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Uncovering early events in primary 
Epstein‑Barr virus infection using 
a rabbit model
Narendran Reguraman, Asma Hassani, Pretty Philip & Gulfaraz Khan*

Epstein‑Barr virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of several 
malignant and non‑malignant conditions. However, a number of fundamental aspects about the 
biology of EBV and the mechanism(s) by which this virus induces pathology remain unknown. One 
major obstacle has been the lack of a suitable animal model for EBV infection. In this study, using our 
recently established rabbit model of EBV infection, we examined the early events following primary 
EBV infection. We show that, both immunocompetent and immunosuppressed animals were readily 
susceptible to EBV infection. However, immunosuppressed animals showed marked splenomegaly 
and widespread infection. Following EBV infection, the virus primarily targeted naïve  IgM+,  CD20+, 
 CD21+ and  CD79a+ B cells. Infected cells expressed varying sets of viral latent/lytic gene products. 
Notably, co‑expression of latent and lytic proteins in the same cell was not observed. Infected cells in 
type 0/1 latency  (EBERs+), were small and proliferating  (Ki67+). By contrast, cells in type 2/3 latency 
 (LMP1+), were large, non‑proliferating (Ki‑67−) and  p53+. Although infected B‑cells were widely present 
in splenic follicles, they did not express germinal center marker, BCL‑6. Taken together, this study 
shows for the first time, some of the early events following primary EBV infection.

Epstein-Barr virus (EBV) is a common herpesvirus associated with the pathogenesis of a number of malignant 
and non-malignant conditions. A large part of our current understanding of the biology of EBV is based on 
in vitro studies of infection of human B-lymphocytes. In vitro infection of B-cells leads to their  immortalization1. 
In these cells, the virus establishes a latent infection, in which upto 11 viral products, namely 6 Epstein-Barr 
nuclear antigens (EBNA1, EBNA2, EBNA3a, EBNA3b, EBNA3c, EBNA-LP), 3 latent membrane proteins (LMP1, 
LMP2a, LMP2b) and large quantities of two non-protein encoding RNAs (EBER-1 and EBER-2) are  expressed2. 
This is referred to as type III latency or growth program.

By contrast, the biology of EBV infection in vivo is much more complex and less well understood. Although 
it is known that EBV is transmitted via the oral route, it is unclear whether B-cells or oropharyngeal squamous 
epithelial cells are the initial cellular targets of  EBV3–5. In healthy carrier, circulating memory B cells are believed 
to constitute the main virus reservoir. However, EBV can also infect T cells and NK cells in T/NK cell lympho-
mas, and epithelial cells in certain malignancies such as nasopharyngeal carcinoma and gastric  cancer6–8. What 
is clear, is that EBV establishes a life-long persistence in resting memory B-lymphocytes9. In these cells, the 
virus expresses little or no viral proteins. This is referred to as type 0  latency10. However, the details of the early 
events in primary EBV infection in vivo remain  unknown11. One major obstacle, which has hampered research 
in uncovering the early events in EBV biology, has been the lack of a suitable animal model. EBV is highly cell 
tropic, infecting only human B-cells expressing CD21  receptor12. B-cells from animals such as mice or rats cannot 
be infected with EBV, in vivo or in vitro. EBV-like viruses infecting mice or  primates13–17 have been used to study 
EBV, as have humanized mice and Chinese tree  shrews18–20. These models, albeit useful, have their drawbacks 
and do not fully recapitulate natural infection in  humans21. Thus, without a suitable animal model, a number of 
fundamental questions relating to the early events in primary EBV infection remain outstanding.

