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Convolution model for COVID‑19 
rate predictions and health effort 
levels computation for Saudi 
Arabia, France, and Canada
Yas Al‑Hadeethi1, Intesar F El Ramley2* & M. I. Sayyed3,4

Many published infection prediction models, such as the extended SEIR (E‑SEIR) model, are used as 
a study and report tool to aid health authorities to manage the epidemic plans successfully. These 
models face many challenges, mainly the reliability of the infection rate predictions related to the 
initial boundary conditions, formulation complexity, lengthy computations, and the limited result 
scope. We attribute these challenges to the absence of a solution framework that encapsulates the 
interacted activities that manage: the infection growth process, the infection spread process and the 
health effort process. In response to these challenges, we formulated such a framework first as the 
basis of our new convolution prediction model (CPM). CPM links through convolution integration, 
three temporal profile levels: input (infected and active cases), transformational (health efforts), 
and output functions (recovered, quarantine, and death cases). COVID‑19 data defines the input and 
output temporal profiles; hence it is possible to deduce the cumulative efforts temporal response 
(CETR) function for the health effort level. The new CETR function determines the health effort level 
over a period. Also, CETR plays a role in predicting the evolution of the underlying infection and active 
cases profiles without a system of differential equations. This work covers three countries: Saudi 
Arabia, France, and Canada.

The world community went through an epidemic crisis like COVID-19 in 2020, like the "Spanish Flu" in 
1918–1919 and SARS-1 in 2003. Despite considerable health advances, most countries seem to have been over-
whelmed by the epidemic growth mainly due to the lack of a vaccine besides lagging health management that 
proved infective to ensure the quick end of the crisis. Health management is about the mechanics of collecting 
COVID-19 data and getting enough resources to absorb the sudden surges in infection rate and know ahead of 
time if the health plans and their implementation are enough to bring the infection to a quick end. Good health 
plans need daily data reports and qualitative and predictive modelling tools to enable health management to cor-
rectly navigate the infection diminishing path. The epidemic cycle modelling tools are statistical or  mechanistic1. 
Such tools take the available epidemic information as an input and, after applying the initial boundary condi-
tions and constraints, if any, to produce infection growth predictive reports as an output. In this paper, we will 
refer to the initial boundary conditions as initial  conditions2 presented a list of models based on the solution 
schema to analyse the dynamics of COVID-19 and predict the effects of health control efforts on the spread of 
this virus in many countries worldwide. These models include the generalised logistic growth model; the discrete 
generalised logistic model; the exponential growth model; the Richards growth model; the discrete generalised 
Richard model; the generalised growth model; the discrete generalised growth model; the neural network-based 
quarantine control model, the sub-epidemic wave model, the SIR model, and the SEIR model.

Chinazzi Matteo et al.  in3 utilised a global metapopulation model of disease transmissibility to devise the 
effect of travel restrictions on inland and global outbreak. At the onset of Wuhan’s travel prohibition on January 
23rd, 2020, the model showed that many infected travellers had already spread out in multiple cities in China. 
Modelling results indicate that although travel restrictions sustained 90% to and from mainland China. These 
restrictions had only moderately affected the epidemic course, and these restrictions must be combined with at 
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least a 50% reduction of transmission in the  community3.  Furthermore4–8 utilised the global epidemic and mobil-
ity model (GLEAM), an individual-based, stochastic, and spatial epidemic model, for modelling the international 
prevalence of the COVID-19 outbreak. This GLEAM model deals with a metapopulation network integrated 
with real-world data at which the globe is split into subpopulations centred around major transportation hubs.

A statistical model introduced by Yifan Zhu and Ying Qing  Chen8 concerning COVID-19 transmissibility 
relied on symptom appearance data for evaluating the disease transmission at the early-stage flare-up among 
the Chinese population. This model also provided sensitivity analyses with a variety of hypotheses regarding 
the natural history of the disease. Moreover, a model for symptom prediction of COVID-19 was presented by 
Menni et al.9, which gave a linear model of the disease-related symptoms such as cough, males, etc. Zhang et al.10 
introduced a time-dependent SEIR model for fitting and predicting the time series of COVID-19 evolution 
monitored for three months in some provinces of China. The implementation of such a model demonstrated 
the viral transmission/infection rate based on space and the significance of space–time variation in the recovery 
rate. The validated SEIR model was then utilised to predict COVID-19 evolution in Japan, South Korea, the USA 
and Italy, countries that responded diversely to monitoring and moderating COVID-19. However, the previous 
predictions are highly uncertain because of the intrinsic alteration of the maximally infected people and the 
infection/recovery rates within various states. Moreover, a stochastic model based on the random walk particle 
tracking scheme, comparable to a mixing-limited bimolecular reaction model, was developed for evaluating 
non-pharmaceutical COVID-19 prevalence mitigating strategies. Applying the stochastic model, initiating tests 
demonstrated that self-quarantine might not be as effective as strict social distancing in decelerating COVID-19 
occurrence.

Another group: the COVID, I. H. M. E Forecasting  Team11 reported, using the SEIR model with data of 
COVID-19 case morbidity and mortality from February 1st, 2020 till September 21st, 2020 for modelling the 
probable causes of disease and the efficacy of non-pharmaceutical management in the USA. The assessment 
of mask use and social distancing policy was undertaken. The findings indicate that universal mask-wearing 
(by at least 95% of the public) can sufficiently effectively mitigate the impact of disease resurgences in various 
states. Kennedy et al.12 extended the SEIR compartmental model to represent the impact of limiting COVID-19 
transmission strategies, the personal protection measures, continuous, intermittent, and stepping-down social 
distancing policy. They reported that this method effectively prevents a second peak and keeps the daily require-
ment for intensive care units within the limit of units currently available.

