
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21071  | https://doi.org/10.1038/s41598-021-00677-w

www.nature.com/scientificreports

Predicting miRNA–disease 
associations using improved 
random walk with restart 
and integrating multiple 
similarities
Van Tinh Nguyen1,2, Thi Tu Kien Le1, Khoat Than3 & Dang Hung Tran1*

Predicting beneficial and valuable miRNA–disease associations (MDAs) by doing biological laboratory 
experiments is costly and time-consuming. Proposing a forceful and meaningful computational 
method for predicting MDAs is essential and captivated many computer scientists in recent years. In 
this paper, we proposed a new computational method to predict miRNA–disease associations using 
improved random walk with restart and integrating multiple similarities (RWRMMDA). We used a 
WKNKN algorithm as a pre-processing step to solve the problem of sparsity and incompletion of data 
to reduce the negative impact of a large number of missing associations. Two heterogeneous networks 
in disease and miRNA spaces were built by integrating multiple similarity networks, respectively, 
and different walk probabilities could be designated to each linked neighbor node of the disease or 
miRNA node in line with its degree in respective networks. Finally, an improve extended random walk 
with restart algorithm based on miRNA similarity-based and disease similarity-based heterogeneous 
networks was used to calculate miRNA–disease association prediction probabilities. The experiments 
showed that our proposed method achieved a momentous performance with Global LOOCV AUC 
(Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, 
respectively. And the best AUC and AUPR values under fivefold cross-validation of 0.9855 and 0.8642 
which are proven by statistical tests, respectively. In comparison with other previous related methods, 
it outperformed than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR 
values. In case studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms 
diseases, it inferred 1, 12 and 7 new associations out of top 40 predicted associated miRNAs for 
each disease, respectively. All of these new inferred associations have been confirmed in different 
databases or literatures.

Abbreviations
AUC​	� Area Under ROC Curve
AUPR	� Area Under Precision-Recall Curve
dbDEMC V2.0	� Database of differentially expressed miRNAs in human cancers, version 2.0.
FN	� False negative
FP	� False positive
FPR	� False positive rate
TP	� True positive
TPR	� True positive rate
miRNA	� MicroRNA
mirCancer	� MicroRNA Cancer Association Database
HCC	� Hepatocellular carcinoma
WKNKN	� Weighted K-nearest known neighbors

OPEN

1Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam. 2Faculty of 
Information Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, 
Vietnam. 3Hanoi University of Science and Technology, Hanoi, Vietnam. *email: hungtd@hnue.edu.vn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-00677-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21071  | https://doi.org/10.1038/s41598-021-00677-w

www.nature.com/scientificreports/

MicroRNAs (miRNAs) are an important class of short non-coding RNAs (about 22–26 nucleotides)1. They play 
important roles in regulating many primary cellular functions such as development, differentiation, growth, 
signal transduction, metabolism and so on2. Many studies have shown that development and progression of 
human diseases are associated with the abnormal expression and dysregulations of the miRNAs2,3. Identify-
ing miRNA–disease associations could facilitate us to understand disease mechanism at miRNA level and to 
detect disease biomarkers for diagnosis, treatment, prognosis, and prevention3–6. However, using traditional 
biological experimental methods to identify the associations between miRNAs and diseases is expensive and 
time-consuming. As more and more biological datasets be developed, it would be a forceful approach to develop 
computational methods to infer the latent associations between miRNAs and diseases. It has become a hot topic 
and captivated many computer scientists in recent years.

Recently, computational methods for predicting miRNA–disease associations have achieved extensive and 
prosperous applications. We could roughly divide the computational methods of miRNA–disease associations 
prediction into three categories as follows. Firstly, the network-based methods which are normally relied on a 
common assumption that miRNAs associated with diseases using similar phenotypes are similar in function, 
and vice versa7. For example, Jiang et al.8 predicted potential miRNA–disease associations by priority of disease 
associated miRNAs through human peptide-microRNAome. Gu et al.9 proposed a network consistent projection 
algorithm to infer latent miRNA–disease associations by integrating similarity networks and associated networks. 
Chen et al.10 proposed a computational model of Bipartite Network Projection for miRNA–disease association 
prediction (BNPMDA) based on the known miRNA–disease associations, integrated miRNA similarity and 
integrated disease similarity. Liang et al.5 established an Adaptive Multi-View Multi-Label model (AMVML) 
to learn a new affinity graph for both diseases and miRNAs to discover potential miRNA–disease associations. 
The main advantage of these methods is that they can be applied to predict isolated disease-associated miRNAs 
but their performance is not very gratifying5. Secondly, the machine learning methods which have been imple-
mented to improve classification accuracy and prediction performance4,9. For instance, a normalized least square 
method (RLSMDA) was introduced by Chen and Yan11 to identify the potential miRNA–disease associations. 
Shen et al.12 presented the cooperative matrix decomposition (CMFMDA) algorithm in recommendation system 
to uncover potential associations. Xu et al.4 designed a probability matrix factorization model (PMFMDA) to 
infer potentially relevant miRNAs for disease. Chen et al.13 presented a model of Inductive Matrix Completion 
for miRNA–disease association prediction (IMCMDA). Yu et al.14 introduced a model named as MCLPMDA 
which used a matrix completion algorithm to reconstruct the new miRNA and disease matrices, and then it 
utilized a label propagation algorithm to predict disease-related miRNAs. Chen and Huang15 proposed a LRSS-
LMDA model to infer potential miRNA–disease associations by using sparse subspace learning with Laplacian 
regularization on known miRNA–disease association network and the informative feature profiles attained 
from integrated miRNA or disease similarity networks. Chen et al.16 offered a model named Neighborhood 
Constraint Matrix Completion for miRNA–disease Association prediction (NCMCMDA) to recover the miss-
ing miRNA–disease associations by adding similarity based neighborhood constraint into matrix completion 
model. Chen et al.17 developed a model of Decision Tree based miRNA–disease association prediction (EDT-
MDA) to infer novel miRNA–disease associations which integrated ensemble learning, matrix factorization 
and dimensionality reduction to obtain final prediction results. Thirdly, the random walk-based methods such 
as RWRMDA18, MIDP&MIDPE19, NTSMDA20 should be mentioned. Recently, several extended random walk 
based methods, for examples Le et al.’s21 and BRWH22, have been developed to address the problem of predicting 
miRNA–disease associations. Niu et al.23 presented a Random Walk and Binary Regression based miRNA–disease 
association prediction (RWBRMDA) method which extracted features for each miRNA from Random Walk 
with Restart on the integrated miRNA similarity network for binary logistic regression. Li et al.24 used a net-
work projection based dual random walk with restart (NPRWR) model to predict miRNA–disease associations. 
Nevertheless, the walk probabilities of each linked neighbor node of the disease or miRNA node in line with its 
degree was identically accredited in most of above random walk-based methods. And almost of the diseases or 
miRNAs without any known associated miRNAs or diseases could not be effectively predicted.

