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Foetal growth, birth transition, 
enteral nutrition and brain light 
scattering
Osuke Iwata1,2*, Sachiko Iwata1, Tsuyoshi Kurata2, Kennosuke Tsuda1, Koya Kawase1, 
Masahiro Kinoshita2, Yung‑Chieh Lin3, Mamoru Saikusa2, Yuko Araki4, Sachio Takashima5, 
Motoki Oda6, Etsuko Ohmae6 & Shiji Saitoh1

If the brain structure is assessed at neonatal intensive care units, covert clinical events related with 
subtle brain injury might be identified. The reduced scattering coefficient of near‑infrared light (μS’) 
obtained using time‑resolved near‑infrared spectroscopy from the forehead of infants is associated 
with gestational age, body weight and Apgar scores, presumably reflecting subtle changes of the 
brain related to foetal growth and birth transition. One hundred twenty‑eight preterm and term 
infants were studied to test whether μS’ obtained from the head at term‑equivalent age is associated 
with foetal growth, birth transition and nutritional status after birth, which are key independent 
variables of developmental outcomes. As potential independent variables of μS’, birth weight, Apgar 
scores, age at full enteral feeding and post‑conceptional age at the study were assessed to represent 
foetal growth, birth transition and nutritional status after birth. Subsequently, higher μS’ values were 
associated with higher Apgar scores (p = 0.003) and earlier establishment of enteral feeding (p < 0.001). 
The scattering property of near‑infrared light within the neonatal brain might reflect changes 
associated with birth transition and nutritional status thereafter, which might be used as a non‑
invasive biomarker to identify covert independent variables of brain injury in preterm infants.

Advances in neonatal intensive care have significantly improved the survival rate of preterm  infants1,2. However, 
a considerable fraction of extremely preterm infants develop cognitive impairments even in the absence of major 
cerebral lesions, such as intracranial haemorrhage and periventricular  leukomalacia3,4. Magnetic resonance 
imaging (MRI) studies in preterm infants have demonstrated the relationship between subtle brain lesions at 
term equivalent age and long-term cognitive  impairments5–7. However, because of the cost, time and safety asso-
ciated with the scan, MRI is usually performed only once before discharge from the hospital, causing difficulty 
in identification of the upstream events associated with subtle brain lesions. Reliable tools for the assessment 
of subtle change of the brain structure, which can be assessed before and after clinical events at the cot-side, 
may help distinguish the upstream events responsible for subtle cerebral lesions and cognitive impairments in 
preterm infants.

Near-infrared spectroscopy (NIRS) is a handy, non-invasive tool, which has been used to analyse the tissue 
oxygen metabolism in the brains of newborn  infants8–11. Near-infrared light penetrates the intact scalp, skull 
and cerebral tissue more efficiently than visible light, and is mainly absorbed by blood haemoglobin, the level 
of which depends on the binding of haemoglobin to  oxygen12. Thus, fractions of oxygenated and deoxygenated 
haemoglobin are calculated using light absorption coefficient (μa) obtained from the near-infrared light of dif-
ferent  wavelengths13. Time-resolved near-infrared spectroscopy (TR-NIRS) is a relatively new technique, which 
enables simultaneous quantification of μa and reduced scattering coefficient (μS’)14,15. Unlike μa predominantly 
provides information regarding tissue oxygenation, μS’ is an index of light scattering, which is theoretically deter-
mined by the structural complexity of  tissue13. When preterm infants were studied shortly after birth, μS’ values 
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obtained from the forehead showed a positive linear correlation with gestational  age16. Our study in preterm 
and term infants further confirmed that μS’ values obtained shortly after birth were associated with variables, 
such as antenatal glucocorticoid, emergency delivery, gestational age, body size, Apgar scores, requirement for 
mechanical ventilation and blood gas data at birth, suggesting the possibility that μS’ might reflect subtle struc-
tural changes in the brain associated with antenatal growth, peripartum stress and birth  transition17. However, 
little is known regarding the relationship between μS’ values obtained from the head of newborn infants and 
their downstream clinical outcomes.

The aim of this study was to test the association of μS’ measured at term-equivalent period with intrauterine 
growth, birth transition and nutrition after birth, which are short-term surrogate markers for neurodevelop-
mental outcomes of hospitalised newborn  infants18–21.

