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Deep learning models for screening 
of high myopia using optical 
coherence tomography
Kyung Jun Choi1, Jung Eun Choi2, Hyeon Cheol Roh3, Jun Soo Eun4, Jong Min Kim5, 
Yong Kyun Shin1, Min Chae Kang1, Joon Kyo Chung1, Chaeyeon Lee1, Dongyoung Lee1, 
Se Woong Kang1, Baek Hwan Cho2,6* & Sang Jin Kim1*

This study aimed to validate and evaluate deep learning (DL) models for screening of high myopia 
using spectral-domain optical coherence tomography (OCT). This retrospective cross-sectional study 
included 690 eyes in 492 patients with OCT images and axial length measurement. Eyes were divided 
into three groups based on axial length: a “normal group,” a “high myopia group,” and an “other 
retinal disease” group. The researchers trained and validated three DL models to classify the three 
groups based on horizontal and vertical OCT images of the 600 eyes. For evaluation, OCT images of 
90 eyes were used. Diagnostic agreements of human doctors and DL models were analyzed. The area 
under the receiver operating characteristic curve of the three DL models was evaluated. Absolute 
agreement of retina specialists was 99.11% (range: 97.78–100%). Absolute agreement of the DL 
models with multiple-column model was 100.0% (ResNet 50), 90.0% (Inception V3), and 72.22% (VGG 
16). Areas under the receiver operating characteristic curves of the DL models with multiple-column 
model were 0.99 (ResNet 50), 0.97 (Inception V3), and 0.86 (VGG 16). The DL model based on ResNet 
50 showed comparable diagnostic performance with retinal specialists. The DL model using OCT 
images demonstrated reliable diagnostic performance to identify high myopia.

High myopia is associated with many ocular complications that can threaten  vision1–3. Due to myopic axial elon-
gation with subsequent pathologic changes, highly myopic eyes often show abnormal fundus findings including 
posterior staphyloma, lacquer crack, chorioretinal atrophy, myopic traction maculopathy, macular hole and 
choroidal neovascularization, etc. So, detecting high myopia is important for the proper diagnosis of various 
retinal conditions.

High myopia is generally defined as myopia of − 6.0 diopters or more or an axial length of 26.5 mm or  more4. 
Although we can easily detect most patients with high myopia by measuring refractive error which is routinely 
performed in ophthalmology clinics, in patients who have undergone cataract surgery or refractive surgery 
such as laser vision correction, measuring refractive error gives no clue for high myopia. When fundus exam 
reveals characteristic findings of myopic retinal conditions, we can perform A-scan ultrasonography or partial 
coherence interferometry to diagnose high myopia. However, when we have no clue for high myopia on fundus 
exam or detailed past medical history cannot be obtained, we may not be able to detect high myopia in some 
patients. Moreover, A-scan ultrasonography or partial coherence interferometry are not commonly used for 
ophthalmologic evaluation but performed in specific situations only (e.g. for intraocular lens power calculation 
for cataract surgery).

On the other hand, optical coherence tomography (OCT), a non-invasive imaging technique that can visualize 
a cross-section of the retina, is widely used by general ophthalmologists as well as retinal specialists and OCT 
examination is becoming very common. OCT is an essential tool for modern ophthalmologists in diagnosing 
and screening retinal diseases, especially those of the  macula5,6. OCT gives detailed information about retinal 
microstructure in various retinal conditions including age-related macular degeneration, diabetic retinopathy, 
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and myopia-associated retinal diseases. Ocular changes by pathologic myopia can also be visualized on OCT 
images in addition to fundus photographs. Various findings of pathologic myopia have been reported in several 
 studies7–10. Therefore, if we can diagnose or suspect eyes with high myopia with OCT alone in patients who 
underwent retinal OCT, we may be able to detect more patients with high myopia.

In recent years, attempts to apply deep learning (DL) models in the ophthalmology field have been under-
taken. Studies have been conducted to diagnose and evaluate the severity of diseases, such as age-related macular 
degeneration, diabetic retinopathy, and retinopathy of  prematurity11–14. There was an attempt to perform differen-
tial diagnosis using the DL model based on fundus  images15–17. In addition, segmentation of OCT images using 
DL is also being actively studied for mainly age-related macular  degeneration18–20. As such, various DL studies 
using OCT have been conducted especially in age-related macular degeneration but not in high  myopia18,21,22. 
And, there has been no previous study on whether the DL model can diagnose or screen for high myopia by 
OCT imaging without measuring the axial length. It will be clinically useful to screen high myopia using OCT 
image-based DL models.

In this study, the researchers generated DL models for the screening of high myopia using a pair of horizontal 
and vertical spectral-domain OCT images. The models were validated and evaluated using our in-house dataset 
including OCT images of normal and other retinal conditions. The results of DL classification were then com-
pared with classification performed by ophthalmology residents and retinal specialists.