Recent studies have shown that EBV can infect rabbits by different routes of administration, such as intrave-
nous and  intranasal22, 23. Previously, we have shown that healthy rabbits are susceptible to EBV infection and the 
virus establishes long-term persistence without causing any obvious  pathologies24, 25. These features are similar to 
latent EBV infection observed in humans. Furthermore, immunosuppression of latently infected rabbits leads to 
proliferation and widespread dissemination of EBV infection, comparable to that seen in post-transplant patients 
on immunosuppressive therapy. It has been hypothesized that the germinal centers (GCs) of the secondary lym-
phoid tissues are fundamental, not only for EBV persistence, but also for proliferation of EBV infected  cells26–29.
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In this study, we used our established rabbit model to understand the early events in EBV biology and deter-
mine the cellular targets and role of GCs in primary EBV infection. Our findings show that naïve B-cells are the 
primary target for the virus. The infected cells appear to be a heterogeneous population, expressing different 
viral latency programs. Notably, the EBV infected cells proliferating in the lymphoid follicles, do not appear to 
express germinal center B-cell marker.

Results
Clinical and autopsy findings. Animals were monitored on daily basis by a qualified veterinarian. No 
clinical symptoms were observed in any of the animals in the non-infected control groups (PBS only/CsA only) 
or in the EBV infected immunocompetent animals (EBV only). This is consistent with our previous findings 
indicating that EBV infection of healthy immunocompetent rabbits results in asymptomatic long-term persis-
tence of the virus, analogous to what has been observed in  human24, 25. Furthermore, at autopsy, these animals 
also showed no gross macroscopic changes in organs such as the spleen or liver. Both of these organs were within 
normal size range (Fig. 1A, B). By contrast, some of the animals in the immunosuppressed groups [EBV > CsA 
(n = 2/6), EBV + CsA (n = 2/6) and CsA > EBV (n = 3/6)], showed signs of poor activity and weight loss during the 
last week of infection. Upon sacrifice, autopsy findings from these same animals revealed macroscopic changes, 
most notably in the spleen. The spleen was not only considerably larger (6–8 cm) than the non-infected controls 
(approximately 4 cm), but importantly, it was visibly abnormal, weighing 0.2–2.7 g (Fig. 1G–I). Irrespective of 
when immunosuppression was started (i.e. pre, same time or post EBV infection), the spleens of these animals 
were heavily inflamed, nodular, and in some cases had visible cysts.

EBV is present in the spleen of infected animals. EBER in situ hybridization was used for the detec-
tion of EBV in formalin-fixed, paraffin embedded spleen sections. Although all EBV infected animals, immu-
nocompetent and immunosuppressed, were clearly found to be infected, the degree of infection varied con-
siderably between the two groups (Fig. 1). In the healthy immunocompetent animals, EBV infected cells were 
limited and scattered in the spleen (Fig. 1F). By contrast, in the immunosuppressed group, EBV infection was 
widespread and extensive (Fig. 1J–L), suggesting higher viral levels in infected animals with weakened immune 
system. Among the three immunosuppressed groups, CsA followed by EBV infection group (CsA > EBV) had 
the highest number of  EBER+ cells in the spleen. Intriguingly, some of these  EBER+ cells were markedly large 
and multi-nucleated, resembling Reed-Sternberg (RS) like cells of Hodgkin lymphoma (Fig. 1L). These bizarre-
looking cells were primarily observed in the immunosuppressed and not in the immunocompetent animals. No 
EBER signal was detected in the spleen sections from the non-infected control groups (PBS or CsA) (Fig. 1D–E). 
We also performed qPCR to determine viral load in plasma, PBMCs and spleen from the different immunocom-
petent and immunosuppressed groups. Viral load in the spleen was observed to be comparatively higher than 
that in the plasma and PBMCs (Fig. 1M).

EBV infected cells in the spleen express B‑cell markers. To determine the phenotype of EBV infected 
cells in the rabbit spleen, we used double staining for different viral and cellular markers. For B-cells, we used 
CD19, CD20 and CD79a (all pan-B cell markers). For naïve B cells, we used IgM. Additionally, we used CD21, a 
B-cell marker and a known receptor for EBV. For T-cells, we used CD3 (pan-T-cell marker).