Interestingly, Neto et al.13 collected data from WHO presented a generalised (SEIR) compartmental model 
and examined it utilising a global optimisation algorithm. The SEIR model could precisely fit the data of either 
the active cases or deaths of all countries tested, applying optimised coefficient values in agreement with recent 
reports.

The model prediction reports, directly and indirectly, influence health policymakers at federal, state/province 
and regional levels. In our view, we can classify the following predictive models in current use as:

1. Epidemic Models or Mechanistic  Models14,15,28,29,31 explore the epidemic cycle’s fundamental bases and long-
term trends, consider possible non-linear effects, and examine the role of equation control parameters. An 
example is the SEIR and the extended SEIR (E-SEIR)16–25. The studies  in28,29,31 explicitly showed the influence 
of the authorities’ efforts at various state levels on controlling COVID-19 spread at regional, provincial and 
state levels.

2. Agent-Based Models (ABM) approach is designed to model the epidemic spread process using Agent-
Based Simulations (ABS) to simulate the pandemic dynamics collectively utilising a set of agents emulating 
individuals, enterprises, and government. Silva et al.26 developed an ABM to simulate the dynamics of the 
COVID-19 pandemic and the economic and epidemiological influences of social distancing measures. The 
objective was to simulate a closed society inhabiting an everyday ambience composed of population, resi-
dences, governmental units, healthcare systems, and business venues; each represents specific characteristics, 
stochastic behavioural attitudes, and many variable interactions. ABS’s selection to simulate such systems is 
due to their ease of application and high accuracy compared to actual  data27. ABS’s primary objective is to 
simulate the storing statistics derived from the agents’ internal states in every iteration, the system’s temporal 
evolution, and the universal manners developing from the iterative agent interactions.

3. Statistical Models, which extrapolate the curves previously fitted on actual data, aim at providing short-term 
forecasts limited by data uncertainties whose impacts could be amplified by the highly non-linear nature 
of the governing relationships.  In30, the team conducted a quantitative analysis to explore the role of travel 
restrictions and health control measures throughout the first 50 days of the COVID-19 epidemic in China. 
The study showed that the imposed health control efforts were associated with reductions in case prevalence 
in such a way that these efforts appear to have delayed the growth and limited the size of the COVID-19 
epidemic in China.

We used the published COVID-19 epidemic statistics with an October 15th, 2020 cut-off date for three 
countries: Saudi Arabia, France, and  Canada14. The actual data is a COVID-19 Data Repository collected by the 
Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. This data includes the infected 
population rate I(t), active case population rate A(t), recovered population rate R(t), and death population rate 
D(t). The main objective of our work is to introduce the convolutional method to compute:

(1) the cumulative health efforts temporal profile f(t) through the deconvolution of
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a. the Fourier Transform (FT) of the infection population temporal profile, I(t) and the FT of the recovered 
population temporal profile R(t), and

b. the FT of the active cases population temporal profile A(t) and the FT of the recovered population 
temporal profile R(t),

(2) the prediction for I(t) and A(t) utilising the time-extended version of f(t), which forms the basis of the 
CPM model. To establish the validity of this new approach, we presented a comparison between the CPM 
model and the E-SEIR. The model comparison is in terms of:

a. required resources,
b. efforts/steps,
c. complexity, and
d. results (artefacts and peak prediction).

“SEIR and E-SEIR models—an overview” Section  provides a brief overview of the SEIR and E-SEIR models. 
In this paper, we used the E-SEIR model as a starting point to set a benchmark with which we compared the 
result from our new modelling approach. “E-SEIR model computational results and discussion” utilises Python 
Differential Evolution (DE) as a solver for the E-SEIR model equations applicable to Saudi Arabia, France, and 
Canada. Then executed the necessary steps to produce an extended prediction of 60 days rather than just 30 days 
used  by9. Also, in “E-SEIR model computational results and discussion”, we explored the role of the controlling/
weighting parameters that are influenced by the set of initial conditions. “Epidemic process framework compo-
nents” presents the epidemic process framework in which we identified three processes: Infection Spread Process 
(ISP), Infection Growth process (IGP), and Health Effort Process (HEP). Based on this, “Convolutional predic-
tion model (CPM)—new proposal” shows the implementation of the SEIR transition stages in a new format to 
conclude the necessary set of cumulative efforts temporal response (CETR) functions. We used these functions 
to define the collective HEP at federal, state/provincial, regional, and individual levels that influence the SEIR 
stage populations. Then we used these CETR functions to formulate the CPM to predict the future numbers of the 
infected and active case populations. Each CETR function represents all-controlling measures such as lockdown 
policies, public health controls, and protective/hygiene individual behaviour, such as wearing face masks. Hence, 
our new model is not just to predict numbers but also helps to manage the COVID-19 crisis. Section “Discussion 
and conclusion” presents our conclusion regarding E-SEIR and CPM models and the potential future of updates.

SEIR and E‑SEIR models—an overview
The Susceptible-Exposed-Infection-Recover (SEIR) is a staged loop model in epidemiology, which assigns indi-
viduals into different transitional stages of illness (Fig. 1.)

The SEIR model transitions patients between four stages:

• Susceptible (S): the individuals who are exposed to the virus but not infected yet.
• Exposed (E): the individuals who are infected but not yet contagious. They could be in self-isolation or 

quarantine.
• Infectious (I): the individuals who are infected and  contagious2.
• Recovered (R): the individuals who have recovered and are  immune2.