Methods
This retrospective study was conducted at the Department of Ophthalmology, Samsung Medical Center, Seoul, 
Republic of Korea. Approval for this study was obtained from the Institutional Review Board (IRB) at Samsung 
Medical Center, Seoul, Republic of Korea (IRB approval #2021–04-039). Due to the retrospective nature of this 
study, exemption from written consent was approved by the IRB, and all clinical records were de-identified for 
anonymity before analysis. The study adhered to the tenets of the Declaration of Helsinki.

Dataset. The researchers retrospectively reviewed electronic medical records of patients who had undergone 
OCT before cataract surgery at Samsung Medical Center between July 2017 and December 2019. Before cataract 
surgery, both OCT and axial length measurement were performed in most patients. Patients with spectral-
domain OCT (Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany) images containing a pair 
of horizontal and vertical OCT scans of fovea-centered view (9 mm in length) were included. Defocus or com-
plex conjugate artifact can often occur as a characteristic of high myopic eyes with long axial length and severe 
 staphyloma7,23. Therefore, when severe complex conjugate artifacts occurred, diopter correction was performed 
before OCT examination. Patients in which the retinal layer could not be discriminated, due to very severe cata-
ract or media opacity were excluded. In addition, patients with complex-conjugate artifacts corresponding to 
more than one-fifth of 9 mm scans were excluded despite diopter correction before OCT imaging. The included 
OCT images were taken in High Speed mode provided by the manufacturer, and 768 pixels were included in 
the 9 mm length, and 496 pixels were included in the 1.9 mm depth. 768 A-scans were included for each B-scan 
image section. To improve visualization, the value of 50 to 100 scans were averaged for each section.

Included eyes were classified clinically into three groups: normal, high myopia, and other retinal diseases. For 
classification, two retinal specialists reviewed and annotated each patient’s horizontal and vertical OCT images 
in consideration of the axial length. The three groups were classified based on the following criteria to screen 
accurately for highly myopic eyes and to distinguish between cases with other macular diseases and normal 
findings. When the axial length was 26.5 mm or longer, OCT images of the patient were annotated as “high 
myopia”24. Among them, cases with retinal diseases other than myopia related features were excluded. Non-high 
myopia eyes were classified in the “normal” group (when there was no abnormality in the macula on OCT) or 
the “others” group (when there was abnormality such as drusen, epiretinal membrane, or macular edema on 
OCT). Each group was set to recruit 230 eyes with 230 pairs of OCT images including training and test datasets, 
and the 230 images were selected randomly.

Preprocessing and data augmentation. To analyze horizontal OCT images of right and left eyes 
together, OCT images of the left eyes were flipped horizontally. Data augmentation is a promising way to increase 
the performance of classification  tasks25 by generating more samples from the available  images26. Brightness con-
trol and image shift cropping were adopted for data  augmentation27. New training images were generated from 
the original images using 18 brightness levels between 0.1 and 1.2 and were carefully chosen by the two retinal 
specialists. The researchers also cropped 20 randomly selected patches from each OCT image, representing 92% 
of the original image. Hence, number of training images was increased by 360 times. After data augmentation, 
all dataset images were resized to 318 × 512 pixels. The mean subtraction was applied such that the mean image 
of the training dataset was subtracted from every input image.

CNN model architectures. The CNN-based models in this study adopted VGG 16, ResNet 50, and Incep-
tion V3 as a backbone and were initialized with ImageNet-pretrained  models28. Single-column and multiple-
column CNN models were used for classification of the OCT images.

The single-column model used a single OCT image for classification, whose architecture consisted of a sin-
gle CNN backbone as shown in Fig. 1a. After the original feature extracting backbone layers from VGG 16 (19 
layers), Inception V3 (311 layers), and ResNet 50 (174 layers), we put a single fully-connected layer for VGG 16 
and Inception V3, and 3 fully-connected layers for ResNet 50. Thus, vertical and horizontal models were trained 
separately for vertical and horizontal images for 20 epochs with an initial learning rate of 0.001, batch size of 
four, and stochastic gradient descent optimization.
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Since class annotation was performed for each eye rather than each of the vertical and horizontal images 
separately, the multiple-column models were trained. The multiple-column models considered both vertical and 
horizontal OCT images simultaneously at each CNN backbone and concatenated features from each backbone as 
in Fig. 1b. In this architecture, after the feature extraction layers of two single-column (vertical and horizontal) 
model, the multiple-column model includes a concatenation layer, which combines the features from the two 
single-column models, and a fully-connected layer with a batch normalization layer. In order to train efficiently, 
we initialized the weights of each column with each of the previously trained best performing single vertical 
and horizontal models. The multiple-column models were trained for 20 epochs with an initial learning rate of 
0.003, batch size of 16, and stochastic gradient descent optimization.