Double staining clearly revealed that B-cells were the primary target for EBV. Infected cells expressed CD19, 
CD20, CD21 and CD79a (Fig. 2A–B and sFig. 1). A large proportion of EBV infected B-cells were found to be 
naïve B-cells expressing IgM (Fig. 2C and sFig. 2). Infected B cells also showed variable expression of B cell 
markers such as CD79a (low) and IgM (high). By contrast, we did not observe any CD3-positive T-cells to be 
EBV infected (Fig. 2D).

EBV infected cells in the spleen express different viral latent proteins. Immunohistochemis-
try was performed to determine the expression of various latent and lytic proteins in formalin-fixed, paraffin 
embedded spleen sections. Although both immunocompetent and immunosuppressed animals infected with 
EBV expressed various viral latent proteins (EBNA1, EBNA2 and LMP1), the degree of expression of these pro-
teins differed between the groups. The spleens from immunosuppressed animals showed extensive and varied 
expression of EBNA1 (Fig. 3A–C), LMP1 (Fig. 3D–F), and to a lesser extent, the lytic protein, BZLF1 (sFig. 3). 
Among the three immunosuppressed groups, CsA > EBV group showed the most extensive and widespread EBV 
infection, and viral gene expression (Fig. 3C and F). We also observed multinucleated cells with marked increase 
in their size resembling Reed-Sternberg like cells in the spleen with extensive infections (sFig. 4). Notably, the 
expression of EBV latent proteins was most prominent in sites that resembled follicles of secondary lymphoid 
organs (Fig. 3D–F). We performed double-staining for latent and lytic proteins to determine whether these two 
programs co-expressed in EBV infected cells. The staining revealed that most, but not all,  EBER+ cells expressed 
LMP1 in the spleen of immunocompromised animals (Fig. 3G and sFig. 4). Similarly, majority of the  EBNA2+ 
cells also expressed LMP1 (Fig. 3H and sFig. 5). By contrast, double staining for BZLF1 and LMP1 revealed that, 
 BZLF1+ cells were LMP1 negative (Fig. 3I and sFigs. 6 and 7). Thus, the lytic marker BZLF1 and latent marker 
LMP1 do not appear to be co-expressed at the same time in the same cell. Taken together, these double staining 
experiments indicate that in primary EBV infection in vivo, EBV infected cells at different patterns of viral gene 
expression can be seen in the same tissue (Fig. 3G–I, sFigs. 3–7).

We also noted that EBV infected cells were frequently present in the follicles. However, their distribution 
within the follicles varied considerably. In some cases, EBV infected cells heavily infiltrated the marginal/mantle 
zone (Fig. 3D–E), whilst in others, they were evenly distributed throughout the follicle (Fig. 3C). In cases where 
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Figure 1.  Macroscopic visualization of rabbit spleens. (A) Spleen of PBS and (B) CsA from non-infected control animals and (C) 
infected immunocompetent group. (D–F) EBER-ISH for the detection of EBV showed positive signals only in sections from infected 
animals, but not in non-infected controls. (G–I) In contrast to healthy immunocompetent animals, the spleens from infected and 
immunosuppressed animals were greatly enlarged and visibly abnormal. EBER-ISH indicated widespread infection in the spleen of 
all three immunosuppressed groups, irrespective of when immunosuppression was started, (J) EBV > CsA, (K) EBV + CsA or (L) 
CsA > EBV. (M) Comparison of viral load by qPCR indicated that the spleen had the highest load, compared to PBMCs and plasma.
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there was extensive infection, as in CsA > EBV group, multiple EBV positive follicles could be seen fused into 
one large network of infected cells, destroying the normal splenic follicular structure (Fig. 3F).

EBV infected cells in the spleen proliferate in the follicles. Since EBV infected cells were frequently 
observed in the follicles of the spleen, we wanted to determine if virus-infected cells were proliferating in lym-
phoid follicles.

