
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21309  | https://doi.org/10.1038/s41598-021-00685-w

www.nature.com/scientificreports

Oscillatory visual mechanisms 
revealed by random temporal 
sampling
Martin Arguin 1,2*, Roxanne Ferrandez3 & Justine Massé3

It is increasingly apparent that functionally significant neural activity is oscillatory in nature. 
Demonstrating the implications of this mode of operation for perceptual/cognitive function 
remains somewhat elusive. This report describes the technique of random temporal sampling for 
the investigation of visual oscillatory mechanisms. The technique is applied in visual recognition 
experiments using different stimulus classes (words, familiar objects, novel objects, and faces). 
Classification images reveal variations of perceptual effectiveness according to the temporal features 
of stimulus visibility. These classification images are also decomposed into their power and phase 
spectra. Stimulus classes lead to distinct outcomes and the power spectra of classification images 
are highly generalizable across individuals. Moreover, stimulus class can be reliably decoded from 
the power spectrum of individual classification images. These findings and other aspects of the 
results validate random temporal sampling as a promising new method to study oscillatory visual 
mechanisms.

There is growing evidence suggesting that functionally relevant neural communication takes the form of periodic 
synchronized firing by groups of  neurons1–4. At a macroscopic level, this takes the form of oscillatory activity 
which can be recorded in humans by electroencephalography (EEG) or magnetoencephalography  (MEG5).

In vision, investigation of the functional impact of brain oscillations has largely focused on attention. Thus, 
by recording brain activity with EEG or MEG or by interfering with it using transcranial magnetic stimulation 
(TMS), it has been determined that spatial attention operates at a rate of about 5–8 Hz and is driven by oscilla-
tory brain activity in the high-theta/low-alpha frequency  bands6–11.

As a general principle, if brain oscillations underlie faculties such as perception and cognition, then this 
should be manifest in behavioral performances. For instance, perceptual effectiveness should oscillate rapidly 
through time, in contrast to subjective experience which rather suggests a stable capacity. Empirical evidence 
in support of perceptual oscillations has been reported based on the periodicity of performance measures in 
humans carrying out various perceptual  tasks12–18. The capacity of this approach to characterize putative oscil-
latory perceptual mechanisms remains limited, however, and a source for more potent and detailed evidence 
is clearly desirable. The new technique described below offers such advances which will be addressed in the 
discussion section.

Initially proposed by  [19; see  also20], we have enhanced the test and analysis procedures for the technique of 
random temporal sampling to make it a powerful tool to investigate oscillatory visual mechanisms. In addition 
to demonstrating temporal inhomogeneity in processing effectiveness, the experiments reported here also reveal 
crucial features of the oscillatory mechanisms involved. As shown below, some of these features are shared to a 
remarkable degree among observers and they vary substantially between stimulus conditions, such that they are 
diagnostic of the specific task participants perform.

Adult neurologically intact human observers carried out visual recognition tasks using words, familiar or 
novel objects, or faces. Throughout their exposure duration (200 ms), the stimuli were sampled by a manipula-
tion of target visiblity (controlled by signal-to-noise ratio), which oscillated according to a random function. 
Specifically, the stimuli displayed were made from the linear combination of a target stimulus (the signal) and a 
white noise field (the noise; Fig. 1). The signal-to-noise ratio varied according to a complex pattern made from 
the integration of 5–55 Hz sine waves (in 5 Hz steps) with random amplitudes and phases, thus making the 
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temporal sampling function. A new random temporal sampling function was generated on each trial thereby 
making them unpredictable.

Classification  images21 of visual processing efficiency were then constructed by the weighted subtraction of 
the sampling functions on which participants made errors from those on which they produced a correct response 
(Fig. 2). For this operation, the sampling functions were either coded as signal-to-noise ratio variations through 
time (time domain), the power and phase values from which the sampling functions were constructed (Fourier 
domain), or the local temporal frequency content of these functions through time (time–frequency domain). 
Processing efficiency refers to the capacity of participants to use the stimulus information available to perform 
their task correctly.

After converting the processing efficiency metric of the individual raw classification images into Z scores by 
a bootstrapping operation, these classification images were averaged, smoothed and then submitted to the Pixel 
 test[22; see “Methods” section for details] to determine the points that differed significantly from zero.

Results
The classification images in Fig. 3 show variations of processing efficiency in the time and time–frequency 
domains for each stimulus class. The time domain classification images (Fig. 3a–d) illustrate processing efficiency 
as a function of the time elapsed since the beginning of target display (i.e. stimulus onset asynchrony; SOA). The 
red dotted horizontal lines indicate the significance thresholds for the Pixel test. Every portion of the classification 
images between those red lines does not differ significantly from zero, meaning that processing efficiency was 
effectively null, i.e. the target information available at these moments had no impact on performance. Portions 
of these classification images that are above the top red line indicate that participants were able to use the target 
information displayed at that particular time to benefit performance. In contrast, portions of the classification 
images that are below the bottom red line indicate that target information displayed at that time significantly 
interfered with performance. It is clear from these illustrations that processing efficiency varies substantially 
throughout the exposure duration of a visual target, whichever the stimulus class.