Evaluation of the model and experimental settings. The researchers used five-fold cross validation 
to tune the optimal parameters for the models using the training  dataset29. In this method, the whole dataset was 
randomly divided into five subsets. Then the researchers trained a model with four of the subsets and validated 
the model with the remaining data (each subset included 120 cases in this study). By changing the subsets for 
training and validation, this process involved five  iterations30,31. To avoid over-estimation, data from each patient 
were included in a single subset when possible. After finding the best parameters from the cross validation, the 
models were trained using the whole five-subset training dataset. The diagnostic performance of the model 
was evaluated with a test dataset. The area under the receiver operating characteristic curve (AUC) was calcu-
lated with each model. Experiments were implemented using Python and Keras. Training was performed on a 
NVIDIA GeForce GTX 1080Ti GPUs. All experiments were conducted on a 64-bit computer processor with an 
Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz, 8 cores.

Additional experiments were devised to evaluate the classification performance of the CNN models about 
side orientation. Again, the models were trained on the training dataset after five-fold cross validation and tested 
on the test dataset as in the previous section.

Comparison of the model with human doctors. The test dataset was used to compare the model per-
formance with that of retinal specialists and ophthalmology residents. For the human doctor test, a pair of 
vertical and horizontal OCT images was presented at the same time for classification (normal, high myopia, or 
other group) of the eyes. The performance of each human doctor was evaluated and compared with that of the 
DL models. Agreement of the five retinal specialists and four residents with the DL models was evaluated with 
the web-based Kappa statistics  program32.

Results
The collected 600 eyes OCT images of 436 patients were analyzed for training and validation of the proposed 
CNN models. Each of the three groups (normal, high myopia, and other retinal disease) included 200 eyes. 
Another 90 cases (30 cases for each class) were used for evaluating the trained model. Since each patient’s OCT 
images consisted of a pair of vertical and horizontal direction OCT images, the total training dataset consisted 
of 1,200 OCT scans. Various findings related to high myopia were confirmed in the OCT images included in 

Figure 1.  Overview of the framework. (a) Single-column model. (b) Multiple-column model, which considers 
vertical and horizontal OCT images simultaneously at each CNN feature extractor.
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this study (Fig. 2). The “Other” group included rhegmatogenous retinal detachment (involving the macular 
area), epiretinal membrane, macular hole, vitreomacular traction syndrome, diabetic retinopathy (including 
diabetic macular edema), age-related macular degeneration (including both dry and wet types), central serous 
chorioretinopathy, drusen, retinal vein occlusion, and macular telangiectasia. Demographics of the included 
patients are summarized in Table 1.

Cross validation results on training dataset. Table 2 denotes the five-fold cross validation results of the 
single- and multiple-column models. The VGG 16- and ResNet 50-based single-column CNN models revealed a 
greater than 0.97 average area under the receiver operating characteristic curve (AUC) for both vertical and hor-
izontal images. In the multiple-column CNN models, when initializing with the ImageNet-pretrained models, 

Figure 2.  Various high myopia related features included in this study. Left column is horizontal section and 
right column is vertical section. (a) Severe curvature of posterior pole. (b) Paravascular retinal cysts and 
vascular microfolds (arrows). (c) Foveoschisis and impending macular hole was shown. Paravascular retinal cyst 
is also shown (arrow). (d) Macular hole and dome shape macula. (e) Macular chorioretinal atrophy. (f) Retinal 
detachment and retinoschisis. (g) Foveoshcisis and paravascular lamellar hole with retinal cysts (arrow). (h) 
Retinoschisis (arrows) with vascular microfolds and retinal detachment.

Table 1.  Summary of the demographics of training, validation, and test data sets. Class myopia included eyes 
with axial length of 26.5 mm or more. Class normal and other included eyes with axial length between 21.5 
mm and 26.0 mm.

Training and validation set Test set

No. of patients 434 58

Age (mean ± SD) 58.85 ± 13.55 64.08 ± 10.95

Sex, (male:female) 202:232 28:30

No. of OCT images 1200 (600 eyes) 180 (90 eyes)

Class Myopia Normal Other Myopia Normal Other

No. of patients 121 162 151 19 17 22

Age (mean ± SD) 53.7 ± 12.85 56.16 ± 13.75 66.57 ± 10.16 63.0 ± 12.21 63.23 ± 12.76 66.0 ± 7.12

Sex, (male:female) 57:64 80:82 65:86 8:11 5:12 15:7

No. of right eyes 97 103 102 17 15 15

No. of left eyes 103 97 98 13 15 15

Axial length (mean ± SD) 29.25 ± 2.27 23.75 ± 0.96 23.46 ± 0.89 29.23 ± 1.72 23.53 ± 1.13 23.72 ± 0.91
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training of the VGG 16 and ResNet 50 networks was difficult. Inception V3 was better than the other networks, 
but the performance was relatively poor. The authors then tried to initialize the models with the pretrained 
single-column models shown in Table 2. ResNet 50 models with single-column initialization showed perfect 
classification performance from the five-fold cross validation on the training dataset.