Results
Four infants, who developed grade III/IV intraventricular haemorrhage, and one infant, who developed hypoxic-
ischaemic encephalopathy, were excluded, leaving 128 infants within the final study cohort (Fig. 1). These infants 
had a gestation period of 32.0 ± 4.2 weeks and weighed 1564 ± 688 g at birth, and were studied on 44.8 ± 28.3 days 
of age or 38.6 ± 2.1 weeks post-conceptional age (Table 1).

For the left and right temporal regions and the posterior region, data were not obtained for 8, 8 and 21 infants, 
respectively, because of insufficient signals from the head (n = 15), poor probe contact (n = 4) and the use of a cap 
device for non-invasive respiratory support (n = 2). No further data were excluded because of their poor quality 
or reproducibility. The mean μa and μS’ values for all wavelengths and head positions were 0.126 ± 0.025  cm−1 
and 6.453 ± 1.416  cm−1, respectively.

Dependence of μa and μS’ on wavelengths and head positions. The wavelength of 836 nm was 
associated with higher μa values, whereas the wavelength of 791 nm was associated with lower μa values com-
pared to those of 761 nm (both p < 0.001) (Table 2). The right temporal and posterior regions of the head were 
associated with higher μa values compared to those of the anterior region (both p < 0.001).

The wavelengths of 791 and 836 nm were associated with lower μS’ values compared to those of 761 nm (both 
p < 0.001). The left and right temporal and posterior regions of the head were associated with higher μS’ values 
compared to the anterior region (all p < 0.001).

Dependence of μa and μS’ on clinical variables: univariate analysis. The higher μa values were 
positively associated with gestational age (p = 0.001), body weight at birth (p < 0.001), blood haemoglobin level 
at study (p < 0.001) and μS’ values (p < 0.001), and negatively associated with antenatal glucocorticoid (p < 0.001), 
cord blood pH (p = 0.003) and postnatal age at study (p = 0.001); relationships with multiple pregnancy (p = 0.016), 
head circumference at birth (p = 0.005) and body weight at study (p = 0.036) were lost after correction for multi-
ple comparisons (all adjusted for the wavelengths and head positions; Table 2 and Fig. 2).

The μS’ level was positively associated with gestational age (p < 0.001) and μa values (p < 0.001), and negatively 
associated with indomethacin for patent ductus arteriosus (p < 0.001) and postnatal age to achieve full enteral 
feeding (p < 0.001); relationships with antenatal glucocorticoid (p = 0.013), body weight and head circumference 
at birth (both p = 0.012), Apgar scores at 1 and 5 min (p = 0.039 and 0.029, respectively) and postnatal age at study 
(p = 0.003) were lost after correction for multiple comparisons (all adjusted for the wavelengths and head posi-
tions; Table 2). See Online Supplemental Tables S1–S3 for findings from analyses performed for each wavelength.

Dependence of μS’ and μa on clinical variables: multivariate analysis. Higher μa values were 
associated with greater age to achieve full enteral feeding (p = 0.049), greater post-conceptional age at study 

Figure 1.  Profile of the study population. A diagram depicting the flow of the study population.
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(p = 0.015), higher blood haemoglobin levels at study (p < 0.001) and higher μS’ values (p < 0.001) (Table  3). 
Higher μS’ values were associated with higher Apgar scores at 5  min (p = 0.003), smaller age to achieve full 
enteral feeding (p < 0.001) and higher μa values (p < 0.001). See Online Supplemental Tables S4–S6 for findings 
from analyses performed for each wavelength.

Discussion
Building on previous studies of TR-NIRS, which suggested that the light scattering within the brain shortly 
after birth is dependent on variables related to foetal growth, antenatal stress and birth transition, we have dem-
onstrated that higher μS’ values obtained at term-equivalent age were associated with higher Apgar scores and 
earlier establishment of enteral nutrition. μS’ can be a unique and clinically useful biomarker of subtle changes in 
the brains of newborn infants with respect to antenatal stress, birth transition and nutritional status after birth.