Processing efficiency according to a time–frequency representation of the temporal sampling functions is 
shown in Fig. 3e–h for each stimulus class. In these illustrations, points at which processing efficiency does not 
significantly differ from zero are in white. Warmer colours are associated with significant positive values of 
processing effectiveness (i.e. the target information available led to performance improvements) whereas cooler 
colours are associated with significant negative values (i.e. the target information displayed interfered with 
performance). It can easily be seen from these figures that visual processing efficiency varies not only according 

Figure 1.  The stimuli displayed on every trial were made from the addition of two components, the signal 
and the noise. The ‘signal’ was made from an image of the target stimulus superimposed with a white noise 
field whose contrast was adjusted to maintain performance at about 50% correct (see “Methods”). The ‘noise’ 
was made from a separate white noise field with maximum contrast. New white noise fields were generated 
independently on each trial. The signal-to-noise ratio of the stimuli displayed was varied across their 200-ms 
exposure duration according to a new random function generated on each trial (see “Methods”).
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to SOA but that this effect interacts significantly with the temporal frequency content of the variations of target 
visibility through time. Again, these observations are verified for all the stimulus classes tested.

Classification images of static frequencies of stimulus oscillation based on the Fourier descriptors of the 
temporal profiles of stimulus sampling were also calculated. None of these classification images showed any 
significant difference from zero (see Supplementary Fig. S1), meaning that they fail to capture the temporal fea-
tures of the target which impact processing efficiency. Here also, this finding characterizes each of the stimulus 
classes used in our experiments.

Another important feature of the results that is apparent from the inspection of Fig. 3 is that the classifica-
tion images, whether in the time or time–frequency domain, are very different according to stimulus class. This 
observation suggests that the temporal features that determine perceptual encoding are affected by the particular 
demands of the task that needs to be performed. This impression is confirmed by the contrast classification 
images displayed in Figs. 4 and 5. These were constructed by subtracting the classification image obtained with 
one stimulus class from that of another, with transformation into Z scores by bootstrapping, followed by smooth-
ing, and the application of the Pixel test to determine where differences were significantly different from zero. 
Illustration conventions are as in Fig. 3.

One important issue we wanted to examine was the degree to which the classification images obtained from 
the random temporal sampling technique generalized across individuals. In other words, to what degree can the 
classification image obtained from one participant predict that from another? This question is important not only 
to determine how representative the present results are of the general population, but also to index the degree 
to which the mechanisms captured by the classification images shown in Fig. 3 are fundamental, or essential, 
for the visual system. To address this question, we calculated the agreement between individual classification 
images using the intraclass correlation coefficient  (ICC23). The theoretical upper bound for the ICC is 1 and it 
has no lower bound. The mean ICC across stimulus classes is very low for both the time (mean ICC = − 0.90) 

Figure 2.  Illustration of the variability of the signal-to-noise ratio through time for the target word ‘navet’ 
(top left) and of the procedures applied to construct the classification images. The random temporal sampling 
functions generated on each trial were coded as either signal-to-noise ratio variations as a function of time since 
target onset (time domain), in terms of the amplitude and phase values of the 5–55 Hz (in 5-Hz steps) sinusoidal 
functions from which the temporal sampling functions were constructed (Fourier domain), or in terms of the 
instantaneous oscillation frequencies of the signal-to-noise ratio as a function of time since target onset (time–
frequency domain). The signal-to-noise ratio vs. time sampling functions illustrated on the top right and bottom 
left of the figure are actual functions which were associated with either correct responses or errors in the word 
recognition task. The raw classification images were obtained from the weighted subtraction of the sums of the 
sampling functions (coded in the time, Fourier, or time–frequency domain) associated with errors from those 
associated with correct responses. They were then transformed into Z scores by bootstrapping, smoothing, and 
submitted to the Pixel  test22.
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and time–frequency (mean ICC = 0.07) classification images. Detailed results for each stimulus class as well as 
confidence intervals are shown in Supplementary Table S1.