Results on the test dataset. To evaluate the performance of the trained models, a test dataset was ana-
lyzed as above. The same preprocessing was performed on the test dataset as on the training dataset without 
the data augmentation. Table 3 shows the test results of the single- and multiple-column models. The ResNet 
50 single-column model presented the highest classification accuracies on the test dataset (100% and 98.89% 
for vertical and horizontal models, respectively). For the multiple-column model, which considers vertical and 
horizontal OCT images at the same time for classification of the case, the ResNet 50 showed the highest 100% 
classification results on the test dataset. Figure 3 shows the AUCs of DL models as 0.99, 0.97, and 0.86 for ResNet 
50, Inception V3, and VGG 16, respectively.

Gradient-weighted class activation mapping (Grad-CAM + +) is a visualization tool that helps interpret the 
classification results on each input image by heatmap (red areas denote the locations where the model looked for 
the predicted class)33,34. The visual explanations generated by Grad-CAM +  + on input OCT scans are shown in 
Figs. 4 and 5. The Grad-CAM +  + image showed that the DL model accurately identified the parts of the differ-
entiation point among 3 classes (Fig. 4). It was also confirmed that some characteristic parts of the various high 
myopia features included in this study were detected by the DL models from the Grad-CAM +  + image (Fig. 5).

Classification performances of left vs. right and vertical vs. horizontal OCT images. Addition-
ally, experiments were performed to see if CNN models could classify the OCT images as left or right eye images 
and vertical or horizontal images. The ResNet 50 model showed 100% classification performance for both tasks. 

Table 2.  Five-fold cross validation results for each of the single- and multiple-column models. CNN 
convolutional neural network, AUC  area under the receiver operating characteristic curve. Data are 
mean ± standard deviation (95% confidence interval).

CNN backbone
Micro-average AUC of the 
single-column models

Micro-average AUC of the multiple-column models

Initialization with ImageNet-pretrained 
models

Initialization with the pretrained single-
column models

VGG 16
Vertical 0.9859 ± 0.00

(0.9826–0.9906) 0.5801 ± 0.07
(0.5189–0.6409)

0.6827 ± 0.17
(0.5307–0.8341)

Horizontal 0.9873 ± 0.01
(0.9811–0.9934)

Resnet 50
Vertical 0.9746 ± 0.01

(0.9646–0.9850) 0.5545 ± 0.08
(0.4829–0.6261)

1.0000 ± 0.00
(1.0–1.0)

Horizontal 0.9844 ± 0.01
(0.9796–0.9896)

Inception V3
Vertical 0.8967 ± 0.04

(0.8625–0.9310) 0.8048 ± 0.07
(0.7455–0.8648)

0.9170 ± 0.03
(0.8886–0.9453)

Horizontal 0.9188 ± 0.04
(0.8809–0.9568)

Table 3.  Absolute agreement and intergrader agreement of the deep learning models, retinal specialists, 
and resident ophthalmologists. CNN convolutional neural network. (No. of correct diagnosis/no. of test set). 
Results of human doctor is given as mean ± standard deviation (four residents and five retinal specialists). 
The Cohen κ statistic was evaluated as follows: 0.21 to 0.40 indicated fair agreement; 0.41 to 0.60, moderate 
agreement; 0.61 to 0.80, substantial agreement; and 0.81 to 1.0, near-perfect agreement.

CNN  
backbone

Absolute agreement of  
single-column model

Absolute agreement of 
multiple-column model

Cohen Kappa (95% confidence 
interval)

VGG 16
Vertical 97.78% (88/90)

72.22% (65/90) 0.52 (0.38–0.66)
Horizonal 96.67% (87/90)

Resnet 50
Vertical 100.00% (90/90)

100.00% (90/90) 1.0 (1.0–1.0)
Horizonal 98.89% (89/90)

Inception V3
Vertical 88.89% (80/90)

90.00% (81/90) 0.85 (0.76–0.94)
Horizonal 87.78% (79/90)

Human doctors Absolute agreement (range) Cohen Kappa (range)

Resident ophthalmologists 
(range)

95.28 ± 2.1%  
(92.22–96.67%)

0.93 ± 0.03  
(0.88–0.95)

Retinal specialists (range) 99.11 ± 1.22%  
(97.78–100%)

0.99 ± 0.02  
(0.97–1.0)
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VGG 16 and Inception V3 models showed 98.89% and 93.33% accuracy rates in left–right classification, respec-
tively, and 98.89% and 88.89% accuracy rates in vertical-horizontal classification. Since the left–right classifica-
tion task is only possible on horizontal images by location of optic discs, only horizontal images were included 
for the task.

Comparison of performances between the CNN model and human doctors. To compare the 
performance of the model with that of human doctors, nine human doctors participated in the evaluation with 
the test dataset, which was the same set as used to evaluate the DL model. The nine doctors consisted of four 
residents and five retinal specialists. Table 3 shows the test results of the DL models and human doctors. The 
four residents had a 95.28% correct answer rate, and the five retinal specialists had a 99.11% correct answer rate. 
Both the VGG 16 and the Inception V3 multiple-column model were less accurate than the human doctors. 
However, the ResNet 50 model showed comparable performance to the retinal specialists, with the highest kappa 
value among the 3 DL models. The model outperformed all four ophthalmologists-in-training and two of the 
five retinal specialists. Comparison of receiver operating characteristic curves of the three DL models with the 
performance of human doctors is shown in Fig. 3b.