In healthy non-infected spleen, prominent and strong PCNA/Ki67-positive cells were located in the germinal 
center (GC) of follicles (Fig. 4A). Tightly connected  PCNA+ cells were organized into well defined GC struc-
tures. By contrast, in non-infected, immunosuppressed controls (CsA only), the  PCNA+ cells were scattered in 
both the follicular and interfollicular regions (Fig. 4B). In the EBV infected and immunosuppressed animals, 
however, PCNA stained most of the cells in the follicles, and many in the interfollicular regions (Fig. 4C). It 
is noteworthy that we did not observe typical germinal center-like structures in immunosuppressed animals, 
whether infected or non-infected.

While EBERs are the only EBV transcripts that are typically expressed in latency 0 of EBV infection, LMP-1 is 
expressed in latency II/III. To determine which EBV infected cells were proliferating in the spleen of rabbits, we 
performed double staining for EBERs and Ki-67, and LMP1 and Ki-67. The results indicated that EBER-positive 
cells were generally small and Ki67 positive (Fig. 4D–F). Surprisingly, the large LMP1-positive cells were Ki67 
negative, indicating that these cells were not proliferating (Fig. 5B–C). Moreover, LMP1-positive cells were also 
found to be p53 positive (Fig. 5E–F). As expected, in the PBS non-infected control animals, no expression of 
LMP1 was observed. Although, Ki67 proliferating cells were abundantly present in the spleen from the PBS 
control animals (Fig. 5A), very little expression of p53 was observed (Fig. 5D).

EBV infected cells do not express the GC marker BCL6. To determine if EBV infected cells were ger-
minal center cells, we performed double staining for LMP1 and BCL6, a marker of germinal center (GC) cells. 

Figure 2.  The phenotype of EBV infected cells in the spleen are B-cells. Representative spleen sections showing 
double-staining for EBV and B-cell markers: (A) CD21 (brown) and EBNA1 (blue), (B) CD79a (brown) and 
EBNA2 (blue), (C) IgM (pink) and EBERs (blue). (D) Double staining for T-cell marker CD3 (green) and 
EBERs (blue), indicated that T-cells were not the target of EBV infection.
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No co-expression of these markers was observed (Fig. 6B), indicating that EBV-LMP1+ cells are not GC cells. 
Indeed,  LMP1+ and  BCL6+ cells were spatially distributed in different regions of the follicle (Fig. 6B). We also 
observed that  BCL6+ cells were less abundant in the spleen of EBV infected animals compared to non-infected 
PBS control (Fig. 6A).

Discussion
Epstein-Barr virus (EBV) is a common herpesvirus asymptomatically carried by over 90% of the human popula-
tion. In the vast majority of infected individuals, the virus persists in B-cells without causing any symptomatic 
 disease30, 31. However, in certain circumstances, such as in immunocompromised states, this virus can lead to 
life threatening diseases including  malignancies32–34. Unfortunately, several fundamental aspects of the biology 
of EBV and its association with human diseases remain poorly understood. The lack of a suitable animal model 
for EBV infection has contributed to this limitation. Recent evidence suggests that rabbits can be susceptible 
to EBV infection, and can be used to study long term infection in vivo24, 25, 35. In these animals, the virus per-
sist asymptomatically for months. These features are similar to latent EBV infection seen in healthy human 
 carriers9, 23. When infected rabbits are immunosuppressed, peripheral EBV load increases from undetectable 
to several thousand  copies24. Additionally, EBV infected rabbits have been shown to mount a strong humoral 
immune response against the  virus36. Using this rabbit model, we report, for the first time, the early events dur-
ing primary EBV infection in vivo.

Intravenous introduction of EBV resulted in all animals contracting the virus. In contrast to the immuno-
competent animals, the spleen from infected immunosuppressed group, showed marked splenomegaly and vis-
ible inflammatory  nodules24, 35. On histology, the enlarged spleens showed evidence of extensive infection and 