Light scattering within a tissue theoretically increases with relatively more complex microstructures due to 
increased reflection and path length of near-infrared  light14. Thus μS’ has a potential to provide microstructural 
information of the brain. Ijichi and colleagues first reported that μS’ values of near-infrared light obtained shortly 
after birth from the foreheads of newborn infants with a gestation age of 30–41 weeks depended on gestational 
 age16. Our previous study confirmed that μS’ values obtained from the foreheads of preterm and term infants 
assessed shortly after birth were dependent on body size and Apgar scores, as well as on gestational age. These 
findings suggest the possible utility of μS’ values as a non-invasive marker to evaluate subtle differences in the 
brain subsequent to foetal maturation, antenatal stress and birth  transition17. Our current study further verified 
that the μS’ value obtained at term equivalent period is associated with both clinical variables at birth and those 
related to the nutritional status of the infant after birth. Intrauterine growth and maturation, intrapartum stress 
and response and postpartum nutrition and growth constitute key independent variables of the neurodevelop-
mental outcomes of the  infant18–21. If the consequence of the intrinsic maturity, extrinsic stress, birth transition 
and nutritional status of the infant can be assessed using μS’ values obtained from the heads of newborn infants, 
along with other substantiations, μS’ might serve as a clinically useful biomarker of cerebral maturation and 

Table 1.  Background characteristics of 128 infants within the study cohort. Values are number (%), 
mean ± standard deviation or median (lower/upper quartiles). µa absorption coeffieicnt, µs’ reduced scattering 
coefficient. a Assessed at 36 weeks post-conceptional age (or on day 28 for those born later than 32 weeks 
gestation).

Maternal and antenatal variables

Antenatal glucocorticoid 61 (47.7%)

Multiple pregnancy 39 (30.5%)

Emergency caesarean delivery 55 (43.0%)

Variables at birth

Gestational age (week) 32.0 ± 4.2

Body weight at birth (g) 1564 ± 688

Z-score of above − 0.9 ± 1.3

Head circumference at birth (cm) 28.3 ± 3.5

Z-score of above − 0.2 ± 1.1

Male sex 68 (53.1%)

Cord blood pH 7.299 ± 0.146

Apgar score (1 min) 7 (4, 8)

Apgar score (5 min) 8 (7, 9)

Hypoglycaemia < 48 h of birth 8 (6.3%)

Variables during hospital stay

Indomethacin for patent ductus arteriosus 38 (29.7%)

Surgical closure of patent ductus arteriosus 1 (0.8%)

Grade I/II intraventricular haemorrhage 6 (4.7%)

Periventricular leukomalacia 1 (0.8%)

Full enteral feeding ≥ 100 mL/kg/d (day) 7.7 ± 5.3

Days on invasive ventilation 10.3 ± 18.4

Chronic lung  diseasea 22 (17.2%)

Variables at study

Post-conceptional age (week) 38.6 ± 2.1

Postnatal age (day) 44.8 ± 28.3

Body weight (g) 2775 ± 408

Blood haemoglobin (g/dL) 12.6 ± 2.4

µa  (cm−1) 0.126 ± 0.025

μS’  (cm−1) 6.453 ± 1.416
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damage. Future studies need to address the contribution of other potential independent variables of light scat-
tering as measured from the scalp, such as the gyration of the brain and developmental changes in the layer of 
cerebrospinal fluid.

With regard to the absorption of near-infrared light, only modest relationships were observed between higher 
μa values and longer time to achieve full enteral feeding and greater post-conceptional age at the time of the study; 
robust correlations were only observed between μa values and priori covariates of the wavelengths of light, head 
position and blood haemoglobin concentration at the time of the study. Given that absorption of near-infrared 
light within the range of 750–850 nm is primarily determined by the tissue haemoglobin  concentrations14,15, μa 
values might reflect the maturation of the cerebral tissue via increased complexity of the cerebral vessels and 
subsequent blood volume. Progression of anaemia and increase in the cerebral blood flow and volume with 
increasing postnatal age might also affect the dependence of μa values on clinical  variables12.

Strengths and limitations. We were able to elucidate the clinical variables potentially determining the 
property of light absorption and scattering within the brain in a relatively large cohort of newborn infants. 
However, we were unable to present a direct association between μS’ values and microstructure of the brain. As 
described in the previous section, the observed relationships between μS’, μa and clinical variables can be affected 
by a range of clinical biases. For example, extremely preterm infants are relatively anaemic at birth and the anae-
mia progresses with postnatal age without transfusion, potentially leading to lower blood haemoglobin and μa 

Table 2.  Dependence of µa and μS’ on clinical variables: univariate analysis. B regression coefficient, CI 
confidence interval, µa absorption coefficient, µs’ reduced scattering coefficient. *Assessed at 36 weeks post-
conceptional age (or on day 28 for those born later than 32 weeks gestation). Findings are adjusted for the 
wavelengths of near-infrared light** and position of the  head†.