Discussion
This study demonstrated that a DL model using OCT images could distinguish accurately high myopia from 
normal and other macular diseases. Also, the performance of the model was comparable to that of retinal spe-
cialists. In this study, patients with high myopia and normal vision were divided based on axial length, and the 
DL model was trained based on the dataset created by retinal specialists annotating normal and other macular 
diseases for the normal axial length image. With this training, the DL model achieved a very high performance 
regarding correct answers for the test dataset configured separately from the training dataset. This is the first 
attempt to diagnose high myopia with OCT using a DL algorithm.

Figure 3.  Comparison of the performance of the deep learning models with that of human doctors. (a) The 
receiver operating characteristic curves of three deep learning models of a single-column model. ResNet 50 
demonstrate the best diagnostic performance. (b) The receiver operating characteristic curves of three deep 
learning models of the multiple-column model and the diagnostic performance of human doctors. ResNet 50 
show the best diagnostic performance among the three deep learning models and had comparable performance 
to that of the retinal specialists.
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High myopia is one of the major causes of visual impairment worldwide, is accompanied by many ophthal-
mic complications, and has a high prevalence rate, especially in  Asians1,2,35–37. However, since axial length is not 
usually measured in ordinary ophthalmic examinations, except for cases where axial length is measured as in 
pre-cataract surgery, it might be useful to be able to confirm high myopia through other examinations. As the 
population who has undergone refractive surgery such as laser vision correction or cataract surgery increases, 
the situation in which it is difficult to confirm high myopia only with refraction test is expected to  increase38–40. 
Therefore, if high myopia is sufficiently confirmed by OCT alone in patients who have already taken OCT for 
retinal disease, additional cost and time for axial length measurement are not required. In this regard, we think 
that OCT with DL algorithm in our study will be clinically useful in such cases, especially for non-retinal special-
ists. In addition, through this study, it was confirmed that the DL model can distinguish and detect some of the 
characteristic findings of OCT found in high myopia. We also expect it will serve as a basis for the development 
of more advanced DL model which can distinguish and diagnose the various macular disease with OCT images.

Interestingly, a method capable of estimating or calculating the axial length using only OCT rather than 
A-scan or partial coherence interferometry has been  introduced41–44. In those study, with the sequential anterior 
and posterior OCT systems or the whole-eye OCT system (simultaneous anterior and posterior OCT system), 
the anterior segment and posterior segment images were acquired in an OCT scan. With this technique, it is 
possible to estimate the axial length from OCT images. This whole-eye OCT system seems to be very promis-
ing, however, the system has not yet been commercialized, not widely distributed, and has been of limited use 
usually in a research so far.

The various OCT findings of high myopia identified in this study were reported in previous studies, and some 
of the characteristic findings were detected in the DL model (Figs. 2 and 5). Paravascular retinal cysts are small 
hollow spaces around large retinal vessels and are often identified by OCT examination of high myopic  eyes45,46. 
Vascular microfolds, which occur due to inflexibility of retinal vessels, are also common OCT features of high 
myopia. There were reports that the frequency of retinoschisis was high when the vascular microfolds observed 
together with paravascular retinal  cysts9,45. Paravascular lamellar holes are found around paravascular retinal 
cysts, and paravascular retinoschisis is also frequently observed  together45. Myopic tractional maculopathy 
and myopic foveoschisis are also not uncommon findings in high myopic eyes, and it is thought that it may be 
caused by the poorly stretched internal limiting membrane not keeping pace with the progression of posterior 
 staphyloma47–50. Choroidal neovascular membrane is an important complication of high myopia that can cause 
visual  loss3. Myopic choroidal neovascularization shows subretinal hyperreflective material in an active state, 

Figure 4.  Visual explanations generated by Grad-CAM +  + on OCT scans. The Grad-CAM +  + image show that 
the deep learning model accurately identified the differentiation points.
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with or without subretinal  fluid8. Thereafter, it progresses to the scar stage and the atrophic stage. Macular hole 
and posterior retinal detachment in highly myopic eyes may occur simultaneously or separately and may cause 
visual loss which need surgical  intervention10,51,52.

According to a recent study, the performance of the DL model was better when all three of the annotations 
of the retinal specialists for fundus photography were the same than when only two of the annotations were the 
 same15. In other studies, the overall performance of the DL model improved after correct  labeling16. Therefore, 
accurate annotation is very important in training DL models. In this study, annotation was performed for high 
myopia based on the objective value of an axial length, and the DL model trained with the data set constructed 
based on this showed excellent performance. This suggests that objective and accurate annotation of OCT images 
is important for the DL model with OCT images. Interestingly, DL models generated with three CNN architec-
tures were validated and tested, and each showed unique diagnostic performance. This suggests that certain CNN 
architecture is more suitable for a specific situation such as a limited amount of data or certain purpose. Further 
studies are needed to determine the algorithms for finding appropriate CNN architectures.