Figure 3.  Classification images of encoding effectiveness (in Z scores) as a function of the time elapsed since 
target onset (stimulus onset asynchrony; SOA—panels a–e) and as a joint function of the frequency content of 
stimulus oscillations and SOA (panels e–h). Stimuli are: words (a,e), familiar objects (b,f), novel objects (c,d), 
and faces (d,h).
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Classification images however, do contain generalizable information which may be revealed once properly 
extracted. Thus, Fourier analyses were carried out on individual time domain classification images as well as 
separately for each stimulus sampling frequency (5–55 Hz in 5-Hz steps) of individual time–frequency classifi-
cation images. They were thus decomposed into their power and phase spectra, which were then submitted to 
an assessment of between-subject agreement. This agreement was reasonably high for the phase spectra of the 
time domain classification images (mean ICC = 0.66 across stimulus classes) but very low for the time–frequency 
classification images (mean ICC = 0.06 across stimulus classes). In contrast, the power spectra of classification 

Figure 4.  Contrast classification images in the time domain. Each graph expresses the differences in processing 
effectiveness (in Z scores) as a function the time elapsed since target onset (stimulus onset asynchrony; SOA) 
for a particular pair of tasks (defined by stimulus class). The ends of the ‘Processing efficiency difference’ scales 
are labelled by one of the stimulus classes being contrasted and difference values close to one end or the other 
end favour the corresponding stimulus class. All possible pairs of tasks have been contrasted: (a) words minus 
familiar objects; (b) words minus novel objects; (c) words minus faces; (d) familiar objects minus novel objects; 
(e) familiar objects minus faces; (f) novel objects minus faces.
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images were remarkably stable across participants for both types of classification images and all four stimulus 
classes (mean ICC across stimulus classes = 0.96 for the time domain; 0.98 for the time–frequency domain). The 
ICCs for the phase and power spectra of each type of classification image and for each stimulus class, along with 
their confidence intervals are shown in Supplementary Table S2.

The phase and power spectra of classification images were examined further with respect to their capacity 
of offering a pattern that was distinct according to the particular stimulus class participants have to recognize. 
An ANOVA on the phase spectra of time-domain classification images with frequency in classification image 

Figure 5.  Contrast classification images in the time–frequency domain. Each graph expresses the differences 
in processing effectiveness (in Z scores) as a joint function of the frequency content of stimulus oscillations and 
SOA for a particular pair of tasks (defined by stimulus class). The ends of the ‘Processing efficiency difference’ 
scales are labelled by one of the stimulus classes being contrasted and difference values close to one end or the 
other end favour the corresponding stimulus class. All possible pairs of tasks have been contrasted: (a) words 
minus familiar objects; (b) words minus novel objects; (c) words minus faces; (d) familiar objects minus novel 
objects; (e) familiar objects minus faces; (f) novel objects minus faces.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21309  | https://doi.org/10.1038/s41598-021-00685-w

www.nature.com/scientificreports/

and stimulus class as factors showed no significant interaction (F(36, 480) = 1.7; ns). This means that the phase 
spectra of classification images did not differ significantly as a function of the stimulus class participants had to 
process. Similarly, the phase spectra of time–frequency classification images failed to reveal a task-specific pat-
tern. Thus, the ANOVA with frequency in classification image × sampling frequency × stimulus class showed no 
significant interaction involving the latter factor (sampling frequency × class: F(30, 400) = 1.11; ns; classification 
image frequency × class: F(36, 480) < 1; 3-way interaction: F(360, 4800) < 1).

In contrast to the phase spectra, the power spectra of classification images offered distinct patterns depend-
ing on the stimulus class participants were required to recognize. Thus, the interaction of classification image 
frequency × stimulus class for the power spectra of the time domain classification images was highly significant 
(F(36, 480) = 8.3; p < 0.001). In the same vein, the 3-way interaction of sampling frequency × classification image 
frequency × stimulus class was significant for the power spectra of time–frequency classification images (F(360, 
4800) = 1.3; p < 0.005).

The high between-subject agreement of the power spectra of individual classification images (shown in Fig. 6) 
along with their distinct patterns according to stimulus class suggests that this data may comprise signature 
properties that are diagnostic of the particular class of stimuli participants are required to recognize. This was 
determined with support vector machines  (SVMs24) which were trained to map the power spectra of the clas-
sification images of individual participants to stimulus class with a leave-one out validation procedure. Out of 
four possibilities, stimulus class was predicted with 75% accuracy from the power spectra of the time domain 
classification images and with 52% accuracy using the power spectra of the time–frequency classification images. 
These correct classification rates are both well above chance (time domain: χ2 (9) = 68.9; p < 0.001; time–fre-
quency domain: χ2(9) = 31.0; p < 0.001).

Discussion
Four visual recognition experiments using the technique of random temporal sampling were carried out in 
normal adult observers with different stimulus classes. The classification images constructed from the relation 
between response accuracy and temporal features of stimulus sampling demonstrate that visual processing 
efficiency varies markedly throughout stimulus exposure in conjunction with stimulus oscillation frequencies 
(Fig. 3). These features falsify subjective impressions of the stability of visual capacity through time. They rather 
support the hypothesis that the neural systems underlying visual processing are oscillatory.