Besides the above SEIR stage definitions, there are also assumptions, the most important of which is that 
population (N) is constant where the death rate equals the birth rate. All newborns are susceptible by  default23. 
The transition dynamics between SEIR stages are governed by a system of first-order differential equations 
(SoDE)9 plus specific initial conditions:

(1)
dS(t)

dt
= −βI(t)

S(t)

N

(2)
dE(t)

dt
= βI(t)

S(t)

N
− γE(t)

(3)
dI(t)

dt
= γE(t)− (�+ κ)I(t)

Figure 1.  SEIR model transitional  stages21.
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where the parameters β, γ, λ, and κ have (1/day) as a unit of measurement. β is called the infection rate. γ is the 
inverse of the average latent time and governs the lag between having undergone an infectious contact and show-
ing symptoms: in the equations, it brings people from the E stage to the I stage. λ and κ are the recovery rate and 
the death rate, respectively. They give information about how fast the people may recover from the disease (1/λ 
is the average recovery time) and how many of them, unfortunately,  die20. These four differential equations might 
not be accurate enough to describe COVID-19 stage transitions. In the SEIR Model, the asymptomatic patient 
will be considered as part of the infection count. A recovered patient R(t) may not be immune to COVID-19. Of 
course, with more robust evidence, it will be possible to reveal the traits of COVID-1921. From Fig. 1 and Eq. (4), 
the parameters for R (i.e. λ) and D (i.e. κ) are coupled together as output from the I stage. This assumption is 
one of the SEIR model framework formulation  foundations9. Our interpretation is that λ and κ are the weighing 
parameters to bring people from the I stage to the R and D stages as linearly additive parameters rather than 
cumulative ones. Hence, stage R is the one bucket for recovered and dead populations, not just recovered. This 
assumption made the SEIR model insufficient for the COVID-19 evaluation cycle. Hence, some modification 
needs to be introduced to the model to describe the virus spread accurately. The SIR model may be more appro-
priate if the disease is more like measles, where a patient immediately becomes infectious. But, if the condition 
is more like flu, a recovered patient may still get re-infected later, then the SEIR  model21 may be more relevant.

Given the limited knowledge of COVID-19, different variations of the SoDE for SEIR model equations have 
been implemented. The variation covers the equations, parameters, or different computational fitting techniques 
to make the model represent reality as accurately as possible. A generalised SEIR  model20 has been adopted, 
which is based  on21 to simulate the Italian situation, by relying on the following SoDE:

The above set of differential equations (Eqs. 6–12) is the expanded version used  by21, which we will refer to 
in this paper as the E-SEIR model. The parameters in the above equations are as follows: alpha (α) is the protec-
tion rate, beta (β) is the infection rate, gamma (ϒ) is the inverse of the average latent time, delta (δ) is the rate 
at which infectious people enter quarantine, lambda (λ) is the time-dependent recovery rate, and kappa (κ) is 
the time-dependent mortality rate.

To establish a comparison benchmark with our new CPM model, we needed to solve Eqs. (6-12) above. We 
uploaded the available COVID-19 data for Saudi Arabia, France, and Canada. We used Python libraries for Dif-
ferential Evolution (DE) method to numerically solve the equations by determining the parameters that optimise 
the solution and guarantee safe and best fit.

E‑SEIR model computational results and discussion
This section will demonstrate the necessary steps to build an E-SEIR model using a numerical solution approach 
for Eqs. (6-12) and the risks that might lead to an unreliable model. First, we need to assume distinct sets for 
the initial conditions associated with each of the E-SEIR stages’ population. In this study, we are using two sets. 
Second, we need to define the relevant value limits on each parameter in Eqs. (6-12) to satisfy the conservation of 
the overall population N. In this work, we used the value range 0 to 1 for each parameter. Such constraints could 
influence the optimum solution surface. Third, we select the right mathematical package to execute the numeri-
cal computation which will produce the optimum or near optimum model solution and extract the solution 
parameters values for parameters α, β, γ, δ, λ, and κ. It is worth mentioning that most of these packages internally 
include curve smoothing, which typically uses the entire data grid length as a smoothing window, consequently 
leading to a one-peak model profile that lacks specific incremental behaviours. Fourth, we deduce the model 

(4)
dR(t)

dt
= (�+ κ)I(t)

(6)
dS(t)

dt
= −β(t)I(t)

S(t)

N
− α(t)S(t)

(7)
dP(t)

dt
= α(t)S(t)

(8)
dE(t)

dt
= −β(t)I(t)

S(t)

N
− γE(t)

(9)
dI(t)

dt
= γE(t)− δI(t)

(10)
dQ(t)

dt
= δI(t)− �(t)Q(t)− κ(t)Q(t)

(11)
dR(t)

dt
= �(t)Q(t)

(12)
dD(t)

dt
= κ(t)Q(t)
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predictions for each initial boundary condition set for each country. The three countries’ model computation 
produces eighteen plots (each is a family of curves), six tables including two tables of observation summary 
each for a specific initial boundary condition. Using the data for the three countries Saudi Arabia, France, and 
Canada, allows us to explore the E-SEIR model trends within different environments.

E‑SEIR model computation for two sets of initial conditions. The data set for Saudi Arabia, France, 
and Canada in Fig. 2 includes I(t), Active A(t) (hospitalised population rate H(t) plus Q(t)), R(t) and D(t) stages. 
Figure 2Aa,Ba,Ca show the actual uploaded data with the end date of October 15th, 2020, while Fig. 2Ab,Bb,Cb 
show the normalised and smoothed data version for each country. In Fig. 2, the normalised data indicates that 
the A(t) is in decline for Saudi Arabia, on the rise for France, and on the rise after a decline for Canada. The I(t) 
has just started to plateau in Saudi Arabia while still rising in France and Canada. Although R(t) is increasing for 
all countries, it is noticeable that R(t) for Canada has a jump around the 175th day.

From Figs. 2 and 3, it is easy to observe within the actual data space and model space, respectively, the changes 
in I(t), A(t) and R(t), which reflect the cumulative impact of the health controlling efforts (HCE) exerted by the 
public and by governments. No research group has managed to quantify and deduce a function that represents 
the HCE to the best of our knowledge. Later in “Convolutional prediction model (CPM)—new proposal”, we 
will show how to conclude the associated HCE profiles from I(t), A(t) and R(t).