Although existing computational methods have made immense beneficences to reveal disease‐related miR-
NAs, but they still contain some limitations which could be improved to achieve more decisive performance. One 
of these limitations is the problem of sparsity and incompletion of data that affected prediction accuracies. In 
recent years, a weighted K-nearest known neighbors (WKNKN) algorithm was usually used as a pre-processing 
step to eliminate unknown values in miRNA–disease association set as in the studies of Ezzat et al.25, Gao et al.26, 
Wu et al.27, and Li et al.28. It relied on the fact the number of known miRNA‐disease associations are very limited 
in comparison with the number of non-interacting miRNA–disease pairs which are unknown cases that could 
potentially be accurate associations in the training datasets. In these studies, a new miRNA or disease’s associa-
tion profile was predicted using its similarities to other miRNAs or diseases, respectively, to reduce unfavorable 
impact of a large number of missing associations25,26.

Recently, Luo J. and Long Y. extended random walk with restart algorithm to explore most potential microbe-
disease associations based on a heterogeneous network composed of Gaussian kernel microbe similarity network, 
Gaussian kernel disease similarity network, and known disease-microbe associations network29. This method 
achieved a desirable performance in predicting microbe-disease associations. However, as mentioned by the 
authors, its performance could be improved by adding other types of prior biological information such as microbe 
functional similarity, disease semantic similarity, and disease symptom similarity networks. Additionally, its 
performance could be superior if the sparsity data problem was solved.

Inspired by the extended random walk with restart algorithm and to promote the performance with the addi-
tion of multi-types of biological information and solve the sparsity data problem as indicated in NTSHMDA 
method29, in this paper, we proposed a new method to predict potential miRNA–disease associations using 
improved random walk with restart and integrating multiple similarities (RWRMMDA). There are three main 
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contributions of our study. First, we integrated multiple similarity networks to build two heterogeneous networks 
in disease and miRNA spaces, respectively, to designate different walk probabilities to each related neighbor node 
of the disease or miRNA node in line with its degree in different spaces. Second, we solved the problem of sparsity 
and incompletion of data to reduce negative impact of a large number of missing associations by using a WKNKN 
algorithm as a pre-processing step. Finally, we improved the extended random walk with restart algorithm based 
on miRNA similarity-based and disease similarity-based heterogeneous networks to calculate miRNA–disease 
association prediction probabilities. The experiments based on the dataset of miRNA–disease associations which 
was downloaded from the HMDD V2.0 database30 containing 5430 experimentally verified associations between 
383 diseases and 495 miRNAs as in PMFMDA4, miRNA functional similarities and disease semantic similarities 
showed that our proposed method (RWRMMDA) achieved a decisive performance. In details, RWRMMDA 
achieved global LOOCV AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values 
of 0.9882 and 0.9066 respectively. Additionally, its best AUC and AUPR values, proven by statistical tests, are 
0.9855 and 0.8642, respectively, under fivefold-cross-validation experiments. Its performance is superior to other 
state of the art methods as NTSHMDA29, PMFMDA4, IMCMDA13 and MCLPMDA14. It could be considered as 
a forceful and valuable tool to infer miRNA–disease associations.

Materials and methods
Method overview.  In this paper, we proposed a new method to predict potential miRNA–disease asso-
ciations using improved random walk with restart and integrating multiple similarities (RWRMMDA). The 
workflow of RWRMMDA is shown in Fig. 1. In overview, RWRMMDA based on the known miRNA–disease 
associations, miRNA functional similarity and disease semantic similarity information. It contains six stages. At 

Figure 1.   The workflow of the proposed method (RWRMMDA).
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the first stage, we calculated Gaussian Interaction Profile Kernel Similarity for miRNAs and diseases. At second 
stage, we figured out the Integrated Similarity for miRNAs and diseases. At third stage, we performed a weighted 
K-nearest known neighbors (WKNKN) algorithm as a preprocessing step to exclude unknown missing values 
in miRNA–disease association set. In other words, it reduced the impact of sparsity data problem. During the 
fourth stage, we constructed two miRNA similarity based and disease similarity based heterogeneous networks. 
Next, we handled an improved random walk with restart algorithm on miRNA similarity-based and disease 
similarity-based heterogeneous networks to calculate the final prediction probabilities. Finally, we ranked the 
prediction scores in descending order to obtain the most potential disease associated miRNAs.

Human miRNA–disease associations.  We used an adjacency matrix ADM to express the known miRNA–
disease associations which were downloaded from the HMDD V2.0 database30 and contained 5430 experimen-
tally verified associations between 383 diseases and 495 miRNAs. Especially, if the association between disease 
di and miRNA mj was experimentally verified, we represent the element ADM

ij  to be equal to 1, otherwise ADM
ij  is 

equal to 0. Hence, a binary vector which indicates the associations between disease di and each miRNA is repre-
sented by the ith row of ADM , and a binary vector reflects the associations between miRNA mj and each disease 
is represented by the jth column of ADM

.