Somewhat surprisingly, the present results indicate that temporal and time–frequency domain classification 
images are quite variable across individuals and thus that their means may not constitute an ideal representation 
of the perceptual mechanisms studied. Indeed, the index of between-subject agreement was very low for both 
the time and time–frequency classification images.

A decomposition of these classification images into their power and phase components however, yields a more 
substantial picture. It demonstrates strikingly consistent power spectra among participants tested with the same 
stimulus class, with agreement indexes very close to the theoretical maximum of 1. In contrast, between-subject 
agreement is much lower for the phase spectra of classification images. This means that while their power spec-
tra are nearly identical, the time and time–frequency classification images vary across participants because of 
mismatching phase spectra. These results indicate that different observers engage to the same degree a number 
of oscillatory mechanisms which are necessary to perform a given task. However, the temporal relations among 
these oscillations as well as with stimulus events is what varies substantially across observers. It is the latter which 
is responsible for the poor between-subject consistency of individual classification images.

In addition to excellent between-subject agreement, the power spectra of time and time–frequency classifi-
cation images are rather unique for each task. Thus, their patterns differ significantly as a function of stimulus 
class. Taken together, these two features of the power spectra of classification images make it possible to use 
them to determine the stimulus class they originate from with significant accuracy. This observation strongly 
reinforces the idea that random temporal sampling taps fundamental visual mechanisms that are largely shared 
among neurologically intact adults.

Differences among stimulus classes. The capacity of time and time–frequency domain classification 
images (Figs. 4, 5) as well as of their power spectra to discriminate reliably between stimulus classes indicates 
that the oscillatory mechanisms revealed are different or are engaged differently across experiments. This obser-
vation is congruent with the existence of specialized cortical mechanisms for visual word, object, and face 
 recognition25. In turn, since functional specialization for stimulus classes only emerges at relatively high levels in 
the cortical hierarchy, this might suggest that random temporal sampling may tap neural mechanisms that are 
several synapses away from receptors.

A note of caution is required, however. Apart from stimulus class, there were several other differences between 
the experiments reported (e.g. stimulus sizes, brightness, background intensity, item familiarity, etc.) which 
are likely to have affected their outcomes. Thus, the present findings should be considered suboptimal for the 
purpose of characterizing the different oscillatory visual mechanisms involved in the recognition of the stimulus 
classes used. Our central purpose here is instead to demonstrate that the results obtained with random temporal 
sampling are highly sensitive to the changes in putative visual oscillatory mechanisms that are brought about by 
changing the observer’s perceptual experience and/or task. This is clearly the case considering the significant dif-
ferences between the classification images obtained with different types of stimulus materials (Figs. 4, 5). Strong 
support for this conclusion is also provided by the successful classification of the stimulus class participants had 
to recognize on the basis of the power spectra of their time or time–frequency domain classification images.

Another interesting aspect of the present results that may be noticed from inspection of Figs. 3, 4, 5 is that 
processing efficiency (i.e. z-scores) is substantially greater in the task of word recognition than for other stimulus 
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classes. For instance, the processing efficiency peaks for words in the time and time–frequency classification 
images are of 72.5 and 49.9 respectively, whereas they are of 6.3 and 11.9 for familiar objects, 19.7 and 9.6 for 
novel objects, and 7.2 and 9.2 for faces. This is an observation we had not anticipated. We speculate that this 

Figure 6.  Power spectra of the classification images of encoding effectiveness in the time domain (panels a–e) 
and in the time–frequency domain (panels e–h). Stimuli are: words (a,e), familiar objects (b,f), novel objects 
(c,d), and faces (d,h).
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may relate to differences among stimulus classes with respect to the amount of information (in the classic sense 
of “reduction of uncertainty”26) that is required for their accurate recognition.

Indeed, word recognition is known to largely proceed through the identification of its constituent  letters27, 
of which only 26 possibilities exist in French. This means that there is a finite number of five-letter strings that 
may possibly exist (i.e.  265 items) and this number is largely reduced if we only consider items made of allow-
able letter sequences (within pairs or triplets) in the language. A further constraint which applies here is that the 
letter sequences presented must constitute a French word, which are rather few (2048 orthographically distinct 
five-letter words in the BRULEX  database28, which was used here for stimulus selection). These different factors 
constitute a priori probabilities that human vision most probably applies for word  recognition29, thereby reduc-
ing the quantity of information that is needed to identify a word compared to stimulus classes such as familiar 
objects or faces, for which no such constraints apply. For our novel object recognition task, the number of object 
identities was quite low (n = 6) but it would seem reasonable to argue that the amount of information required 
for their recognition was higher than for words given their initial unfamiliarity and the use of varied viewpoints.