E‑SEIR model computation. Most of the traditional optimisation techniques are centred around evaluat-
ing the first derivatives to locate the optima on given limitations in a 2D space. Typically, there is no guarantee of 
locating the first derivatives in our scenario, so finding the optima for many rough and discontinuous optimisa-
tion surfaces will not be safe. Hence, we need to use derivative-free optimisation algorithms. Such an approach 
is referred to as an intelligent search problem, where one or more computational agents are utilised to locate 
the optima on a real-value search space with its embedded set of initial conditions for the core optimisation 
 problem22. The most well-known algorithms are particle swarm optimisation (PSO) which is used  by10, and 
differential evolution (DE) that we used in this work. The DE method is a special kind of differential operator 
which can be invoked and easily implemented with minor parameter  tuning22. We collected the values of these 
parameters that govern the SoDE via a callback function of a defined signature that we pass as one of the Python 
DE library optimisation call attributes. In turn, this callback function populates a global/static n-dimensional 
array, where n is the number of parameters in the SoDE. The DE library optimisation call also allows us to select 
one of three optimum search strategies. In our computation, we used ’best1bin’ as the optimum search strategy.

To solve Eqs. (6-12) and build the models shown in Fig. 3, we downloaded the actual data of COVID-19 for 
each country with the end date October 15th, 2020  from25 coupled with two sets of initial conditions shown in 
Table 1. It is worth mentioning that when we used normalised COVID-19 data, the solution model exhibited 
a peak with a considerable shift to the left, i.e., much earlier than the actual, rendering the solution unreliable; 
hence it is not included in the paper. In the model discussion, we will focus on the I(t) profile. We will cover other 
E-SEIR rate components when necessary because we are using the I(t) as the leading indicator in our comparison 
with the new CPM model. We did set the following value limits 0 ≤ p ≤ 1, where p is any of the parameters α, β, γ, 
δ, λ, or κ in Eqs. (6-12). Each run takes around 45–60 min to execute the computation of a model for each coun-
try using dual (four logical) processors, 2.7 GHz, and 16 GB memory with Windows 10 Pro operating system.

From Figure 3, we summarised the trend for I(t), Q(t), R(t), and D(t) in Table 2. It is easy to observe the dif-
ferences in the E-SEIR component profile depending on the initial conditions. This is an inherent attribute in 
the E-SEIR formulation and its computation.

The role of the E‑ESIR model equation parameters. Before concluding the predictions from these 
models, it is worth reviewing the behaviour of the optimum solution parameters α, β, γ, δ, λ, and κ, which are 
defined in “SEIR and E-SEIR models—an overview”. In this study, we have not assumed any function profile for 
the parameters in Eqs. (6-12)  as12 did by adopting a specific profile for the D(t) rate and the R(t) rate. The param-
eter extraction callback function in the SoDE (“E-SEIR model computation”) allowed us to collect the parameter 
value sets, from which the maximum and minimum were concluded and shown in Fig. 4. Interestingly, the first 
column in Figs. 4A–C shows the behaviour profile for each parameter in Eqs. (6-12). The parameters’ change 
behaviour could be a good indicator of the reliability of the numerical solutions. Some of the parameters’ curves 
show unexpected behaviours that could be attributed to the smoothing steps that might mask the actual underly-
ing profile, the initial conditions that might shift the real peaks’ locations, and the optimisation technique that 
requires more consistent input data. Investigating such issues is necessary to increase confidence in the model 
outcomes. Such investigation is beyond the scope of this work because the scope of this work is to establish a 
comparison between the E-SEIR model and our proposed CPM model in terms of (1) required resources, (2) 
efforts, (3) complexity, and (4) scope of the results, i.e., peak predictions and health efforts. The beta (β) profile 
has the expected decreasing profile for Saudi Arabia, France, and Canada with initial conditions I. For initial 
conditions II, the β profile shows unexpected fluctuations with an increasing trend, which does not coincide with 
the model. Delta (δ) profile shows a small decreasing trend for Saudi Arabia and Canada, which means fewer 
people will quarantine. For France, the δ profile fluctuates between a minimum and maximum and records the 
highest rate with initial conditions II. It can be useful to overview the values of the main parameters to define 
a realistic range of values and understand their impact on the model. The κ profile for all countries’ models has 
an exponential decreasing profile as has been assumed  by23, which means that the death rate is decreasing. The 
κ profile does not coincide with the D(t) rising trend for the actual COVID-19 data shown in Fig. 2, which indi-
cates (1) there is bias in the E-SEIR model formulation, (2) the assumption of initial conditions is not realistic, 
or (3) the suggested parameter value limits are not correct.
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Figure 2.  (A) Two versions of the COVID-19 published data with the end date of October 15th, 2020 for Saudi 
Arabia. (a) the actual uploaded data. (b) the normalised versions of the data. (B) Two versions of the COVID-
19 published data with the end date of October 15th, 2020, for France. (a) the actual uploaded data. (b) the 
normalised version of the data. (C) Two versions of the COVID-19 published data with the end date of October 
15th, 2020 for Canada. (a) the actual uploaded data. (b) the normalised version of the data.
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Figure 3.  (A) COVID-19 E-SEIR Models for Saudi Arabia. (a) initial conditions I. (b) initial conditions II. (B) 
COVID-19 E-SEIR Models for France. (a) initial conditions I. (b) initial conditions II. (C) COVID-19 E-SEIR 
Models for Canada. (a) initial conditions I. (b) initial conditions II.
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E‑SEIR model predictions. Figure 5 shows the deterministic prediction profiles for the E-SEIR model of 
each country. The first column shows the model, and the second the deterministic prediction for 60 days beyond 
the uploaded COVID-19 data. The model profiles for I(t), A(t), Q(t), R(t) and D(t) are concluded by using mainly 
the DE python numerical library with the same initial conditions for all three countries. This assumption is safe 
to avoid any potential bias in numerical computing of the optimum model solution for Eqs. (6-12). Hence, only 
the actual COVID-19 data for each country will be the exclusive driver to reach an optimum solution based on 
which we collected the parameters’ values. We have applied two sets of boundary values listed in Table 1, result-
ing in a minimal model difference. Initial conditions I imply that the infection will be triggered via the higher E0 
percentage. Hence I0 can be set to 0. Initial conditions II suggest that the infection is already triggered; hence I0 
can be set to 1 with a lower E0 percentage. The difference between the parameters’ values is highly noticeable but 
with the same functional profile trends.