Independent variables

Correlation with µa·102 Correlation with μS’

B

95% CI

p B

95% CI

pLower Upper Lower Upper

Wavelength (vs. 761 nm)†

836 nm 0.663 0.530 0.797 < 0.001 − 0.337 − 0.375 − 0.300 < 0.001

791 nm − 1.508 − 1.634 − 1.382 < 0.001 − 0.169 − 0.227 − 0.112 < 0.001

Position (vs. anterior)**

Posterior 3.140 2.809 3.471 < 0.001 1.414 1.129 1.699 < 0.001

Right 0.449 0.199 0.699 < 0.001 1.554 1.302 1.807 < 0.001

Left 0.196 − 0.015 0.406 0.068 0.909 0.667 1.152 < 0.001

Maternal and antenatal variables**†

Male sex − 0.530 − 1.144 0.083 0.090 − 0.210 − 0.528 0.107 0.195

Multiple pregnancy − 0.656 − 1.190 − 0.121 0.016 − 0.241 − 0.627 0.144 0.220

Antenatal glucocorticoid − 1.274 − 1.829 − 0.719 < 0.001 − 0.392 − 0.702 − 0.083 0.013

Hypoglycaemia < 48 h of birth 0.746 − 1.385 2.878 0.492 0.649 − 0.233 1.531 0.149

Variables at birth**†

Indomethacin for patent ductus arteriosus − 0.481 − 1.084 0.122 0.118 − 0.519 − 0.810 − 0.228 < 0.001

Emergency caesarean delivery − 0.468 − 1.049 0.113 0.114 − 0.296 − 0.603 0.010 0.058

Chronic lung disease* − 0.484 − 1.059 0.092 0.099 − 0.345 − 0.711 0.022 0.065

Intraventricular haemorrhage − 0.254 − 0.742 0.235 0.309 0.302 − 0.396 1.000 0.396

Gestational age (week) 0.167 0.066 0.268 0.001 0.074 0.035 0.112 < 0.001

Body weight (kg) 0.124 0.072 0.176 < 0.001 0.034 0.007 0.060 0.012

Z-score of above 0.129 − 0.076 0.334 0.218 − 0.041 − 0.157 0.074 0.484

Head circumference (cm) 0.142 0.043 0.240 0.005 0.060 0.013 0.106 0.012

Z-score of above − 0.039 − 0.382 0.305 0.824 − 0.140 − 0.280 0.000 0.050

Cord blood pH per 0.1 change − 0.280 − 0.466 − 0.093 0.003 − 0.054 − 0.142 0.035 0.233

Apgar score (1 min) 0.009 − 0.128 0.146 0.899 0.064 0.003 0.125 0.039

Apgar score (5 min) − 0.097 − 0.314 0.120 0.382 0.088 0.009 0.168 0.029

Variables at study**†

Postnatal age (day) − 0.021 − 0.033 − 0.008 0.001 − 0.008 − 0.014 − 0.003 0.003

Post-conceptional age (week) 0.131 − 0.048 0.310 0.151 0.066 − 0.013 0.145 0.104

Body weight (kg) 0.065 0.004 0.126 0.036 − 0.006 − 0.044 0.032 0.753

Blood haemoglobin (g/dL) 0.568 0.462 0.675 < 0.001 0.057 − 0.018 0.133 0.135

Full enteral feeding ≥ 100 mL/kg/d (day) − 0.027 − 0.077 0.022 0.278 − 0.052 − 0.077 − 0.027 < 0.001

μS’  (cm−1) 0.573 0.314 0.833  < 0.001 Not applicable

µa  (cm−1) Not applicable 22.521 16.167 28.875  < 0.001
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Figure 2.  Dependence of μS’ on µa in four head regions. Scatter plots demonstrating relationships between µa 
and μS’ obtained from the anterior (A), left-temporal (B), right-temporal (C) and posterior (D) head regions 
for wavelengths of 761 nm (circle), 791 nm (triangle) and 836 nm (cross). µa, absorption coeffieicnt. μS’, reduced 
scattering coefficient.