Then, under the assumption that the rate of information transmission by the visual system is limited, the brief 
instants of stimulus visibility that were available allowed the encoding of visual information which may have had 
a greater potential to lead to correct target recognition in the case of words compared to other stimulus classes. 
Expressed in another way, the account proposed here for the greater processing efficiency for words than for 
familiar or novel objects, or faces, is that the scores reflecting processing efficiency would be inversely related to 
the amount of information that is required to accomplish the task correctly. We suggest it would be of interest 
for future research to investigate this idea.

Static versus transient oscillations. A noteworthy finding from the present study is that classification 
images of processing effectiveness as a function of the static temporal frequencies present in the sampling func-
tions (i.e. Fourier domain classification images) revealed no significant effect (see Supplementary Fig. S1). This 
finding demonstrates the incapacity of static temporal frequencies of stimulus visibility oscillations to modu-
late visual recognition performance. This contrasts with the time–frequency classification images (Fig. 3e–h), 
which show the large impact of transient stimulus oscillations. These observations appear relevant to the issue 
of whether the neural oscillations that may be captured in humans by EEG/MEG reflect sustained or transient-
burst  events30. Specifically, the ineffectiveness of the static frequencies constituting the temporal sampling func-
tions to modulate performance seems to suggest that the temporal sampling method used here would only 
impact transient-burst events while producing no evidence for sustained oscillations.

We must point out however, that the power spectra extracted by Fourier analysis from the individual time 
and time–frequency classification images do reflect sustained oscillations. As demonstrated above, these patterns 
of sustained oscillations are extremely similar across individuals and they can effectively serve to determine the 
stimulus class participants had to recognize.

This leads us to suggest that the technique of random temporal sampling may effectively tap both transient and 
sustained oscillatory visual mechanisms and that both provide a significant contribution to accurate performance.

Temporal sampling vs. behavioral periodicity paradigms. The above conclusion that sustained 
oscillatory mechanisms are important for visual performance is congruent with the previous findings obtained 
from the behavioral periodicity paradigms discussed in the Introduction. Indeed, the demonstration of the 
periodicity of a particular phenomenon using these methods requires an oscillation that is sustained for some 
duration. It is unclear whether evidence for transient oscillations can be provided through the measurement of 
behavioral periodicity and, to our knowledge, no such demonstration is presently available.

Across tasks, the static oscillation frequencies—i.e. those extracted from individual classification images by 
Fourier analysis—that seem the most engaged range from 5 Hz to about 25 Hz, as can be seen from the frequen-
cies in classification images that carry the most power (Fig. 6). However, substantial energy peaks can also be 
observed in the 35–55 Hz range, particularly in the novel object and face recognition tasks (Fig. 6c,d,g,h). The 
range of oscillatory frequencies revealed in the present study is substantially greater than those reported in 
previous studies using a method based on the periodicity of performance  indicators[12–18; see “Introduction”]. 
Most significantly, the highest relevant frequencies documented here seem to reach as high as 55 Hz whereas 
behavioral periodicity studies have so far detected oscillation frequencies up to a maximum of about 20  Hz18. 
The sensitivity of the random temporal sampling technique to high frequency functional oscillations is clearly 
advantageous relative to alternative methods. This advantage is especially obvious when one considers the fun-
damental importance of neural oscillations in the gamma frequency band (30 Hz and above) for a vast range of 
cognitive and perceptual  functions1–3, including visual–spatial  attention31.

Two other practical considerations that also favour the temporal sampling technique over behavioural perio-
dicity methods are the numbers of trials required to obtain proper data and the level of complexity of the 
experimental procedures they require. With regards to numbers of trials, periodicity methods may be somewhat 
prohibitive (several thousands of trials) in comparison to the 1200 trials per participant used here. Moreover, the 
procedure required to measure periodicity in perceptual performances may be quite complex whereas it is very 
straightforward with temporal sampling once the method involved in producing stimulus oscillations is in place.

Synchronization with stimulus events. What appears critical for the ability of random temporal sam-
pling to deliver relevant observations is for perceptual mechanisms to synchronize precisely with stimulus 
events. Indeed, without synchrony, the timing relations between the state of the visual system and stimulus 
events would be random. This would prevent classification images, which are based on large collections of trials, 
from showing variations of processing efficiency according to the timing of stimulus events since this relation 
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would be entirely blurred. To prevent such problems, great care was taken in designing the experiments to pre-
sent preparatory signals that would permit participants to precisely anticipate the moment of target onset and to 
maximize their level of alertness at that  instant32,33. Also, the features of the auditory tone preceding this event 
were selected based on a prior demonstration of their capacity to reset neural oscillations in the visual  system34. 
Future studies will be required to assess the actual value of these preparatory signals.