Disease semantic similarity.  Disease semantic similarity was estimated according to the literatures4,17,31. 
We gathered the relationships of various diseases based on the hierarchical directed acrylic graphs (DAGs) by 
downloading MeSH descriptors from the National Library of Medicine (http://​www.​ncbi.​nlm.​nih.​gov/). DAGs 
are usually used to measure the similarity among diseases. For instance, for a disease d, its directed acrylic graph 
is given by DAG(d) = (d,TAd ,ECd) , where TAd indicates the set of the disease d’s ancestors and d itself, and 
ECd symbolizes the set of edges which point to child nodes from parent nodes in the MeSH tree. Therefore, the 
semantic contribution of disease t to disease d is as in the following equation

where � symbolizes a predefined semantic contribution factor with values range from 0 to 1. According to Wang 
et al.31, Xu et al.4 and Chen et al.17, in this paper, we set � equal to 0.5. We calculated the semantic similarity 
between diseases based on the assumption that two diseases having larger parts in their DAGs favor to have 
higher semantic similarity as in formula (2).

miRNA functional similarity.  As previous studies4,31, in this paper, the functional similarity measure-
ments were used to represent miRNA functional similarities among miRNAs. Especially, let any two miRNAs 
mi and mj associated disease sets be the DTTi = {di1, di2, . . . , dik} and DTTj =

{

dj1, dj2, . . . , djl
}

 , respectively. 
Similar to Wang et al.31 and Xu et al.4, we firstly used  SS(d,DTT) = di∈DTT

maxDSS(d, di) to depict the similarity 
between a disease d and DTT set. Then, the similarity between mi  and mj was computed as follows:

The illustration of calculating miRNA functional similarity is shown in Fig. 2.
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Figure 2.   Illustration of calculating miRNA functional similarity.
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Gaussian interaction profile kernel similarity for miRNAs and diseases.  According to 
literatures4,17, we computed Gaussian interaction profile kernel similarity for miRNAs and diseases relied on the 
known association adjacency matrix ADM . Suppose that the vector associated with disease di in ADM is repre-
sented by ADM(di) to reflect the i-th row of ADM adjacency matrix. Similarly, the vector associated with miRNA 
mj is repesented by ADM(mj) which means the j-th column of ADM adjacency matrix. Then, the Gaussian inter-
action profile kernel similarity between disease di and disease dj was computed as follows:

where γd signifies a kernel bandwidth’s adjustment parameter and it is updated as follows:

here γ ′
d is widely set to 1 as in previous studies4,17.

In a similar way, we calculated the Gaussian interaction profile kernel similarity between miRNA mi and 
miRNA mj as follows:

where γm signifies a kernel bandwidth’s adjustment parameter and it is updated as follows:

here γ ′
m is widely set to 1 as in previous studies4,17.

Integrated similarity for miRNAs and diseases.  We could not attain DAGs for all diseases though the 
disease semantic similarity was determined based on DAGs as mentioned before. Therefore, we could not assess 
disease semantic similarity in case of the specific disease without DAGs. Consequently, to measure all disease 
similarity information, we incorporated disease semantic similarity with Gaussian interaction profile kernel 
according to previous studies4,32 as follows:

Similarly, integrated miRNA similarity was computed according to previous studies4,32 as follows:

Weighted K‑nearest known neighbors algorithm.  We utilized a WKNKN algorithm introduced 
in25,28 as a pre-processing step to exclude unknown values in miRNA–disease association set. It based on the 
known neighbors’ information by considering the fact that many of the non-interacting miRNA–disease pairs in 
ADM are unknown cases that could potentially be truthful associations. Particularly, WKNKN replaces ADM

ij = 0 
with an interaction likelihood continuous value in the range from 0 to 1 as follows. Firstly, for each disease di , 
we selected the semantic similarities with K known diseases which are nearest to di and their corresponding 
interaction profiles to quantify the interaction likelihood profile for disease di . Secondly, for each miRNA mj , we 
chose its functional similarities with K known miRNAs which are nearest to mj and their corresponding interac-
tion profiles to estimate the interaction likelihood profile for miRNA mj . And finally, if ADM

ij = 0 , we changed it 
by averaging the two interaction likelihood profiles. Figure 3 contains the pseudocode that describes the above 
steps in detail in which r is a decay term where r ≤ 1, and KNN() returns the K-nearest known neighbors in 
descending order based on their similarities to di or mj .

Construct miRNA similarity‑based and disease similarity based heterogeneous net-
works.  Normally, the transition probabilities from a disease (miRNA) node to each related neighbor miRNA 
(disease) are equally allocated while the total of the probabilities is equal to 1 in the common random walk with 
restart (RWR) algorithms18–20. However, the tends of degree to be related with different miRNAs or diseases 
corresponding to a given disease or miRNA literally exists difference29,33. For instance, a number of associations 
between a given disease di and many related miRNAs show different similarities among them while remained 
di-associated miRNAs do not have or have sparse similarities to other miRNAs associated with di . Therefore, 
we suppose that a disease or miRNA has stronger relation with miRNA or disease to which a larger number 
of the remaining miRNAs or diseases are similar among miRNAs or diseases associated with the disease or 
miRNA29. Based on that hypothesis, we incorporated topological similarity with semantic similarity for a disease 
or with functional similarity for a miRNA to measure the tends of degree to be related of a disease (miRNA) to 
a miRNA (disease)29,33. We determined the edges’ weights in miRNA–disease association network which reflect 
the related degree of actual association based on integrated similarity for diseases and integrated similarity for 
miRNAs, respectively as follows. Firstly, a bipartite graph which consists disease nodes and miRNA nodes was 
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constructed. Secondly, when the walker moves from disease network to miRNA network, we selected the possi-
bility of targeted miRNA node mj (j = 1, 2, …, nm) for a specific disease node di (i = 1, 2, …, nd) totally depends on 
the similarities between mj and all neighbor di-related miRNA nodes including mj 29. Analogously, for a specific 
miRNA node mj (j = 1, 2, …, nm), when the walker moves to disease network from miRNA network, we selected 
the possibility of targeted disease node di (i = 1, 2,…, nd) totally bases on the similarities between di and all neigh-
bor mj-related disease nodes including di 29. Figure 4 illustrates a simple example of the process of weight assign-
ment in disease and miRNA spaces, respectively. Finally, we redefined two new integrated adjacency matrices 
ADMdiseasebase and ADMmirnabase based on the integrated similarity ISD matrix for diseases, integrated similarity 
ISM matrix for miRNAs and ADM_new adjacency matrix as in the following equations:

Figure 3.   The WKNKN algorithm.