This study’s model architecture has technical advantages. Despite the relatively small amount of training data, 
there was high performance among three classes due to various data augmentation techniques such as brightness 
adjustment and random shift cropping. The right-eye OCT images were flipped to the left for consistent optic 
disc location and better classification results. Moreover, there was 100% classification performance from both 
cross validation and tests when using the multiple-column CNN models. It is more natural to use the multiple-
column models to feed both vertical and horizontal images as ophthalmologists read both images at the same 
time for diagnosis. Although the single-column models showed high performance with ImageNet pretrained 
model initialization, it was difficult to train the multiple-column models. This is because the amount of training 
data was not enough to train the more complex multiple-column models with twice as many parameters to train 
as the single-column models. Consequently, the multiple-column models were initialized with the pretrained 
single-column models to overcome this problem.

The results of additional experiments about classification performance of vertical vs. horizontal OCT images 
demonstrated the feasibility of a fully automatic framework to read OCT images for high myopia and other retinal 
diseases. When a pair of OCT images of an eye is input into the framework, it can classify them automatically 
between vertical and horizontal images and then feed each one into the corresponding column of the multiple-
column CNN model to create classification output of the eye. This whole process is depicted in supplementary 
Fig. S1. Because there were high classification performances for vertical versus horizontal classification, the fully 
automatic framework could be implemented in a clinical setting.

This study had limitations. First, it was a retrospective study, targeting patients whose axial length was meas-
ured for cataract surgery. Because of this, it is possible that a consecutive and mixed series of patient groups was 
included. In addition, the relatively young age group who did not undergo cataract surgery was not included. 

Figure 5.  Visual explanations generated by Grad-CAM +  + on OCT scans of myopia class. The Grad-
CAM +  + image show that the deep learning model identified some of the characteristic features of high myopia. 
The deep learning model accurately identified severe curvature of high myopic eye for all of the OCT images. 
The model also identified vascular microfolds (b), peripapillary artrophy (c, d and e), chorioretinal macular 
atrophy (e), Retinal cysts and paravascular lamellar hole (g) and retinoschisis (g and h).
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Second, the DL model needs to be validated with an external dataset. In addition, it is necessary to verify the 
validity of images acquired from OCT equipment other than that used in this study. The diagnostic performance 
of this model for external datasets or other OCT equipment images is likely to be lower than the results of this 
study. Third, in this study, diagnosis was divided into three categories: high myopia, normal, and other macular 
diseases; additional subdivided categories are needed in actual clinical situations. In particular, other macular 
disease comprises a wide variety of diseases, and it is important to divide and annotate these groups accurately. 
Fourth, considering the various OCT features of the myopic eye, the number of cases may be rather small to 
include the diversity. However, as mentioned above, relatively diverse myopic features are included in the OCT 
images of this study, and some of the non-included findings may be related to the specificity of the OCT image 
obtained before cataract surgery. Lastly, the DL model of this study was not designed to differentiate between 
eyes with just high myopia and eyes with high myopia and other retinal diseases, so it was impossible to evaluate 
this function. However, this distinction can be clinically useful and should be applied in the future research and 
development. It is thought that these issues must be overcome with the additional research or development with 
more diverse OCT images and external datasets.

Despite some limitations, the DL model of this study, which is comparable to that of retinal specialists and 
showed reliable performance, is considered a very high possibility for clinical utility. The high accuracy and per-
formance of the DL model can be of great help to general ophthalmologists or general practitioners in screening 
and diagnosis on OCT images. In addition, as already demonstrated, the usefulness of Grad-CAM +  + images in 
other fundus image-related DL algorithm studies and OCT-related DL algorithm studies, this study showed that 
the Grad-CAM +  + image can provide a clue for interpretation of the result of a DL  model15,21 (Figs. 4 and 5). 
This Grad-CAM +  + image is thought to be useful to ophthalmologists or specialists by quickly guiding lesions 
that are the basis for diagnosis. A more accurate diagnostic approach will be possible if the DL model with Grad-
CAM +  + is correlated with clinical information such as vision and intraocular pressure.

Conclusion
In this study, the deep learning model using OCT images demonstrated reliable diagnostic performance for high 
myopia and comparable performance to that of retinal specialists.

Data availability
The data used and/or analyzed during the current study are available from the corresponding author upon 
request.

Received: 4 June 2021; Accepted: 13 October 2021

References
 1. Ohno-Matsui, K., Lai, T. Y., Lai, C. C. & Cheung, C. M. Updates of pathologic myopia. Prog. Retin. Eye Res. 52, 156–187. https:// 

doi. org/ 10. 1016/j. prete yeres. 2015. 12. 001 (2016).
 2. Wong, T. Y., Ferreira, A., Hughes, R., Carter, G. & Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic 

choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 157, 9-25 e12. https:// doi. org/ 10. 1016/j. 
ajo. 2013. 08. 010 (2014).