Truly oscillatory mechanisms? In the present study, we have used variations in visual processing effective-
ness according to the temporal features of stimulus sampling as a way to probe putative oscillatory mechanisms 
in the human visual system. One question that may be asked with respect to the evidence obtained is whether 
it truly reflects visual mechanisms that are oscillatory. Indeed, there is an ongoing debate in the literature as to 
whether the oscillatory neural activity resulting from exposure to rhythmic stimuli reflects the response of an 
actual oscillator (i.e. “a system capable of generating sustained rhythmic behaviour by itself ”35 p. 2) or simply 
neural entrainment by the periodicity of the stimulus; that is, a steady-state  response35–37.

There are three aspects to the observations reported here that are relevant to the issue and which militate for 
an interpretation of our results in terms of visual mechanisms that are actual oscillators.

One is that the Fourier domain classification images showed that the stable rhythmic features of stimulus 
sampling had no significant impact on behavioral performance (Supplementary Fig. S1). Such an impact is 
precisely what would have been predicted by the hypothesis of neural entrainment.

Second, the temporal frequency content of stimulus sampling mainly had transient effects on behavioural 
performance, as shown by the time–frequency classification images (Fig. 3e–h). This observation is incompatible 
with the notion of neural entrainment. Take for instance the response to 50 Hz stimulus oscillations in Fig. 3f, 
which is the time–frequency classification image for familiar objects. At some SOAs, these oscillations have no 
impact on performance but at others, they are associated to either increased or decreased processing effective-
ness. We see no way in which such a pattern could be accounted by neural entrainment.

Third, and finally, the power spectra of the time and time–frequency domain classification images of indi-
vidual participants, which probably constitute the most potent observations from the present study, are not 
directly related to stimulus oscillations. They rather reflect intrinsic properties of the visual processing system that 
drive the variations of processing effectiveness through time that occur in individual time and time–frequency 
domain classification images.

Note added in proof:. We have recently completed analyses for a new experiment involving one condition 
that was identical to the word recognition task reported here. These new results closely replicate those reported 
here in every respect.

Methods
Participants. All 44 participants, 29 women and 15 men, were French speaking neurologically intact under-
graduate students at Université de Montréal aged between 19 and 35 years old. All add normal or corrected 
vision. Eight participants took part in the word recognition experiment, whereas distinct groups of 12 partici-
pants took part in each of the others, which were conducted later.

The recruitment of participants was initiated only after approval of the studies by the relevant ethics commit-
tee of the Université de Montréal (Comité d’éthique de la recherche en éducation et psychologie). All participants 
gave their informed consent to participate and all procedures were carried out in accordance with the relevant 
guidelines and regulations.

Materials and stimuli. All experiments were run on an HPZ230 computer equipped with an NVIDIA 
GeForce GTX970 videocard and an ASUS VG248QR HD monitor with maximum luminance of 200 cd/m2 and 
a 120 Hz refresh rate. All stimuli were achromatic and all manipulations of intensity were linear. Experiments 
were programmed in Matlab [Mathworks Inc.] and made the use of the Psychophysics  toolbox38. Observation 
distance was 57 cm, which was stabilized by having participants rest their head on a chin rest.

For the word recognition experiment, stimuli were 600 five-letter French common words with a mean fre-
quency of 157 per  million28. Words were printed in Tahoma (x-height of 0.76 deg) in black letters over a grey 
(half of maximum intensity) background.

For the familiar object recognition experiment, stimuli were greyscale photographs (from the Bank of Stand-
ardized Stimuli;  BOSS39) of 300 objects shown in front of a white background. The items were selected based 
on the published performance statistics for BOSS images so that it would be easy for participants to recognize 
them and find their name. The maximum horizontal extent of the stimuli was 17.4 deg of visual angle and their 
maximal vertical extent was 17.1 deg.

The stimuli used for the novel object recognition task were simple randomly generated 3-D shapes with two 
interconnected medial axes around each of which a cylindrical shape of variable diameter was built (Fig. 7; this 
stimulus class has been used previously  by40. The stimuli displayed in the experiment were the 2D renderings of 
these items, lighted from above, covered in a rich achromatic texture and presented in one of four viewpoints, 
all of which revealed the major features characterizing the shape of the object. Items were shown over a black 
background and their maximum horizontal and spatial extent was of 9.5 deg.