Figure 4.   Illustrations of the process of weight assignment in disease space and miRNA space.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21071  | https://doi.org/10.1038/s41598-021-00677-w

www.nature.com/scientificreports/

Improved random walk with restart to predict miRNA–disease associations.  Firstly, we defined 
a transition probability matrix from disease network to miRNA network TDM and a transition probability matrix 
from miRNA network to disease network TMD based on the two new integrated adjacency matrices identified 
previously as follows:

where ϕ ∈ (0,1) is the jumping probability of random walker among these two different networks29.
Secondly, we defined a disease transition probability matrix Wd to represent the transition probabilities from a 

disease node to all neighbor disease nodes in disease network in which the element Wd

(

i, j
)

 signifies the jumping 
probability from disease di to disease dj as in Eq. (14).

Furthermore, the miRNA network transition probability matrix Wm can be constructed as follows:

Thirdly, instead of using the vector form of initial probability as in common RWR algorithms18–20, and inspired 
by the extended RWR proposed by Luo and Long29, we defined the initial probability matrix

of heterogenous network to perform improved random walk with restart with supposition that all miRNA–disease 
associations could be concurrently produced, where PD0 and PM0 are the diagonal matrices with PD0(i, i) = 1/nd 
and PM0

(

j, j
)

= 1/nm serve as the normalized probabilities of disease and miRNA seed nodes and δ is the weight 
factor used to point out the importance level or impact factor of two sub-networks which are represented by 
ADMdiseasebase and ADMmirnabase matrices.

And then, we defined a new transition probability matrix WnewTP_DM of heterogeneous network relied on 
disease similarity-based network as follows:

and a new transition probability matrix WnewTP_MD of heterogeneous network depended on miRNA similarity-
based network as follows:

where TDM , and TMD , are the transpose matrices of TDM and TMD respectively. From the new transition prob-
ability matrices and initial transition probability matrix, the improved random walk with restart can be identified 
as follows:

where P1t and P2t illustrate prediction matrices which reflect the probability values of all miRNA–disease asso-
ciations at the t time step, and γ stands for the restart probability, γ ∈ (0, 1). We again and again executed the 
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improved random walk process on the heterogeneous network until convergence, generally, the t time is set to 
10 as in29.

Finally, the final prediction matrix P is defined as:

in which the elements of P reveal the score of associations between disease nodes and miRNA nodes would be 
produced simultaneously.

Rank the final prediction score of associations to obtain predicted miRNA–disease associa-
tions.  For a given disease, we ranked all candidate miRNAs’ score of associations in descending order to 
obtain the most possible miRNA–disease associations. The candidate with higher score will have more chance 
to be verified in the future.

Ethics approval and consent to participate.  Not applicable. The study does not involve human sub-
jects, only used public data.

Results
Performance measures.  We appraise our method’s performance in inferring miRNA–disease associations 
by doing the fivefold cross-validation experiments and global LOOCV and measure the Area under roc curve 
(AUC)34 and the Area under precision-recall curve (AUPR)35 as described in the followings.

To measure AUC values, we computed the false positive rate (FPR) and true positive rate (TPR) values where 
FPR is used to indicate the proportion of the real negative samples in predicted positive samples to all negative 
samples. And, TPR signifies the proportion of the real positive samples in all predicted positive samples. The 
FPR and TPR are gauged by the following equations:

where TP (true positive) specifies that a positive sample is precisely forecasted as positive sample; FN (false 
negative) depicts that a positive sample is falsely predicted as negative sample; FP (false positive) symbolizes 
that a negative sample wrongly predicted as positive sample; TN (true negative) shows that a negative sample 
is perfectly concluded as negative sample. We used TPR as vertical axis and FPR as horizontal axis to figure the 
receiver operating characteristic (ROC) curve34.

As mentioned by Takaya Saito and Marc Rehmsmeier35, in case of Evaluating Binary Classifiers on Imbalanced 
Datasets, the Precision-Recall is more informative than the ROC. Therefore, we also draw Precision-Recall curve 
and calculate the AUPR value to evaluate prediction performance. The Precision depicts the percentage of the 
accurately predicted positive samples in all predicted positive samples whereas the Recall reflects the percent-
age of the accurately predicted positive samples in all real positive samples. Precision and Recall are computed 
as follows:

Evaluating the AUC and AUPR under fivefold cross validation.  In fivefold cross-validation exper-
iments, firstly we considered the known miRNA–disease associations as positive samples and the remained 
unknown associations as negative samples. Secondly, we randomly partitioned all positive and negative sam-
ples in known adjacency matrix ADM into five equal parts to perform fivefold cross-validation. Thirdly, in each 
experimental running time, we took four parts of positive and negative samples for training and the last part for 
testing. The elements’ values which are equal to 1 in the part used for testing were changed to 0. Fourthly, we 
recalculated Final_score in each running time. Finally, we matched the Final_score in each running time with the 
new adjacency matrix attained by applying WKNKN algorithm to figure out AUC and AUPR values. To increase 
the reliability of AUC and AUPR values, we again and again performed fivefold cross-validation experiments 
for 25 times and computed AUC and AUPR values to obtain final results. Our proposed model achieved best 
AUC value of 0.9855 and obtained the best AUPR value of 0.8642 after 25 times under fivefold cross-validation 
experiments. These values are proven by statistical tests. We already performed One sample T Test with N = 25 at 
confidence level of 95%. The details results of statistical tests on One sample T Test of AUC and AUPR are shown 
in Table 1. Figure 5 illustrates ROC curves and AUC values (a) and PR curves and AUPR values (b) in five run-
ning times of fivefold cross-validation experiments.