Table 3.  Dependence of µa and μS’ on clinical variables: multivariate analysis. The model is also adjusted for 
the wavelengths of near-infrared light and position of the head. B regression coefficient, CI confidence interval, 
µa absorption coefficient, µs’ reduced scattering coefficient.

Correlation with µa·102 Correlation with μS’

B

95% CI

P B

95% CI

pLower Upper Lower Upper

Independent variables

Body weight at birth (per 100 g) − 0.015 − 0.053 0.022 0.420 − 0.021 − 0.049 0.007 0.136

Apgar score (5 min) − 0.011 − 0.165 0.143 0.890 0.096 0.033 0.159 0.003

Full enteral feeding ≥ 100 mL/kg/d (day) 0.027 0.000 0.053 0.049 − 0.051 − 0.077 − 0.026 < 0.001

Post-conceptional age at study (week) 0.141 0.028 0.255 0.015 0.055 − 0.009 0.119 0.093

Covariates

Antenatal glucocorticoid − 0.156 − 0.525 0.214 0.409 − 0.035 − 0.335 0.265 0.820

Multiple pregnancy − 0.254 − 0.587 0.079 0.135 − 0.153 − 0.486 0.180 0.369

Male sex − 0.080 − 0.436 0.277 0.662 − 0.225 − 0.496 0.046 0.103

Blood haemoglobin (g/dL) 0.569 0.466 0.671 < 0.001 Not involved

μS’  (cm−1) 0.450 0.303 0.596  < 0.001 Not applicable

µa  (cm−1) Not applicable 22.692 15.952 29.432  < 0.001
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levels with greater gestational age at birth and greater postnatal age at the time of TR-NIRS study. Although we 
carefully selected independent variables and covariates to minimise the bias, the findings might still be affected 
by the bias derived from the collinearity between the variables. Our study cohort comprised newborn infants, 
who were hospitalised at a tertiary neonatal intensive care unit. Although the observed μa and μS’ values were 
comparable to those reported in healthy newborn  infants22, extrapolation of our findings into physiological 
transition and growth in healthy newborn infants must be done cautiously. Finally, the longitudinal follow-up 
study of the study population is still underway, resulting in the lack of outcome information in association with 
the light absorption and scattering properties.

Conclusions
The μS’ values of the near-infrared light obtained at term-equivalent period from the heads of newborn infants 
were associated with Apgar scores and postnatal age when full enteral feeding was achieved, suggesting a cor-
relation between the light scattering property and stress-response at birth and nutritional status of the infant 
thereafter. With further validations, μS’ might serve as a biomarker to distinguish the variation of the microstruc-
tural complexity of the brain tissue subsequent to different maturational stage, antenatal stress, tissue damage 
and repair, nutritional status and growth. Associations between the μS’ values and detailed clinical courses, 
macro- and microstructural MRI findings and neuro-developmental outcomes need to be addressed to assess 
the clinical utility of this non-invasive cot-side tool.

Materials and methods
This study was conducted in compliance with the Declaration of Helsinki under the approval of the Ethics 
Committee of Kurume University School of Medicine (reference number: 12128). Informed parental consent 
was obtained for each participating newborn infant. All methods were carried out in accordance with relevant 
guidelines and regulations.

Study population. This study was performed as a secondary analysis of a prospective longitudinal study, 
which was performed between June 2009 and January 2015 to serially collected the TR-NIRS data of pre-
term and term infants hospitalised at a tertiary neonatal intensive care centre of Kurume University Hospital 
(Kurume, Fukuoka, Japan). Independent variables of μS’ values obtained shortly after birth from a part (n = 60) 
of the current cohort have been reported in a previous  study17. Of 136 newborn infants within the original study 
cohort, 132 infants, who had TR-NIRS data obtained between 34 and 42 weeks postconceptional age, were con-
sidered. Infants with chromosomal aberration, malformation syndrome, grade III/IV intraventricular haemor-
rhage, hypoxic-ischaemic encephalopathy, congenital hydrocephalus and other major cerebral anomalies were 
excluded.