One hundred and thirty greyscale photographs of famous actors and actresses from the face bank  of41 were 
used for the face recognition experiment. The items selected were those which appeared as most likely to be 
recognized by participants. Each face appeared in frontal view and its expression was either neutral or happy. 
These photographs were displayed over a white background and their horizontal and vertical spatial extent was 
of 7.0 deg.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21309  | https://doi.org/10.1038/s41598-021-00685-w

www.nature.com/scientificreports/

In all experiments, the duration of the target stimulus was of 200 ms. Target stimuli were made from the 
linear summation of two components, the signal and the noise (Fig. 1). The signal was made from the image of 
the target, as described above, overlaid by a white noise field with a contrast level that was adjusted on a trial by 
trial basis, as described below, in an attempt to maintain response accuracy to 50% correct. The noise was made 
from a second, independent white noise field of maximal contrast. Throughout the stimulus duration, the signal-
to-noise ratio (SNR), that is the ratio of the weights attributed to the signal and the noise for the construction 
of the stimulus to be displayed, varied according to a random function constructed by the integration of sine 
waves with frequencies ranging between 5 and 55 Hz in steps of 5 Hz with random amplitudes and phases. A 
new, independent SNR function was generated on each trial. Examples of actual temporal sampling functions 
are illustrated in Fig. 2. The range of the SNR was normalized between 0 and 0.5 and its sum across the sequence 
of 24 image frames making up the 200 ms stimulus duration (at the refresh rate of 120 Hz) was matched across 
trials. The overall luminance and contrast of the stimuli were matched across image frames and across trials.

Procedure. In all experiments, participants completed a total of 1200 trials over two test sessions of 600 trials 
each. In all cases, the participant’s task was to identify the target without time pressure. With word stimuli, par-
ticipants had to read the word aloud. With familiar objects, they were required to identify the item using a name 
that was sufficiently specific to demonstrate accurate recognition. With novel objects, they had to indicate orally 
the digit assigned to it during the learning phase, which is described below. With famous faces, participants were 
asked to either give the name of the actor/actress, the name of his/her character in a particular movie or his/her 
specific role in that movie.

In the sequence of trials in the word, familiar object, or face recognition experiments, no item could be 
repeated before the complete stimulus set had been presented for the same number of trials. In the novel object 
recognition task, the order of presentation of items was random, with the constraint that each object be presented 
an equal number of times.

For the novel object recognition experiment, participants first had to be trained with the objects and the 
name they were assigned, which was a digit ranging from 1 to 6. This began with a familiarization phase during 
which participants were exposed to a sheet of paper on which the six objects were printed in all four viewpoints 
along with the digit associated with each object. Once the participant felt having studied the sheet sufficiently, 
the practice phase followed during which each of the possible 24 stimulus instances were presented eight times 
in a random trial sequence presenting one non-degraded item at a time until the participant named it. A cor-
rect response was followed by a 1000 Hz (50 dB pure tone) auditory feedback whereas errors were followed by a 
300 Hz tone. Following each response, whether correct or not, the correct digit identity of the item was displayed 
on the screen for 500 ms. To move to the experimental phase, participants had to obtain at least 90% correct 
responses in a practice block.

In all experiments, the time course of each trial was as follows. A square white noise field of 18° to a side 
centred on the middle of the display monitor was first presented for 1250 ms. A white fixation cross was then 
added at the centre of the monitor for 250 ms, which then disappeared. This offset was followed 150 ms later by 
a 900 Hz–60 dB–14 ms pure tone announcing the onset of the target stimulus 100 ms later. The target stimulus 
was presented in the middle of the screen for a duration of 200 ms during which the SNR varied according to a 
random function, as described above. Following its offset, only the background white noise mask remained vis-
ible until the participant’s response. A 500 ms delay then followed prior to the beginning of the following trial.

Response accuracy on experimental trials was maintained to about 50% correct using a staircase procedure 
which automatically adjusted the contrast of the white noise superimposed on the target image as part of the 
“signal” portion of the stimulus to be displayed (see above). The available range of white noise contrast had 128 
levels, the lowest producing a zero-contrast (i.e. null) mask and the highest being made of black and white (i.e. 

Figure 7.  Illustration of a subset of the stimuli used in the novel object recognition task. The figure shows one 
instance of each object of the set. In the experiment, each object could be shown from one of four different 
viewpoints.
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minimum vs. maximum luminance) elements. The first experimental block began with a white noise contrast 
exactly at the middle of the available range for the first 10 trials. Starting on trial 11, the average response accuracy 
for the 10 preceding trials was determined. If accuracy was exactly 50%, white noise contrast remained the same 
for the following trial. If accuracy was below 50%, white noise amplitude was reduced by one step (see below) 
whereas it was increased by one step if accuracy was above 50%. Initial step size was of 16 contrast levels and this 
value was halved every time the direction of adjustment was reversed, down to a minimum of 1. The state of the 
algorithm adjusting this white noise contrast was maintained across consecutive blocks of trials.

Data analysis. Response accuracy was averaged across participants separately for each experiment. The 
average percentages of correct responses are; words: 60.5%; familiar objects: 49.2%; novel objects: 56.0%; and 
faces: 30.1%.

As indicated above, the contrast of the white noise mask that was part of the “signal” portion of the stimuli 
displayed was adjusted to maintain response accuracy to about 50% correct. The means of noise levels for each 
experiment are; words: 111.3; familiar objects: 119.3; novel objects: 119.9; and faces: 11.0, over a possible maxi-
mum of 128.