(21)P = (1− δ) ∗ P1+ δ ∗ P2

(22)FPR =
FP

FP + TN

(23)TPR =
TP

TP + FN

(24)Precision =
TP

TP + FP

(25)Recall =
TP

TP + FN
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Evaluating AUC and AUPR under global LOOCV experiments.  Leave-one-out cross validation 
(LOOCV) was normally used to evaluate global prediction ability of a model4,36. In this paper, we performed 
global LOOCV experiments by removing each known miRNA–disease association in turn as a testing sample 
and all remaining associations as training samples. Then we recalculated the final prediction matrix P in each 
running time to evaluate prediction performance. The global LOOCV prediction performance of our proposed 
method achieved AUC value of 0.9882 and AUPR value of 0.9066 as demonstrated in Fig. 6. They are slight 
higher than AUC and AUPR values under fivefold cross validation because the number of known associations 
which were removed in each experimental running time of fivefold cross validation is bigger than in global 
LOOCV experiment.

Table 1.   AUC and AUPR one-sample T test.

N Mean Std. deviation Std. Error Mean

AUC test value = 0.9855
AUPR test value = 0.8642

t df Sig. (2-tailed)/p-value Mean difference

95% confidence interval of 
the difference

Lower Upper

AUC​ 25 0.984908 0.0011909 0.0002382 − 2.485 24 0.020 − 0.0005920 − 0.001084 − 0.000100

AUPR 25 0.8595 0.017862 0.002572 − 2.181 24 0.039 − 0.0047040 − 0.009156 − 0.000252

Figure 5.   ROC curves and AUC values (a) and PR curves and AUPR values (b) in 5 running times of fivefold 
cross-validation experiments.

Figure 6.   ROC curve and AUC value (a) and PR curve and AUPR value (b) under global LOOCV experiment.
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Effects of parameters.  The proposed model contains five parameters which effect on the performance of 
the model. In other words, the best results with above AUC and AUPR values could be obtained by modifying 
the union of multiple parameters with their different values.

Two parameters from WKNKN.  Considering that there are some unknown miRNA–disease associations in the 
matrix ADM

ij, the WKNKN algorithm was used as a pre-processing step to exclude unknown values in miRNA–
disease association set based on their known neighbors. The K parameter reflects the number of nearest known 
neighbors, r means a decay term where r ≤ 1. In this study, we mainly focus on the influence of number of nearest 
known neighbors to reduce the impact of sparsity data problem. The more nearest known neighbors were cho-
sen, the more associations between diseases and miRNAs would be added into the heterogeneous network. And 
the impact of sparsity data problem would be reduced. However, when the number of added associations was 
too big, the imbalanced data problem would again appear. Therefore, the two parameters would be determined 
to the optimal value before performing improved random walk on heterogeneous networks. In our experiments, 
we again and again changed the value of K and r to choose the optimal values. And it showed that AUC and 
AUPR achieve the best values when K = 5 and r = 0.7. It is similar to the result in NPCMF method26. Table 2 
shows the evaluation index changes when K was fixed to 5 and r ranged from 0.1 to 0.9 and r was fixed to 0.7 and 
K range from 1 to 9 when evaluating prediction performance over all samples.

Three parameters from improved random walk with restart.  When performing improved random walk with 
restart on heterogeneous networks, there are three parameters which can imply the result performance. The ϕ 
parameter, ϕ ∈ (0, 1), is used to indicate the jumping probability of random walker among two different networks. 
Theδ parameter , δ ∈ (0, 1), signifies the weight factor used to present the importance level or impact factor of 
two sub-networks. The γ parameter, γ ∈ (0, 1) , stands for the restart probability. We examined the influences of 
the three parameters by adjusting them over repeated experiments and then select ϕ = 0.9 , δ = 0.7andγ = 0.7 
as the optimal combination values in our proposed method.

Performance comparison with other related models.  In comparison with other related approaches 
to demonstrate the outperformance of our model, we compare our model performance with the performances 
of NTSHMDA29, PMFMDA4, IMCMDA13 and MCLPMDA14 models under best averaged fivefold cross valida-
tion experiments The NTSHMDA method contained an extended Random Walk with Restart algorithm which 
we used in our method. PMFMDA, ICMMDA and MCLPMDA methods used the same miRNA–disease asso-
ciation dataset as in our experiments. The performances of these methods in terms of AUCs and AUPRs are 
shown in Fig. 7. As can be seen, our proposed approach is superior to all NTSHMDA, PMFMDA, IMCMDA 
and MCLPMDA methods in AUC measurement of 0.61%, 0.6%, 14.5% and 7.5%, respectively. It is superior to 
all NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in AUPR measurement of 13.62%, 35.04%, 
60.44% and 53.52%, respectively. The differences in accuracy values between different methods indicated that 
our proposed method outperforms all other previous related methods. Especially, in the kind of imbalanced 
datasets, the significant improvement in AUPR performance prediction showed that our proposed method 
could be considered to be more informative and reliable than other previous related methods.

Additionally, to understand the effects of using WKNKN and integrating multiple similarities independently, 
we also draw ROC curves and Precision and Recall curves of performing random walk with restart in the cases 
of (1) using WKNKN as a pre-processing step and not using integrated similarities, and (2) using integrated 
similarities and not using WKNKN as a pre-processing step. As shown in Fig. 8a, the AUC value of the proposed 
method seems to be the average of the AUC values of the above cases (1) and (2). And, as illustrated in Fig. 8b, 
the AUPR value of the proposed method is the highest one in comparison with the above cases. It means that 
both cases of using WKNKN algorithm as a pre-processing step and using integrated similarities respectively, 
can increase the AUPR values while using WKNKN algorithm as a pre-processing step can reduce the impact 
of sparsity data problem when evaluating AUC values.