 3. Cheung, C. M. G. et al. Myopic choroidal neovascularization: Review, guidance, and consensus statement on management. Oph-
thalmology 124, 1690–1711. https:// doi. org/ 10. 1016/j. ophtha. 2017. 04. 028 (2017).

 4. Ohno-Matsui, K. What is the fundamental nature of pathologic myopia?. Retina 37, 1043–1048. https:// doi. org/ 10. 1097/ IAE. 00000 
00000 001348 (2017).

 5. Podoleanu, A. G. Optical coherence tomography. J. Microsc. 247, 209–219. https:// doi. org/ 10. 1111/j. 1365- 2818. 2012. 03619.x (2012).
 6. Jaffe, G. J. & Caprioli, J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 

137, 156–169. https:// doi. org/ 10. 1016/ s0002- 9394(03) 00792-x (2004).
 7. Faghihi, H., Hajizadeh, F. & Riazi-Esfahani, M. Optical coherence tomographic findings in highly myopic eyes. J. Ophthalmic Vis. 

Res. 5, 110–121 (2010).
 8. Baba, T. et al. Optical coherence tomography of choroidal neovascularization in high myopia. Acta Ophthalmol. Scand. 80, 82–87. 

https:// doi. org/ 10. 1034/j. 1600- 0420. 2002. 800116.x (2002).
 9. Sayanagi, K., Ikuno, Y., Gomi, F. & Tano, Y. Retinal vascular microfolds in highly myopic eyes. Am. J. Ophthalmol. 139, 658–663. 

https:// doi. org/ 10. 1016/j. ajo. 2004. 11. 025 (2005).
 10. Ruiz-Medrano, J. et al. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN). Prog. 

Retin. Eye Res. 69, 80–115. https:// doi. org/ 10. 1016/j. prete yeres. 2018. 10. 005 (2019).
 11. Burlina, P. M. et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional 

neural networks. JAMA Ophthalmol. 135, 1170–1176. https:// doi. org/ 10. 1001/ jamao phtha lmol. 2017. 3782 (2017).
 12. Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus 

photographs. JAMA 316, 2402–2410. https:// doi. org/ 10. 1001/ jama. 2016. 17216 (2016).
 13. Campbell, J. P. et al. Evaluation of a deep learning-derived quantitative retinopathy of prematurity severity scale. Ophthalmology 

https:// doi. org/ 10. 1016/j. ophtha. 2020. 10. 025 (2020).
 14. Taylor, S. et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning. 

JAMA Ophthalmol. 137, 1022–1028. https:// doi. org/ 10. 1001/ jamao phtha lmol. 2019. 2433 (2019).
 15. Son, J. et al. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus 

images. Ophthalmology 127, 85–94. https:// doi. org/ 10. 1016/j. ophtha. 2019. 05. 029 (2020).
 16. Milea, D. et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N. Engl. J. Med. 382, 1687–1695. 

https:// doi. org/ 10. 1056/ NEJMo a1917 130 (2020).
 17. Cho, B. H. et al. Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography. 

BMC Ophthalmol. 20, 407. https:// doi. org/ 10. 1186/ s12886- 020- 01657-w (2020).
 18. Michl, M. et al. Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy. Br. J. 

Ophthalmol. https:// doi. org/ 10. 1136/ bjoph thalm ol- 2020- 317416 (2020).
 19. Liefers, B. et al. Quantification of key retinal features in early and late age-related macular degeneration using deep learning. Am. 

J. Ophthalmol. 226, 1–12. https:// doi. org/ 10. 1016/j. ajo. 2020. 12. 034 (2021).

https://doi.org/10.1016/j.preteyeres.2015.12.001
https://doi.org/10.1016/j.preteyeres.2015.12.001
https://doi.org/10.1016/j.ajo.2013.08.010
https://doi.org/10.1016/j.ajo.2013.08.010
https://doi.org/10.1016/j.ophtha.2017.04.028
https://doi.org/10.1097/IAE.0000000000001348
https://doi.org/10.1097/IAE.0000000000001348
https://doi.org/10.1111/j.1365-2818.2012.03619.x
https://doi.org/10.1016/s0002-9394(03)00792-x
https://doi.org/10.1034/j.1600-0420.2002.800116.x
https://doi.org/10.1016/j.ajo.2004.11.025
https://doi.org/10.1016/j.preteyeres.2018.10.005
https://doi.org/10.1001/jamaophthalmol.2017.3782
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1016/j.ophtha.2020.10.025
https://doi.org/10.1001/jamaophthalmol.2019.2433
https://doi.org/10.1016/j.ophtha.2019.05.029
https://doi.org/10.1056/NEJMoa1917130
https://doi.org/10.1186/s12886-020-01657-w
https://doi.org/10.1136/bjophthalmol-2020-317416
https://doi.org/10.1016/j.ajo.2020.12.034


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21663  | https://doi.org/10.1038/s41598-021-00622-x

www.nature.com/scientificreports/

 20. Wilson, M. et al. Validation and clinical applicability of whole-volume automated segmentation of optical coherence tomography 
in retinal disease using deep learning. JAMA Ophthalmol. https:// doi. org/ 10. 1001/ jamao phtha lmol. 2021. 2273 (2021).