Figure 3.  EBV infected cells in the spleen express different viral latent proteins. (A–C) EBNA1 and (D–F) 
LMP1 in the spleen from rabbits infected and immunosuppressed at different time points (EBV > CsA), 
(EBV + CsA) or (CsA > EBV). (G) Double immunofluorescence for EBERs (blue) and LMP1 (green) indicated 
that a large proportion of  EBER+ cells also expressed LMP1. (H) Similarly, most of the  EBNA2+ cells (blue) were 
also  LMP1+ (brown). (I) By contrast,  BZLF1+ cells (blue) did not co-express LMP1 (brown).
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Figure 4.  Infected cells proliferate in the lymphoid follicle. Representative spleen sections stained for PCNA, 
from: (A) Non-infected PBS control animal, (B) non-infected immunosuppressed control animal, and (C) 
EBV infected and immunosuppressed animal. Double immunofluorescence staining of spleen sections for: (D) 
EBERs (green), (E) Ki67 (blue) and (F) merged image shows that some of the  EBER+ cells are also  Ki67+.

Figure 5.  LMP1+ cells do not proliferate, but accumulate p53. Double staining for LMP1 (purple) and Ki67 
(brown) in spleen, in: (A) non-infected PBS control, (B) infected immunocompetent animal, and (C) infected 
immunosuppressed animal. Double staining for p53 (brown) and LMP1 (purple), in: (D) non-infected PBS 
control, (E) infected immunocompetent animal, and (F) infected immunosuppressed animal.
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destruction of the splenic architecture. It is likely that the weakened immune system allowed infected cells to 
undergo rapid proliferation. As a result, large number of EBV infected cells contributed to marked increase in the 
size of the spleen. Furthermore, of the three immunocompromised groups which were infected, the animals that 
were immunosuppressed for one week followed by EBV infection (CsA > EBV) had the most extensive infection, 
reminiscent of what has been observed in patients with congenital immunodeficiencies, such as X-linked lym-
phoproliferative disease (XLP)37. These patients typically develop EBV-associated lymphoproliferative diseases 
on primary infection and die early in  childhood38, 39. In addition to the extensive infection, EBV infected cells 
in immunocompromised animals, were transcriptionally active and expressed a range of viral proteins. In the 
EBV > CsA group, the host immune system was not suppressed initially for 1 week. This allowed the immune 
system to control the viral infection. Upon starting CsA treatment at week 2, the virus faced relatively less efficient 
immune response, which facilitated the virus spreading to major organs such as spleen and liver. However, in 
CsA > EBV group, the suppression of immune system 1 week prior to infection, provided the opportunity for the 
rapid proliferation of the infected cells as soon as the virus gained entry into the host. During the primary EBV 
infection and persistence, hierarchical immune response is driven by specific latent and lytic gene  expression40. 
Despite the concomitant presence of infected cells expressing latent and lytic viral markers in the same follicle, 
we did not observe co-expression of lytic and latent proteins at the individual cell level, at least using immu-
nohistochemistry. This observation is supported by reports that indicate that there is little or no overlap in the 
coexpression of LMP1 and BZLF1 in in vitro infected  cells41. One plausible explanation is that LMP1 could be 
inhibiting viral lytic  cycle42. Furthermore, some studies have reported that BZLF1 positive cells in tumors were 
in fact negative for EBV latent products, such as  EBERs43, 44. Taken together, these observations suggests that 
during early infection in vivo, at any given time point, the cells are either in latent or lytic cycle, but not both.