Table 2.   Evaluation of index changes in WKNKN algorithm.

Index changes

K = 5

Index changes

r = 0.7

AUC​ AUPR AUC​ AUPR

r = 0.1 0.9528 0.8049 K = 1 0.9503 0.7564

r = 0.2 0.9621 0.8245 K = 2 0.9628 0.8396

r = 0.3 0.9701 0.8434 K = 3 0.9698 0.8431

r = 0.4 0.9767 0.8622 K = 4 0.9761 0.8962

r = 0.5 0.9818 0.8795 K = 5 0.9883 0.9073

r = 0.6 0.9855 0.8946 K = 6 0.987 0.9046

r = 0.7 0.9883 0.9073 K = 7 0.9855 0.9027

r = 0.8 0.9876 0.9058 K = 8 0.9828 0.8979

r = 0.9 0.9875 0.9054 K = 9 0.9798 0.8955
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Case studies.  In addition to fivefold-cross-validation experiments, we also employed some case studies on 
our proposed approach by doing experiments on all known samples of miRNA–disease associations and for a 
given disease, the candidate associated miRNAs’ scores are sorted in descending order to have predicted associa-
tions. In more details, the case studies on Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms 
are constructed to show the ability of our approach in order to infer miRNA–disease associations.

Breast neoplasms.  Breast Neoplasms is also known as Breast Cancer, it is the leading cause of cancer death in 
women worldwide. MicroRNAs (miRNAs) have been found to play an important role in breast cancer37,38. For 
example, miR-34 family members in regulating of proliferation, apoptosis, invasion, and metastasis of breast 
cancer cells39. miR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 
and SIRT140. In this paper, we selected Breast Neoplasms as a case study to demonstrate the ability of our method 
in inferring miRNA–disease associations. As can be seen in Table  3, in top 40 predicted Breast Neoplasms-
associated miRNAs, there is one new miRNA–disease association. This new association has been verified in 
dbDEMC V2.0 database.

Hepatocellular carcinoma.  Hepatocellular carcinoma (HCC) is the most common primary liver malignancy 
and it is a leading cause of cancer-related death in global41. In the United States, HCC is the ninth leading 
cause of cancer deaths42,43. MiRNAs are essential participants and regulators and they also play important roles 
in the development and progression in HCC41. For instances, microRNA-146a inhibits cancer metastasis by 
downregulating VEGF through dual pathways in hepatocellular carcinoma44. miRNA-21 contributes to tumor 

Figure 7.   ROC curves and AUC values (a) and precision-recall curves and AUPR values (b) in comparison 
with other related approaches.

Figure 8.   ROC curves and AUC values (a) and precision-recall curves and AUPR values (b) in different cases 
of RWRMMDAs.
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progression by converting hepatocyte stellate cells to cancer-associated fibroblasts in HCC45. By selecting HCC 
as a case study to illustrate the ability of our approach, it discovered 12 new associations out of top 40 predicted 
Hepatocellular Carcinoma-associated miRNAs as can be seen in Table 4. To increase the reliability of predicted 
results, we already checked the evidences of these new predicted associations in dbDEMC V2.0, mirCancer, 
mirdb (http://​mirdb.​org/) databases as well as in other literatures. For examples, the new predicted associa-
tion between hsa-mir-452 miRNA and Hepatocellular carcinoma disease has been verified in dbDEMC V2.0 
database and some other published papers46–48. For the new predicted association between has-mir-454 and 
Hepatocellular carcinoma disease, Yu et al.49 proved that miR-454 functions as an oncogene by inhibiting CHD5 

Table 3.   Top 40 predicted breast neoplasms-associated miRNAs.

Rank miRNA Known before Evidence(s) Rank miRNA Known before Evidence(s)

1 hsa-mir-298 1 Known association 21 hsa-mir-874 1 Known association

2 hsa-mir-1245a 1 Known association 22 hsa-mir-632 1 Known association

3 hsa-mir-1245b 1 Known association 23 hsa-mir-301b 1 Known association

4 hsa-mir-1323 1 Known association 24 hsa-mir-452 1 Known association

5 hsa-mir-1469 1 Known association 25 hsa-mir-922 1 Known association

6 hsa-mir-181 1 Known association 26 hsa-mir-519d 1 Known association

7 hsa-mir-2355 1 Known association 27 hsa-mir-215 1 Known association

8 hsa-mir-3130 1 Known association 28 hsa-mir-147a 1 Known association

9 hsa-mir-3186 1 Known association 29 hsa-mir-320e 1 Known association

10 hsa-mir-4257 1 Known association 30 hsa-mir-450a 1 Known association

11 hsa-mir-4306 1 Known association 31 hsa-mir-450b 1 Known association

12 hsa-mir-718 1 Known association 32 hsa-mir-320d 1 Known association

13 hsa-mir-505 1 Known association 33 hsa-mir-202 1 Known association

14 hsa-mir-200 1 Known association 34 hsa-mir-345 1 Known association

15 hsa-mir-1915 1 Known association 35 hsa-mir-520b 1 Known association

16 hsa-mir-1471 1 Known association 36 hsa-mir-193a 1 Known association

17 hsa-mir-1258 1 Known association 37 hsa-mir-608 1 Known association

18 hsa-mir-520h 1 Known association 38 hsa-mir-382 0 dbDEMC V2.0

19 hsa-mir-103b 1 Known association 39 hsa-mir-324 1 Known association

20 hsa-mir-299 1 Known association 40 hsa-mir-151a 1 Known association

Table 4.   Top 40 predicted hepatocellular carcinoma-associated miRNAs.