It is interesting to report that using normalised and smoothed COVID-19 data with the DE numerical Python 
library produces an unexpected shift to the left for the peak value of I(t). A similar shift appears for A(t), Q(t), R(t) 
and D(t) curves. The summary of E-SEIR stage curve trends the model predictions for each country are shown 
in Table 2. The prediction time range is 60 days beyond the uploaded data date: the reason we do not exceed 
60 days is that we believe that the prediction time range should not be more than 50% of the actual data span in 
days as it could cause solution divergence which we want to avoid. Time ranges of 60 days are more practical.

Epidemic process framework components
The epidemic spread and growth models describe the temporal stage-population patterns of disease outbreaks 
within a geographical area, which help to comprehend the factors that influence infection cases. Modelling is a 
critical tool in understanding what course of treatments and interventions can be most effective: (1) in terms of 
time and location, (2) how fast and cost-effective these approaches may be, and (3) what specific factors need to be 
considered when trying to mitigate and eradicate the disease. Hence, these findings help to define better strategic 
and health policies for deploying practical and valuable public health control efforts. From the epidemic process 
framework (Fig. 6) perspective, we consider these modelling tools as (1) solutions that depict the transitions 
between infection cycle stages within the infection spread process (ISP) and (2) infection growth process (IGP), 
leaving the health efforts process (HEP) outside the solution scope. Consequently, there is uncertainty about the 
effectiveness of health controlling efforts on epidemic progression within each region, province/state, or country 

Table 1.  Two sets of initial conditions. Initial conditions I imply that the infection is triggered via the higher 
E0 percentage, hence I0 = 0. Initial conditions II imply that the infection is already triggered. i.e., I0 = 1 with 
lower E0 percentage.

Initial stage Initial conditions I Initial conditions II

S0 Country population Country population

P0 1.0% of Country population 0.1% of Country population

E0 1.0% of Country population 0.1% of Country population

I0 0 1

Q0 0 0

R0 0 0

D0 0 0

Table 2.  E-SEIR model curves trends summary for two initial conditions sets for Saudi Arabia, France, and 
Canada.

Country E- SEIR stage
Model trend
Initial conditions I

Model trend
Initial conditions II

Saudi Arabia

I(t) Continuous rise Peaked and has just started its decline

Q(t) Continuous rise Has just begun its plateau

R(t) Continuous rise Continuous rise

D(t) Has just started its decline Continuous decline

France

I(t) Continuous rise Continuous rise

Q(t) Rapid rise Rapid rise

R(t) Rapid rise Rapid rise

D(t) Rapid rise Rapid rise

Canada

I(t) Continuous rise Has a short plateau, just started its decline

Q(t) Rapid rise Has just begun its plateau

R(t) Rapid rise Continuous rise

D(t) Rapid rise Continuous rise
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Figure 4.  (A) The E-SEIR Models’ Solution Parameters α, β, γ, δ, λ, and κ Profiles and Maximum and 
Minimum Value Sets for two sets of initial conditions for Saudi Arabia. (B) The E-SEIR Models’ Solution 
Parameters α, β, γ, δ, λ, and κ Profiles and Maximum and Minimum Value Sets for two sets of initial conditions 
for France. (C) The E-SEIR Models’ Solution Parameters α, β, γ, δ, λ, and κ Profiles and Maximum and 
Minimum Value Sets for two sets of initial conditions for Canada.
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and how long controls should remain in place. Hence, it is critically important to define the current controlling 
effort level, the spread dynamics, the growth of COVID-19 outbreaks, and provide near accurate predictions.

The new Convolution Projection Model (CPM) is for the HEP process component, which is part of the 
proposed epidemic process framework shown in Fig. 6. In this study, we are using the CPM model to draw the 
predictions for the populations of infected I(t) and active cases A(t). The IGP process represented the growth 
of the populations of asymptomatic M(t) and infected I(t), which are the feeders for the populations of the 
Hospitalisted H(t), Quarantined Q(t), Recovered R(t), and dead D(t). In the ISP process, the populations of the 
susceptible S(t) and exposed E(t) act as feeders to I(t), which provides a feedback component to E(t). The HEP 
process manages the treatment components H(t) and Q(t), vaccination component V(t), and the terminating 
components R(t) and D(t). Hence, the available epidemic public data are sufficient without hypothetical initial 
conditions and control parameters.

Convolutional prediction model (CPM)—new proposal
“SEIR and E-SEIR models—an overview” reviewed the E-SEIR model’s foundation based on Eqs. (6-12), includ-
ing two sets of population rates as independent variables. The first known-value set covers the following: I(t), 
R(t), Q(t), and dead D(t). These variables are typically confirmed and  published25 and are among the solution 
model’s accuracy foundations. The second set includes the following: S(t), E(t), and asymptomatic M(t), which 
typically are estimated based on an established and recognised approach linked to the age distribution, the level 
of health services provided in each country, and possibly on the DNA groups. The S(t), E(t), and M(t) set is a 
source of uncertainty for the optimum  solution13. The M(t) is subject to many assumptions that have not yet been 
formalised, leading to a potentially high uncertainty level that will influence the optimal solution’s accuracy. M(t) 
will make the solution comprehensive but not safe because no reliable studies quantify the M(t) dependencies. 
With such multi-faceted uncertainties, it would be worthwhile to explore other modelling approaches which are 
inherently independent of S(t), E(t), and M(t).