Another interesting observation was that, latently infected cells were not synchronous, and cells in all the 
latency programs (0–3) were observed. This is in contrast to long-term persistence infection in healthy seroposi-
tive individuals where the virus persists in memory B-cells in latency  030. It is noteworthy that some infected cells 
were distinctly large, and frequently multinuclear. These Reed-Sternberg (RS) like cells were typically LMP1 posi-
tive. Previous in vitro studies have reported that LMP1 could mediate the development of these multi-nucleated 
 cells8, 45, 46. In heavily infected cases, the loss of well-defined B-cell areas in the spleen, indicates that the increased 
burden of EBV infection can result in the breakdown of the well-defined follicular architecture. As a result, scat-
tered, rather than clustered, B cells characterized the nearly destroyed follicle. Compared to their non-infected 
counterparts, infected B cells showed weaker CD79a, but higher IgM expression. This suggests that, EBV infec-
tion may alter the expression of some important B cell markers such as CD79a and  IgM47–50. The infected cells 
also seemed to reside primarily in the follicles, since splenic follicles are crucial site for B cell development. The 
majority of the infected cells inside the follicles were B cells. The infected cells expressed various B cell mark-
ers, including IgM, CD79a, CD20 and CD21. However, the intensity of staining for these markers varied. We 
hypothesize that the infected cells were initially restricted to the follicles, but as the infection spreads in situ, the 
normal structure of the follicles is destroyed. Although infected cells were abundantly present inside the follicles, 
they did not express the GC marker BCL6. This data is consistent with a previous study which reported that EBV 
infected cells can expand in the GCs, but do not necessarily participate in the GC  reaction51. It is possible that 
EBV infected cells increase in number without undergoing somatic  hypermutation26.

Another key observation was that most of the small  EBER+ cells were found to be proliferating (Ki-67+), 
whereas the large  LMP1+ cells were non-proliferating and  p53+. This was somewhat surprising, as LMP1 is known 
to be an essential viral protein involved in cell proliferation and transformation. In epithelial cells, it has been 
reported that the expression of LMP1 can result in p53 accumulation, but p53-mediated apoptosis is inhibited 
by LMP1 induced expression of anti-apoptotic factors such as BCL-2 and  A2052–54.

Figure 6.  EBV infected cells in the GC do not express GC marker. Double staining for BCL6 (brown) and 
LMP1 (purple) in spleen, in: (A) non-infected PBS control animal, and (B) infected immunocompetent animal 
(B).
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Taken together, we propose that in primary EBV infection in vivo, the virus targets naïve B-cells in secondary 
lymphoid organs, such as the spleen, become blast cells and undergo proliferation. These infected cells reach the 
follicles and occupy the marginal zone. Once in the marginal zone, some infected cells undergo productive cycle, 
shedding new virus particles, whilst others go through latent cycle expressing various latent genes. Among the 
cells expressing latent proteins, a portion of these cells undergo proliferation. While the infected cells are in the 
marginal zone, the GC remains intact and shows increased expression of BCL6 and Ki67. As the infection begins 
to spread through the mantle zone and further towards the GC, it begins to disrupt the structure of the GC and 
the size of the GC diminishes. These infected cells show increased expression of p53, which is not expressed 
in non-infected cells. As the number of EBV infected cells in the follicle increases, the number of  BCL6+ GC 
cells gradually decline. Eventually, the entire follicle becomes filled with EBV infected cells with no intact GC. 
The EBV infected follicles expand, losing their well demarcated cellular zones. Multiple EBV infected follicles 
eventually fuse, resulting in the destruction of the typical follicular architecture. Based on our observations, 
we believe that follicles play an important role in EBV infection and proliferation, but GCs do not appear to 
be involved. However, further research is needed to verify this hypothesis. The rabbit model of EBV infection 
described here, will certainly help in further delineating the steps involved in primary EBV infection and the 
development of EBV induced malignancies. Additionally, this model may prove to be essential for vaccine and 
therapeutic developments against EBV.

Materials and methods
Animals. Healthy New Zealand white rabbits (n = 30), aged approximately 4–8  weeks and weighing 700-
1000 g were purchased from a local vendor and housed in the animal facility of College of Medicine and Health 
Sciences, UAE University. All animals were tagged, weighed, and kept in the animal house for 2 weeks to acclima-
tize to their new environment before performing any experiments. All experiments were conducted in accord-
ance with guidelines provided by the UAE University Research Ethics Review Board (RERB) and approved 
by the Institutional (UAE University) Animal Research Ethics Committee (A-REC) (approval #A15-15: ERA 
2018–5718). The study was carried out in compliance with the ARRIVE guidelines.