Data collection. The μa and μS’ values were obtained from the heads of the infants for three wavelengths, 
761, 791 and 836 nm, using a TR-NIRS system (TRS-10, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, 
Japan)17. This system employs the time-correlated single photon counting method to create time response pro-
files of pulsed laser light penetrating an object. The time response profiles were then fitted into a photon diffusion 
equation using the nonlinear least square fitting method to obtain μa and μS’ for each  wavelength14. Although 
the data acquisition for the original study was repeated with intervals of approximately 1 week from birth to 
discharge, for the current study, a particular value obtained between 34 and 42 weeks of post-conceptional age 
(closest to 40 weeks gestation if there were multiple records) was used to represent each infant.

Data were acquired when the infant was clinically stable and asleep or calmly awake. The TR-NIRS probes 
were inserted into a rubber holder, with an inter-optode distance of 3 cm, and was applied to a relatively flat part 
of the head. Data acquisition (10 s) was repeated five times for each of the frontal, left and right temporo-parietal 
and occipital regions by repositioning the probe each time. In our previous study, which acquired TR-NIRS 
data using the same protocol to the current  one17, standard deviations of μa and μS’ values for five successionally 
obtained data within the same head position and infant were, in average, 2.4% and 2.7%, respectively. Based on 
these small intra-individual and intra-regional differences in μa and μS’ values, five readings each of μa and μS’ 
were averaged for each brain region. We confirmed the degree of fit to the photon diffusion equation using the 
conversion chi-square value index of between 0.8 and 1.223. Data were not collected for brain regions with poor 
probe contact (typically due to the lack of flat surfaces or use of cap devices for non-invasive respiratory support), 
poor fit to the photon diffusion equation or insufficient signal-to-noise ratio with the count rate < 100 K counts/s 
or relative dark- to peak-count ratio of > 0.1. The data were retrospectively assessed to identify those with poor 
quality or intra-regional reproducibility before being processed for further analysis.

Clinical information. The clinical background information was obtained from the electronic records of 
the patients, including (1) maternal and antenatal variables (antenatal glucocorticoid, multiple pregnancies and 
emergency caesarean delivery), (2) variables at and shortly after birth (sex, cord blood pH, Apgar scores at 1 min 
and 5 min, gestational age, body weight, head circumference, hypoglycaemia within 48 h of birth, indomethacin 
for the treatment of the patent ductus arteriosus, grade I/II intraventricular haemorrhage and periventricu-
lar leukomalacia, (3) variables associated with clinical variables of infants after the transitional period (body 
weight on the day of study, age when full enteral feeding of > 100 ml/kg/d was achieved and chronic lung disease 
assessed 36 weeks post-conceptional age or on day 28, whichever was later). In order to assess the influence of 
intrauterine growth on μS’ values, body weight and head circumference at birth were expressed as z-scores in 
accordance with the New Japanese Neonatal Anthropometric Charts for Gestational Age at  Birth24.
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Data analysis. To minimise biases owing to missing data, multiple imputation of the missing values of less 
than 10% (excluding for μa and μS’) was performed (n = 5 imputations), based on the correlation between varia-
bles with missing values and other characteristics of the participants (SPSS ver. 22.0, IBM, Armonk, NY, U.S.A.). 
Although the property of μa was out of our study scope, independent variables of both μa and μS’ were assessed 
to clarify the possible influence of light absorption to the relationship between μS’ values and clinical variables. 
The generalised estimating equation with a linear model was used to account for repeated sampling of TR-NIRS 
data for three near-infrared light wavelengths and four head regions. Although the influence of the wavelength 
is much greater on μa than on μS’16,17, the three wavelengths were incorporated within the model for consistency 
in the analytical procedure. Crude effects of clinical variables on μa and μS’ values were assessed using the uni-
variate model adjusting for the wavelengths and head positions. p values < 0.002 were assumed to be significant, 
correcting multiple comparisons of 25 variables. The final models to explain μa and μS’ values were developed 
based on our hypothesis, which employed the body weight at birth, Apgar scores at 5 min, age to achieve full 
enteral feeding and post-conceptional age at study; the model was also adjusted for priori covariates, which were 
known independent variables of clinical outcomes (antenatal glucocorticoid, multiple pregnancies and sex), μa 
(wavelength, position of the head and μS’) and μS’ (wavelength, position of the head and μa). Data were presented 
as mean ± standard deviation unless specified otherwise.

Received: 20 March 2021; Accepted: 14 October 2021
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