The studies  in28,29  and31 tackled the direct association of the epidemic spread and the health control measures 
without stating clearly the epidemic process framework. The team  in28 suggested a compartmental epidemic 
model of COVID-19 for infection prediction and control. The short-term projections show that the model cap-
tures the decreasing trend of new COVID-19 infections. Also, the same model reflects that good management of 
quarantined individuals is more effective than isolated individual management in reducing the disease burden. 
 In29, the SEIQR difference-equation model of COVID-19 developed by Li, Ming-Tao et al. considers the trans-
mission with discrete-time imported cases for risk assessment and analysis. The research team noticed the influ-
ence of Wuhan and Shanxi city lockdown date, as one of the health effort instruments, on the final scale of new 
cases.  Reference2 team used the Markov-Chain Monte-Carlo method to determine the model parameters. Sun, 
Gui-Quan et al.  in31 developed dynamical models to inspect the COVID-19 spread in Wuhan city to conclude 
pandemic spread mechanisms. The research explored the impact of lockdown and medical resources as health 
efforts to control the spread. One of the main model findings is that with the subsequent lockdown imposed by 

Figure 4.  (continued)
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Figure 5.  (A) The E-SEIR Model Predictions for Saudi Arabia. (a) shows the predictions associated with initial 
conditions set I. (b) shows the predictions related to initial conditions set II. (B) The E-SEIR Model Predictions 
for France. (a) shows the predictions associated with initial conditions set I. (b) shows the predictions associated 
with initial conditions set II. (C) The E-SEIR Model Predictions for Canada. (a) shows the predictions associated 
with initial conditions set I. (b), which is related to initial conditions set II.
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Wuhan authorities, the fewer of the population will be infected regionally and across the country. However, the 
importance of the findings  in28,29 and 31is related to the fact that research outcomes help (1) the authorities to 
quantify the impact of their health control steps on the COVID-19 spread and (2) avoiding the harsh impact on 
the people’s movements and subsequent economics. Such a driver is also one of the objectives of our new CPM 
model, which we are presenting in the next section.

CPM formulation. In this section, we are going to present the foundations of the Convolutional Prediction 
Model (CPM) to determine the projection of I(t) and A(t), which is equal to H(t) + Q(t), beyond the end date 
of the collected COVID-19 data. As shown in Fig. 7, the CPM model is based on the transformation caused by 
the controlling effort temporal response (CETR) that corresponds to the health efforts over a period. The CETR 
impulse response converts the input temporal functions of I(t) and A(t) into output temporal functions of R(t), 
Q(t) and D(t). To conclude CPM formulation, the first step is to re-format the relationship between the SEIR 
stages based on collected data that represent real-valued time-dependent variables which can be described as:

H(t) and Q(t) represent the number of COVID-19 patients in hospitals and quarantine. R(t) and D(t) are as 
defined in the SEIR model. In Eq. (13), {0 <  in ≤ 1} is a set of reporting accuracy factors with a maximum value of 
1 which means fully reported data. A(t) is the active cases (Active) and is given as (i1 H + i2 Q). In Eq. (13), I(t), 
H(t), Q(t), R(t), D(t) and A(t) will be referred to as I, H, Q, R, D, and A respectively for simplicity. Equation (13) 
can be described from health controlling efforts temporal response CETR (treatments, isolation, social distanc-
ing, face mask, social group size, personal hygiene, etc.), as shown in Table 5. This table defines the epidemic 
progression levels: infection, treatment, and the outcome (Recovery or Death). In this manner, we are avoiding 
the uncertainty portion of the epidemic cycle, focusing on most of the IGP and HEP processes.

Table 4 shows that each arrow represents a continuous monotonically increasing or decreasing CETR func-
tion, which causes the transition between marked stages on the two sides of the transition arrow. Accordingly, 
Eq. (13) can be converted from a number relationship function into the corresponding CETR transition function:

where I(t) is the confirmed infected population listed in the country’s COVID-19 data, in Eq. (14), * denotes 
a convolution operation, and f(.) represents the CETR for the transition between two stages. So, we can place 

(13)I(t) = i1H(t) + i2Q(t) + i3R(t) + i4D(t) = i12A(t) + i3R(t) + i4D(t)

(14a)R(t) = fIR(t) ∗ I (t)

(14b)D(t) = fID(t) ∗ I(t)

(14c)A(t) = fIHQ(t) ∗ (i1H + i2Q) = fIA(t) ∗ I(t)

(14d)R(t) = fAR(t) ∗ (i1H + i2Q) = fAR(t) ∗ A(t)

(14e)D(t) = fAD(t) ∗ (i1H + i2Q) = fAD(t) ∗ A(t)

Figure 6.  Epidemic Process Framework shows the topology and dependencies of the three main processes: 
Infection Spread Process (ISP), Infection Growth Process (IGP), and Health Efforts Process (HEP), which also 
includes process interaction channels.