Preparation of EBV inoculum for infection. EBV producing B95-8 cells were cultured at 37 °C in RPMI 
(GIBCO) supplemented with 10% Fetal Bovine Serum (FBS) (GIBCO), 50 µg/ml gentamycin (Hyclone), 1% 
antibiotic and antimycotic solution (Santa Cruz) and 1X glutamine (GIBCO), as previously  described24. Cells 
were grown to a density of approximately 6.5 ×  106cells/ml and then incubated at 30ºC for 24  h to promote 
viral production. The culture supernatant was centrifuged to remove cell debris and filtered using a 0.2  µm 
filter. Freshly filtered culture supernatant containing the virus was then used for intravenous inoculation of rab-
bits. Quantitative real-time PCR (qRT-PCR) was used to determine EBV copy number in the inoculum, using 
Namalwa cell line DNA as  standards55.

EBV infection and immunosuppression of rabbits. Animals were infected with a total of 1 ml of fresh 
filtered culture supernatant containing 1 ×  107 EBV copies, by intravenous injection into the marginal ear vein.

The animals were divided into 4 groups:

Group 1: EBV infected—immunocompetent (n = 5): All animals in this group received intravenous injection 
of 1 ×  107 copies of EBV. All animals were sacrificed 2 weeks post EBV infection.
Group 2: EBV infected—immunosuppressed (n = 18): All animals received the same dose of EBV as in group 1. 
However, these animals were immunosuppressed by daily subcutaneous injection of 20 mg/Kg of cyclosporin 
A (CsA) (Sandimmume, Novartis) until the day of sacrifice, starting at:

A. 1 week before EBV infection (CsA > EBV) (n = 6)
B. Same time as EBV infection (CsA + EBV) (n = 6)
C. 1 week post EBV infection (EBV > CsA) (n = 6)

All animals were sacrificed 2 weeks post EBV infection/CsA administration.
Group 3: Non-infected—immunocompetent control (n = 4): All animals in this group received sterile isotonic 
saline (PBS) instead of EBV. All animals were sacrificed 2 weeks post PBS administration.
Group 4: Non-infected—immunosuppressed control (n = 3): All animals in this group received PBS followed 
by daily injections of CsA. All animals were sacrificed 2 weeks post CsA administration.

All the animals were monitored on a daily basis by a veterinarian, for any signs of diarrhea, weight loss or CsA 
toxicity. Any animal showing signs of disease or distress were sacrificed in accordance with the ethical guide-
lines. On the day of sacrifice, animals were euthanized, autopsied and spleen and whole blood were harvested. 
Peripheral blood mononuclear cells (PBMCs) and plasma were isolated from whole blood using Histopaque 
1083 (Sigma). The PBMCs and plasma were then store at − 80 °C and − 40 °C, respectively, till further analysis.

EBER‑in situ hybridization for the detection of EBV. EBV in the spleen was detected using in situ 
hybridization targeting the abundantly expressed EBV-encoded RNAs (EBERs), as previously  described43, 44. 
Briefly, EBER-ISH was performed on 5-μm sections of formalin-fixed, paraffin-embedded spleen tissue using 
a mixture of digoxigenin-labeled EBER-1 and EBER-2 probes with overnight hybridization. Hybridized probes 
were detected using anti-digoxigenin mouse monoclonal antibody at a dilution of 1/2500, and the ABC-peroxi-
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dase detection kit (ThermoFischer Scientific, USA). Diaminobenzidine tetrahydrochloride (DAB) (Sigma, UK) 
was used as the chromogen. With each batch of tissue sections, a positive control (a known EBV-positive rabbit 
spleen) and a negative control (using digoxigenin-labeled non-complimentary EBER probes) were  included24. 
Sections were counterstained with hematoxylin, and slides were mounted.

Determination of EBV viral load by qPCR. DNA was extracted from rabbit samples using either the 
standard phenol–chloroform method, or DNA extraction kit (Qiagen). EBV copy number in the plasma, PBMCs 
and spleen was quantified using qPCR targeting EBV BamH1 W fragment, and Namalwa cell line DNA as 
 standards56. For each reaction, 50 ng of template DNA was used in a total volume of 20 μl using ABS TaqMan 
Universal Master Mix along with TaqMan probe. All the samples were tested either in duplicates or triplicates 
and independently repeated 3 times in a 40 cycle reaction using Applied Biosystem Quantstudio-7 (AB7500) 
real time PCR  machine24.