Rank miRNA Known before Evidence(s) Rank miRNA Known before Evidence(s)

1 hsa-mir-151a 1 Known association 21 hsa-mir-320b 1 Known association

2 hsa-mir-320c 1 Known association 22 hsa-mir-320d 1 Known association

3 hsa-mir-345 1 Known association 23 hsa-mir-320e 1 Known association

4 hsa-mir-452 0 dbDEMC V2.0 24 hsa-mir-365a 1 Known association

5 hsa-mir-454 0 dbDEMC V2.0 25 hsa-mir-365b 1 Known association

6 hsa-mir-655 0 mirCancer 26 hsa-mir-425 1 Known association

7 hsa-mir-484 1 Known association 27 hsa-mir-450a 1 Known association

8 hsa-mir-483 1 Known association 28 hsa-mir-450b 1 Known association

9 hsa-mir-376a 1 Known association 29 hsa-mir-493 1 Known association

10 hsa-mir-144 1 Known association 30 hsa-mir-519d 1 Known association

11 hsa-mir-590 1 Known association 31 hsa-mir-520b 1 Known association

12 hsa-mir-509 0 dbDEMC V2.0 32 hsa-mir-608 1 Known association

13 hsa-mir-765 1 Known association 33 hsa-mir-638 0 dbDEMC V2.0

14 hsa-mir-346 1 Known association 34 hsa-mir-378b 0 http://​mirdb.​org/

15 hsa-mir-193a 1 Known association 35 hsa-mir-378c 0 dbDEMC V2.0

16 hsa-mir-550a 1 Known association 36 hsa-mir-378d 0 dbDEMC V2.0

17 hsa-mir-105 1 Known association 37 hsa-mir-378e 0 http://​mirdb.​org/

18 hsa-mir-1290 1 Known association 38 hsa-mir-378f 0 http://​mirdb.​org/

19 hsa-mir-147a 1 Known association 39 hsa-mir-378g 0 http://​mirdb.​org/

20 hsa-mir-202 1 Known association 40 hsa-mir-378h 0 http://​mirdb.​org/

http://mirdb.org/
http://mirdb.org/
http://mirdb.org/
http://mirdb.org/
http://mirdb.org/
http://mirdb.org/
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in hepatocellular carcinoma. Wu et al.50 indicated that MicroRNA-655-3p functions as a tumor suppressor by 
regulating ADAM10 and β-catenin pathway in Hepatocellular Carcinoma.

Stomach neoplasms.  Stomach Neoplasms is also known as Stomach Cancer or Gastric Cancer. It is one of the 
most common malignant neoplasms worldwide. It has a high incidence and mortality51. It is needed to identify 
sufficiently sensitive biomarkers for Gastric Cancer. MicroRNAs (miRNAs) could be promising potential bio-
markers for Gastric Cancer diagnosis. Various studies have indicated important role of the microRNAs in gastric 
cancers52,53. Instantly, microRNA-181a Functions as an Oncogene in Gastric Cancer by Targeting Caprin-154. 
The development of gastric cancer is affected by MicroRNA-183’s regulating autophagy via MALAT1-miR-183-
SIRT1 axis and PI3K/AKT/mTOR signals55. With case study of Stomach Neoplasms, our method uncovers 7 
new predicted miRNA–disease associations out of top 40 predicted Stomach Neoplasms-associated miRNAs as 
be shown in Table 5. All of these new predicted miRNA–disease associations have been verified in other data-
bases such as mirCancer, mirDB, dbDEMC V2.0 and other literatures. For examples, Wang et al.56 showed that 
Hsa-mir-152 expression was significantly down regulated in Gastric Cancer cell lines. MicroRNA-338 inhibits 
growth, invasion and metastasis of Gastric Cancer by Targeting NRP1 Expression57.

Predicting new disease‑related miRNAs.  The dataset used in this study does not contain any new disease or 
new miRNA. It means that a disease or a miRNA in this dataset has at least one known association with other 
miRNAs or diseases. Therefore, to demonstrate the proposed method’s performance in predicting new disease-
related miRNAs, we conducted two simulated experiments on Lung Neoplasms and Ovarian Neoplasms dis-
eases.

The first simulated experiment was conducted based on Lung Neoplasms. It is also known as Lung Cancer and 
is the leading cause of cancer deaths worldwide58. The clinical applications of miRNAs in lung cancer diagnosis 
and prognosis have been indicated in many studies58,59. In this study, the dataset contained 132 associations 
between Lung neoplasms and miRNAs. We already removed all known associations related to Lung neoplasms 
to perform the simulated experiment of predicting new disease-related miRNAs. After performing simulated 
experiments, we selected top ten predicted miRNAs for Lung cancer to report the performance of our method. 
As can be seen in Table 6, in top ten predicted miRNAs, our method successfully predicted four known associa-
tions and it inferred six new associations. All of six new predicted associations have been confirmed in other 
databases or literature.

The second simulated experiment was performed on Ovarian Neoplasms. It is also known as Ovarian Cancer 
and has the highest mortality rate among gynecological cancers60. miRNAs have been indicated to be promising 
biomarkers for Ovarian Cancer60–62. The dataset in this study included 114 known associations between miRNAs 
and Ovarian Neoplams. We performed the simulated experiment on Ovarian Neoplasms by removing all known 
associations related to Ovarian Neoplams and making them to be unknown. The simulated result showed that in 
top ten predicted miRNAs for Ovarian Neoplasms, three known associations have successfully been predicted 
and seven new associations have been reported. All of seven new predicted associations have been confirmed 

Table 5.   Top 40 predicted stomach neoplasms-associated miRNAs.