The main analyses pertained to the construction of classification images representing how response accu-
racy was affected by various temporal features of the sampling functions of the target stimuli (see Fig. 2). The 
temporal features which were analysed are: 1—SNR amplitude as a function of time (time domain) from target 
onset (or stimulus onset asynchrony; SOA), 2—the Fourier descriptors for these functions (Fourier domain) and, 
3—time–frequency representations of these same functions (time–frequency domain). The Fourier descriptors 
are the amplitude and phase of the temporal frequencies (5–55 Hz in 5 Hz steps) used to build individual SNR 
time functions (see above). The time–frequency representations of the SNR functions on individual trials were 
calculated with a wavelet analysis using three-cycle complex Morlet wavelets varying in temporal frequency from 
5 to 55 Hz in 5 Hz  steps42. The number of cycles in the Morlet wavelet serving as the kernel in wavelet analyses 
was chosen to offer high precision in the time domain, which is the crucial issue we wanted to investigate. This 
leads to a sacrifice in the precision of measurements in the frequency domain, which implies sensitivity of the 
wavelet not just to its particular temporal frequency but to a range of frequencies around it.

For each mode of coding the SNR time functions, classification images were obtained for each individual 
participant. This was done by the weighted subtraction of the sums of the temporal features (i.e. SNR as a func-
tion of time, Fourier descriptors of these SNR functions, or time–frequency representation of SNR functions) of 
the sampling functions associated to errors from those associated to correct responses. These raw classification 
images were then transformed in Z scores by a bootstrapping operation whereby the sampling functions were 
randomly assigned to response accuracies while allowing for repetition, and from which classification images 
were constructed. The mean and standard deviation of 1000 such random classification images for an individual 
participant served as reference to transform the values from his/her raw classification image into Z scores.

Once transformed to a common scale, the individual classification images were averaged, smoothed, and then 
submitted to a two-way Pixel  test22 with α = 0.05 to determine the points in classification images which differed 
significantly from zero. The Pixel test is derived from random field theory and has been applied for about the last 
30 years for the analysis of brain imaging data. Its purpose is to establish the Z value that will serve as the signifi-
cance criterion for a Z-scored image. Among others, factors that will affect the Pixel test is the spatial correlation 
inherent in the data set, the dimensionality of the latter, and the width of the filter used to smooth the data. In 
the case of the classification images reported here, the smoothing filter was Gaussian and had a full width at half 
maximum (FWHM) of 0.6 unit in the time domain and of 1.5 units in the time–frequency domain. Since we 
wanted to identify data points that were either significantly above or below zero, the Pixel test was two-way. Thus, 
to achieve an overall α of 0.05, the input given to the algorithm performing the Pixel test requested α = 0.025. 
The criterion Z score obtained was then used in its positive value to identify points that were significantly above 
0 and in its negative value (i.e.  Zcrit * − 1) to identify points significantly below 0.

Analyses of the agreement, or consistency of classification images across participants having taken part in 
the same experiment were carried out using the intraclass correlation coefficient  (ICC23). The same procedure 
was followed to analyse the consistency among participants of the power and phase spectra of their classification 
images. The ICC assesses the similarity between participants of a group in their pattern of results across an array 
of measurements. The upper bound of the ICC is one and it has no lower limit. Supplementary Tables S1 and S2 
report every ICC discussed in the present article, along with their 95% confidence intervals.

The analysis of raw individual classification images into their power and phase components was performed 
by one-dimensional fast Fourier transforms applied to either the time domain classification images or to Z score 
amplitude variations through time separately for each temporal frequency represented in time–frequency clas-
sification images (i.e. 5–55 Hz in 5-Hz steps).

Mixed-factor analyses of variance (ANOVAs) were conducted to examine whether the phase and power 
spectra of the time and time–frequency domain classification images showed different patterns according to 
stimulus class. Given the specificity of the question addressed by these analyses, only the relevant interactions 
are reported in “Results” section.

Stimulus class was decoded from the power spectra of individual time domain and time–frequency domain 
classification images using linear support vector machines  (SVMs24) and a leave-one-out cross-validation pro-
cedure. Thus, the classification images of all but one participant were presented to the SVM for it to learn the 
mapping from classification images to stimulus class. Then, the classification image from the participant having 
been left out of the learning phase was presented to the SVM for it to determine which of the four stimulus classes 
had been presented. This process was repeated by leaving out a different participant on each iteration until it had 
iterated through all participants. Classification accuracy was determined from the percentage of iterations on 
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which the SVM determined correctly the stimulus class processed by the left-out participant. Chi-square analyses 
were used to assess whether classification accuracy deviated significantly from chance.
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