Immunohistochemistry for viral and cellular makers. Immunohistochemistry (IHC) was performed 
on 5-μm sections of formalin-fixed paraffin embedded rabbit spleen tissues. After deparaffinization with xylene, 
the sections were dehydrated in graded ethanol and endogenous peroxidase activity was blocked by incubating 
in 0.5%  H2O2 in methanol for 20 min. Antigen retrieval was performed by incubating the sections in boiling 
5 mM citrate buffer at pH6 for 10 min. Subsequently, sections were blocked with 5% BSA for 30 min at room 
temperature. Sections were then incubated in primary antibody for overnight, followed by secondary antibody 
for 30 min in blocking buffer (Table 1). With each batch of tissue sections, a positive control (a known EBV-pos-
itive rabbit spleen) and a negative control (a known EBV-negative rabbit spleen) were  included24. The signal was 
developed using ABC-peroxidase/DAB detection system, and sections were counterstained with hematoxylin.

Immunofluorescence (IF) staining for viral and cellular markers. For IF staining, the procedure 
was similar to IHC, except that the endogenous peroxidase blocking step was omitted and fluorochrome-conju-
gated secondary antibodies were used. To reduce autofluorescence, sections were incubated in Vector TrueView 
quenching kit (Vector Lab, USA) for 2–5  min. Finally, sections were mounted in Fluoromount (Sigma) and 
examined using fluorescence microscope.

Double‑immunostaining for viral and cellular markers. Double-immunostaining was performed on 
5-μm sections, following the IHC protocol. After developing the first antibody using ABC-peroxidase/DAB 
detection system, the sections were washed, followed by antigen retrieval for the  2nd time. The sections were 
then blocked again using 5% BSA for 30 min, followed by overnight incubation in the second primary antibody. 
Secondary antibody conjugated with alkaline phosphatase (AP) was then added and the sections were incubated 
for 30 min. The sections were then blocked in alkaline phosphatase buffer pH 9.5 for 30 min, followed by NBT-
BCIP substrate (Abcam). The slides are then gently washed, mounted and viewed under microscope. For IF 
double staining, a combination of primary antibodies were used (Table 1). Sections were incubated in 2 primary 
antibodies against 2 different targets (viral and/or cellular) overnight at room temperature. The following day, 
secondary antibodies labelled with different fluorochromes were used. Sections were quenched, mounted and 
examined using a fluorescence microscope.

Statistical analysis. Statistical analysis was performed using Kruskal-Wallis test and Prism software ver-
sion 9.1.2 (GraphPad). Data expressed here are as means ± standard error of the mean (SEM). P value ≤ 0.05 was 
considered statistically significant.

Table 1.  Antibodies used in immunohistochemistry.

Clone Target Source Specificity Dilution Company

CS1-4 LMP-1 Mouse Viral 1:1000 Abcam

D-24G LMP-1 Rabbit Viral 1:200 Thermo

D810H EBNA-1 Mouse Viral 1:20 Thermo

PE2 EBNA-1 Mouse Viral 1:100 Abcam

HM-57 CD79a Mouse Human/Rabbit 1:200 Abcam

mu chain IgM Goat Rabbit 1:500 Abcam

CD3-12 CD3 Rat Human/Rabbit 1:100 Abcam

EP3093 CD21 Rabbit Human/Rabbit 1:300 Abcam

BCL6/1527 BCL6 Mouse Human/Rabbit 1:500 Abcam

DO-1 P53 Mouse Human/Rabbit 1:250 Santa Cruz

BZ1 BZLF1 Mouse Viral 1:200 Santa Cruz

B56 Ki67 Mouse Human/Rabbit 1:250 BD Biosciences

PC10 PCNA Mouse Human/Rabbit 1:2000 Abcam
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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