Rank miRNA Known before Evidence(s) Rank miRNA Known before Evidence(s)

1 hsa-mir-103a 1 Known association 21 hsa-mir-374a 1 Known association

2 hsa-mir-152 0 dbDEMC V2.0 22 hsa-mir-409 1 Known association

3 hsa-mir-449a 1 Known association 23 hsa-mir-423 0 http://​mirdb.​org/

4 hsa-mir-338 0 mirCancer 24 hsa-mir-495 1 Known association

5 hsa-mir-374b 1 Known association 25 hsa-mir-513a 1 Known association

6 hsa-mir-421 1 Known association 26 hsa-mir-515 1 Known association

7 hsa-mir-433 1 Known association 27 hsa-mir-516b 1 Known association

8 hsa-mir-519a 1 Known association 28 hsa-mir-519c 1 Known association

9 hsa-mir-650 1 Known association 29 hsa-mir-519e 1 Known association

10 hsa-mir-744 1 Known association 30 hsa-mir-520a 1 Known association

11 hsa-mir-301b 0 dbDEMC V2.0 31 hsa-mir-526a 1 Known association

12 hsa-mir-107 1 Known association 32 hsa-mir-625 1 Known association

13 hsa-mir-128 1 Known association 33 hsa-mir-661 1 Known association

14 hsa-mir-497 1 Known association 34 hsa-mir-302e 1 Known association

15 hsa-mir-296 1 Known association 35 hsa-mir-302f 1 Known association

16 hsa-mir-328 1 Known association 36 hsa-mir-130b 1 Known association

17 hsa-mir-520d 1 Known association 37 hsa-mir-217 0 dbDEMC V2.0

18 hsa-mir-135b 1 Known association 38 hsa-mir-371 0 mirCancer

19 hsa-mir-151b 1 Known association 39 hsa-mir-98 0 dbDEMC V2.0

20 hsa-mir-340 1 Known association 40 hsa-mir-186 1 Known association

http://mirdb.org/
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in other databases or literature. The top ten predicted associations for Ovarian Neoplasms in simulated experi-
ment were shown in Table 7.

Conclusion and discussions
Inferring potential miRNA–disease associations by integrating various types of prior information is a very 
challenging and meaningful work for disease-related researches. In this paper, we proposed a new method to 
infer miRNA–disease associations using improved random walk with restart and integrating multiple similari-
ties (RWRMMDA) such as miRNA functional similarity, disease semantic similarity and network topological 
similarities of miRNA–disease association network. With Global LOOCV AUC (Area Under Roc Curve) and 
AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, respectively, and AUC and AUPR values 
of 0.9855 and 0.8642, respectively, under fivefold-cross-validation experiments, it illustrated that our proposed 
method achieved a reliable performance. In comparison with other related previous methods, it outperformed 
than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR values. In case 
studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms diseases, it inferred 1, 12 and 
7 new associations out of top 40 predicted associations, respectively. All of these new predicted associations have 
been confirmed in different databases or literatures. Therefore, our proposed method could be considered as a 
useful and meaningful tool to infer potential miRNA–disease associations.

There are some factors which contribute to the desirable performance of our proposed method as follows. 
Firstly, the known miRNA–disease associations which includes 5430 experimentally verified associations between 
383 diseases and 495 miRNAs were gathered from the HMDD V2.0 database are reliable and they were used in 
many recent researches4,14,27. Secondly, both AUC and AUPR values of the proposed method were increased by 
using integrated similarities although it did not reduce the effect of sparsity data problem. Thirdly, the impact 
of sparsity data problem was reduced by performing a WKNKN algorithm as a pre-processing step to exclude 
unknown values in miRNA–disease association set based on their known neighbors. Therefore, the prediction 
performance becomes more informative. And finally, the most importance point is that the improved random 
walk with restart algorithm in our method was differed to common random walk with restart algorithms18–20. 
By supposing that a disease (miRNA) would have different relevant probabilities to each associated miRNA 
(disease), each miRNA–disease association was accredited different weight value in different heterogeneous 
network spaces which were built from integrating of multiple similarities. It would result in the trends to select 
actual miRNA–disease association couple with higher possibility when the extended random walk with restart 
algorithm was performed, from that prediction bias is limited.

Although our proposed approach achieves a reliable prediction performance and it could infer new disease-
related miRNAs as indicated in the simulated experiments’ results of Lung Neoplasms and Ovarian Neoplasms 
in predicting new disease-related miRNAs section. However, subjectively choosing a new disease to perform 
simulated experiments by removing all its known associations can cause the bias in prediction. Therefore, it 
requires to do further researches or integrate more biological information to increase the reliability of prediction 
in case of new diseases or new miRNAs.

Table 6.   Top 10 predicted lung neoplasms-associated miRNAs in the simulated experiment for predicting new 
disease-related miRNAs.

Rank miRNA Known before Evidence(s) Rank miRNA Known before Evidence(s)

1 hsa-mir-1297 1 Known association 6 hsa-mir-1301 0 dbDEMC V2.0

2 hsa-mir-511 1 Known association 7 hsa-mir-92a 1 Known association

3 hsa-mir-1202 0 dbDEMC V2.0 8 hsa-mir-26 0 PMID: 30687089

4 hsa-mir-1231 0 dbDEMC V2.0 9 hsa-mir-500b 0 dbDEMC V2.0

5 hsa-mir-224 1 Known association 10 hsa-mir-517c 0 dbDEMC V2.0

Table 7.   Top 10 predicted ovarian neoplasms-associated miRNAs in the simulated experiment for predicting 
new disease-related miRNAs.

Rank miRNA Known before Evidence(s) Rank miRNA Known before Evidence(s)

1 hsa-mir-1299 1 Known association 6 hsa-mir-26 0 PMID: 27158389

2 hsa-mir-224 1 Known association 7 hsa-mir-500b 0 dbDEMC V2.0

3 hsa-mir-1231 0 dbDEMC V2.0 8 hsa-mir-517c 0 PMID: 30687089

4 hsa-mir-1234 0 dbDEMC V2.0 9 hsa-mir-527 0 dbDEMC V2.0

5 hsa-mir-1301 0 dbDEMC V2.0 10 hsa-mir-92b 1 Known association



15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21071  | https://doi.org/10.1038/s41598-021-00677-w

www.nature.com/scientificreports/

Data availability
The datasets were curated from public databases, HMDD V2.0 database (https://​www.​cuilab.​cn/​hmdd/) and 
MeSH descriptors (http://​www.​ncbi.​nlm.​nih.​gov/). The processed data along with codes are available upon 
request.
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