generality of the learned linear operator and Green’s function 
matrices. Figure 6b shows examples of how the model performs on these cubic polynomial-type forcing func-
tions. Similar to Fig. 6a, the best, mean, and worst samples are shown as graded by overall loss. Figure 6 provides 
some qualitative insight into the model’s performance on specific instances selected from the pool of evaluated 
data. A quantitative perspective of the model’s performance is shown in the summary boxplot provided in Fig. 3d. 
This box plot shows statistics (median value, Q1 , Q3 , and range) for the six loss functions evaluated on the similar 
(cosine and Gaussian) test data.

Figure 6.   Model predictions on test data. The top row shows the true solution uk(x) and the solution predicted 
by the network given the forcing Fk(x) using the Green’s function G . The bottom row shows the true forcing 
function Fk(x) compared to the forcing computed by applying the operator L to the solution uk . Three columns 
show the best, mean, and worst case samples as evaluated by the sum of normalized ℓ2 reconstruction errors.
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Training the model: two‑dimensional Poisson equation.  The network architecture of the encoders 
and decoders for the two-dimensional example differs from the one-dimensional examples. Instead of fully 
connected layers, convolutional layers were used in the encoders and decoders. However, we still use a ResNet 
architecture. Additionally, the latent space vectors are in R200 . Full details on the network architecture can be 
found in the Supplementary Materials. Note that the method proposed for discovering Green’s functions allows 
for any network architecture to be used for the encoders and decoders. For the one-dimensional example, similar 
results were obtained using fully connected and convolutional layers. However, the convolutional architecture 
was better in the two-layer case and also allowed for a more manageable number of parameters for the wider 
network that resulted from discretizing the two-dimensional space.

Evaluating the model: two‑dimensional Poisson equation.  The two-dimensional Poisson equation 
was also evaluated on test data that has cubic polynomial forcing functions, a type of forcing function not found 
in the training data. The best and worst examples are shown in Fig. 7. Although the model does not perform 
as well for test data which is not similar to the training data, the qualitative features of the predicted solutions 
are still consistent with the true solutions. Figure 8 shows a box plot of the model’s performance on the similar 

Figure 7.   Model predictions for the (a) best and (b) worst examples from test data with cubic polynomial 
forcings. In both (a,b), the top row shows the true solution u(x) , the predicted solution using the Green’s 
function, and the difference between the true and predicted solution. The bottom row shows the true forcing 
function F(x) , the predicted forcing function, and the difference between the true and predicted forces. In order 
to account for the difference in scale between u(x) and F(x) , the differences are scaled by the infinity norm of 
the true solution or forcing function ( Difference = (True− Predicted)/||True||∞).
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(cosine and Gaussian forcing) test data. The results are similar to the one-dimensional results, and, in fact, better 
than the biharmonic operator model.

Code availability
The code for this project is available on GitHub at https://​github.​com/​shead​an/​DeepG​reen.
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