Figure 7.  Convolutional prediction model (CPM).
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Figure 8.  (A) The Increasing Version of the Health Efforts Function (CETR) for Saudi Arabia, Source Stages: 
Infected and Active. (a) covers the period from March 2nd, 2020, to October 15th, 2020. (b) covers the period 
from March 2nd, 2020 to December 2nd, 2020. (B) The Increasing Version of the Health Efforts Function 
(CETR) for France, Source Stages: Infected and Active. (a) covers the period from March 2nd, 2020, to October 
15th, 2020. (b) covers the period from March 2nd, 2020 to December 2nd, 2020. (C) The Increasing Version of 
the Health Efforts Function (CETR) for Canada, Source Stages: Infected and Active. (a) covers the period from 
March 2nd, 2020, to October 15th, 2020. (b) covers the period from March 2nd. 2020 to December 2nd, 2020.
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the CETR functions into two categories based on the source stage: I(t) based (fIR(t) and fID(t)), and A(t) based 
(fAR(t), and fAD(t)). Figure 8 shows the functions for two different reporting periods (a) from March 2nd, 2020 to 
October 15th, 2020 and (b) from March 2nd 2020, to December 2nd 2020, for the three countries in this study. 
To obtain these CETR transition functions, the first step is to compute the Fourier Transform (FT) fI, fR, and fD 
for I(t), R(t), and D(t), respectively, using the normalised data curves in Fig. 2A-b,B-b,C-b. The second step is to 
compute the inverse of the FT for (fR/fI) and (fD/fI), i.e., executing a deconvolution operation, which yields fIR(t) 
and fID(t). By applying the same steps, we compute fAR(t) and fAD(t). Each of these CERT functions represents 
the cumulative health controlling efforts that produce the outcome of stage transition, as shown in Table 4. It 
is important to remember that CERT functions are typically monotonically decreasing functions. Still, we are 
showing the curves of [1- f(.)/max(f(.))] in Fig. 8, which presents increasing CETR functions so we can do the 
analysis in terms of positive percentages instead of using negative percentages. We should note here that I(t) is 
the overall health efforts while A(t) is a subset of the health efforts, including the hospitalisation efforts.

Using CPM for health efforts trends analysis. We start our discussion first by focusing on fIR(t) and 
fAR(t). Let us begin with health efforts in Saudi Arabia, shown in Fig.  8A. We notice that fAR (i.e., primarily 
hospitalisation-based efforts) was lagging fIR (i.e., overall health efforts including public health efforts) initially 
but later started to catch up and went higher than fIR. In other words, the hospitalisation reached its maximum of 
68% (Table 6) in the second half of the timeline in Fig. 8Aa, which is equivalent to the end of the first half of the 
timeline in Fig. 8Ab. The fIQ, fID, fAQ, and fAD efforts in Fig. 8Aa,b reach near stability after the third quarter of both 
periods. This health effort’s high performance is reflected in Figs. 2A, 3A and 4A, in terms of reaching a peak, 
plateau and starting to decline. In Fig. 8B, for France, it is evident that French efforts of fAR are always lower than 
that of fIR by about 10% (Fig. 8Ba) then narrow to 2% in the second period (Fig. 8Bb). In Fig. 8Ba, we can observe 
that fAR reached a maximum of 52% (Table 5) and fIR recorded a maximum of 58%, but in Fig. 8Bb for the second 
period, fAR reached 68% and fIR recorded 64% (Table 5). The lower performance of fAR and fIR in the first period 
explains why I(t) for France in Figs. 2B, 3B, and 4B has a continuous rise, compared to Saudi Arabia and Canada. 
In Fig. 8Ca, fAR reached 62% for Canada, and fIR recorded 58% (Table 5), which is a good performance but not 
as good as Saudi Arabia. In the second period in Fig. 8Cb, fAR is not in a steady-state and reflects the second peak 
of I(t), but the good news is that fAR went to 72% and the fAR went to 60% (Table 5) to ensure the suppression of 
the second peak with an upward trend.

Using CPM for I(t) and A(t) predications. In Fig. 8, the CETR temporal profile changes over time are 
mirrored on the temporal profiles of I(t), A(t), R(t), and D(t). Based on these observations, and because these 
CETR functions are real-valued functions, we are going to examine the possibility of utilising fIR(t) and fAR(t) to 
predict the I(t) behaviour over a period beyond the end date of COVID-19 data. To achieve this, we need first 
to extend the date range of CETR functions fIR(t) and fAR(t) to cover the extended date. This step is safe because 
CETR functions are the influencer components in the transactions shown in Table 4 and not the input, implying 
that we assume the same known health efforts will continue over a more extended period. The second step is to 
execute the convolution operation f(.) * I(t) to compute the future I(t) where f(.) is fIR(t) or fAR(t) depending on the 
purpose of the prediction.

In some cases, we might need curve-smoothing for the convolution output, and if so, this will be the third step. 
The curve-smoothing involves selecting the right smoothing window size (SWS), ranging from the entire length 
of the data grid to medium size to exceedingly small size that might eliminate the curve-smoothing. For small 
SWS and no curve-smoothing, we can still get a solution profile with detailed changes like I(t) and A(t) shown 
in Fig. 2 and over the extended period of the CETR function. We used the same machine capacity environment 
mentioned in “E-SEIR model computational results and discussion” for the E-SEIR model computation. The 
overall time required to produce the CPM results covering the health efforts profiles with I(t) and A(t) predic-
tions is less than five minutes.

Figure 9 shows 60 days predictions for I(t) and A(t) for two smoothing window sizes (SWS). Table 6 shows 
the E-SEIR and CPM models peak comparison with the corresponding actual COVID-19 data for each country. 
In Table 6, each red cell indicates that the prediction falls before the corresponding true peak (i.e., not realistic). 
In contrast, each green cell indicates that the forecast falls after the corresponding actual peak (i.e., realistic). In 
summary, the CPM predictions for I(t) yield 50% realistic predictions when using a small-smoothing window 
and less than 50% for the large-smoothing window. On the other hand, I(t)’s predictions yield 66% realistic 
predictions with the initial condition I and 100% realistic predictions with initial conditions II.

We can notice that the CPM model (Fig. 9) provides predictions of I(t) and A(t) while the E-SEIR model 
(Fig. 5) does not because A(t) is not part of the E-SEIR model’s epidemic cycle. From Table 6, we can identify 
that the initial condition (I) is not the correct assumption for Saudi Arabia, while initial condition II looks suit-
able for all countries. For the CPM model, I(t) predictions for both SWS’s fall short compared with the actual 
data, while A(t) predictions look more promising. Comparing the I(t) prediction profiles in Fig. 5 for the E-SEIR 
model and Fig. 9-(b) for the CPM model with large SWS leads us to conclude that both produce similar general 
I(t) profiles. However, they differ in predicting the time-location of the peaks.

Discussion and conclusion
Using a 60 + day I(t) peak prediction as a primary basis for comparing the E-SEIR and CPM models is insufficient 
without deploying the models within diverse epidemic environments. Hence, selecting three countries across 
three continents is essential to challenge both models and explore their strengths and weaknesses.

To establish the accuracy of the E-SEIR model, we need to produce around four sets of artefacts (Figs. 3, 4, 
5, and Table 3) to ensure the correctness of the assumptions of the initial conditions, parameter constraints and 
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Figure 9.  (A) Convolution Projection Model (CPM) Predictions for Saudi Arabia. (a) covers the period from 
2020-03-02 to 2020-10-15. (b) covers the period from 2020-03-02 to 2020-12-02. (B) Convolution Projection 
Model (CPM) Predictions for France. (a) covers the period from 2020-03-02 to 2020-10-15. (b) covers the 
period from 2020-03-02 to 2020-12-02. (C) Convolution Projection Model (CPM) Predictions for Canada. (a) 
covers the period from 2020-03-02 to 2020-10-15. (b) covers the period from 2020-03-02 to 2020-12-02.
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to verify the reliability of the model predictions. For the CPM model, we need just two sets of artefacts (Figs. 8 
and 9) without the need for initial conditions, parameter constraints or complected mathematical modelling. 
CPM model needs much less computational time than the E-SEIR model using the same moderately powered 
machine. Consequently, the CPM model can be implemented and deployed in a low-budget health authority 
office without the need for a big-data specialist.

From the E-SEIR model artefacts and Table 6, we can conclude the following: (1) for Saudi Arabia, Fig. 5Aa 
for initial conditions I, shows that I(t) profile has a decline after the peak with incorrect time-location; Fig. 5Ab 
for the initial conditions II shows that I(t) profile has a peak and short plateau, but without declining. (2) for 
France, Fig. 5Ba,b show no peaks under both initial conditions. (3) For Canada, Fig. 5Ca for the initial conditions 

Table 3.  E- SEIR model prediction curves trends summary for Saudi Arabia, France, and Canada.

Country SEIR stage curve
Prediction curve trend
Initial conditions I

Prediction curve trend
Initial conditions II

Saudi Arabia

I(t) Peaked at the 271st day, short plateau, no decline Peaked at the 204th day, short plateau, then 
started to decline

Q(t) Mirroring I(t) Mirroring I(t)

R(t) Continuous rise Continuous rise

D(t) Continuous decline Continuous decline

France

I(t) Continuous rise, and a possible peak at the 324th 
day Continuous rise, and potential peak at 324th day

Q(t) Mirroring I(t) Mirroring I(t)

R(t) Continuous rise Continuous rise

D(t) Continuous decline Continuous decline

Canada

I(t) Peaked at the 322nd day. and began to plateau Peaked at the 242nd day, plateaued over 50 days, 
then started to decline

Q(t) Mirroring I(t) Mirroring I(t)

R(t) Continuous rise Continuous rise

D(t) Continuous decline Continuous decline

Table 4.  Stage transition links from a health effort perspective.

Table 5.  CPM model health efforts peaks and moving trends. Health efforts I(t) means the I(t) containment 
efforts. Health efforts A(t) implies hospitalisation efforts.

Country
Up to OCTOBER 
15th 2020

Up to December 2nd 
2020

Health efforts I(t) A(t) Trend I(t) A(t) Trend

Saudi Arabia 58% 68% 55% 66%

France 58% 52% 66% 68%

Canada 58% 62% 60% 75%
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(I) shows that I(t) profile has a peak and a decline but for initial conditions II. Figure 5Cb shows that I(t) has 
not peaked yet.

From CPM model artefacts (Fig. 8, Tables 4, and 5), we can draw the following conclusions for the CPM model 
for the three countries: (1) The health efforts (68% for A(t) hospitalisation efforts and 58% for I(t) containment 
efforts) of Saudi Arabia ensured better control on the I(t) and A(t) through a higher level than that of France and 
Canada (see Table 5). For the period up to December 2nd, 2020, I(t) and A(t) show a downward trend coinciding 
with the receding infection rate in Saudi Arabia. (2) French health efforts (Fig. 8B) are still lagging up to October 
15th 2020, showing a 52% level for A(t) and a 58% level for I(t). Yet, for the most recent efforts up to December 
2nd, 2020, the A(t) and I(t) both started to rise with a steady trend, so we should anticipate a possible contain-
ment of I(t). (3) For Canada, the period before October 15th, 2020 (Fig. 8Ca), A(t) was at a level of 58%, but 
after October 15th, the I(t) containment health effort stayed nearly at the same level leading to a second peak in 
infection rate which explains why A(t) went to around 78% with a downward trend.

The new CPM model proposed in this paper provides a new tool for health planners to evaluate their control-
ling efforts’ effectiveness. CPM early prediction results indicate that the model provides good A(t) predictions 
while the E-SEIR model does not offer such predictions. When the right initial conditions are defined, the E-SEIR 
model provides acceptable I(t) predictions that need to be supported with suitable solution parameter profiles.

This paper does not suggest that the CPM model replaces the E-SEIR model but rather complements it. The 
CPM model can cover the capability gap that the E-SEIR has, assessing the health control efforts as part of the 
HEP process (Fig. 8 and Table 6) and providing the prediction for A(t) related to the hospitalisation capacity 
within a health region or country.
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