 21. Lee, C. S., Baughman, D. M. & Lee, A. Y. Deep learning is effective for the classification of OCT images of normal versus age-related 
macular degeneration. Ophthalmol. Retin. 1, 322–327. https:// doi. org/ 10. 1016/j. oret. 2016. 12. 009 (2017).

 22. Treder, M., Lauermann, J. L. & Eter, N. Automated detection of exudative age-related macular degeneration in spectral domain 
optical coherence tomography using deep learning. Graefes Arch. Clin. Exp. Ophthalmol. 256, 259–265. https:// doi. org/ 10. 1007/ 
s00417- 017- 3850-3 (2018).

 23. Wang, K., Ding, Z., Zeng, Y., Meng, J. & Chen, M. Sinusoidal B-M method based spectral domain optical coherence tomography 
for the elimination of complex-conjugate artifact. Opt. Express 17, 16820–16833. https:// doi. org/ 10. 1364/ oe. 17. 016820 (2009).

 24. Tokoro, T. On the definition of pathologic myopia in group studies. Acta Ophthalmol. Suppl. 185, 107–108. https:// doi. org/ 10. 
1111/j. 1755- 3768. 1988. tb026 81.x (1988).

 25. Perez, L. & Wang, J. The effectiveness of data augmentation in image classification using deep learning. Preprint at https:// arxiv. 
org/ abs/ 1712. 04621 (2017).

 26. Rama, J., Nalini, C. & Kumaravel, A. Image pre-processing: Enhance the performance of medical image classification using various 
data augmentation technique. ACCENTS Trans. Image Process. Comput. Vis. 5, 7–14. https:// doi. org/ 10. 19101/ TIPCV. 2018. 413001 
(2019).

 27. Cho, Y. S. et al. Automated measurement of hydrops ratio from MRI in patients with Meniere’s disease using CNN-based segmen-
tation. Sci. Rep. 10, 7003. https:// doi. org/ 10. 1038/ s41598- 020- 63887-8 (2020).

 28. Deng, J. et al. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern 
Recognition. https:// ieeex plore. ieee. org/ docum ent/ 52068 48 (2009).

 29. Yadav, S. & Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In 
2016 IEEE 6th International Conference on Advanced Computing (IACC). https:// ieeex plore. ieee. org/ docum ent/ 75448 14 (2016).

 30. Kim, J. Y. et al. Development of an automatic muscle atrophy measuring algorithm to calculate the ratio of supraspinatus in 
supraspinous fossa using deep learning. Comput. Methods Programs Biomed. 182, 105063. https:// doi. org/ 10. 1016/j. cmpb. 2019. 
105063 (2019).

 31. Ro, K. et al. Deep-learning framework and computer assisted fatty infiltration analysis for the supraspinatus muscle in MRI. Sci. 
Rep. 11, 15065. https:// doi. org/ 10. 1038/ s41598- 021- 93026-w (2021).

 32. StatsToDo. Kappa (Cohen and Fleiss) for ordinal data program. https:// www. stats todo. com/ Cohen Fleis sKappa_ Pgm. php (2021).
 33. Chattopadhay, A., Sarkar, A., Howlader, P. & Balasubramanian, V. N. Grad-CAM++: Generalized gradient-based visual explana-

tions for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). https:// ieeex 
plore. ieee. org/ docum ent/ 83542 01 (2018).

 34. Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Preprint at https:// arxiv. 
org/ abs/ 1610. 02391 (2016).

 35. Morgan, I. G., Ohno-Matsui, K. & Saw, S. M. Myopia. Lancet 379, 1739–1748. https:// doi. org/ 10. 1016/ S0140- 6736(12) 60272-4 
(2012).

 36. Varma, R. et al. Prevalence and causes of visual impairment and blindness in Chinese American adults: The Chinese American 
eye study. JAMA Ophthalmol. 134, 785–793. https:// doi. org/ 10. 1001/ jamao phtha lmol. 2016. 1261 (2016).

 37. Iwase, A. et al. Prevalence and causes of low vision and blindness in a Japanese adult population: The Tajimi study. Ophthalmology 
113, 1354–1362. https:// doi. org/ 10. 1016/j. ophtha. 2006. 04. 022 (2006).

 38. Kezirian, G. M., Parkhurst, G. D., Brinton, J. P. & Norden, R. A. Prevalence of laser vision correction in ophthalmologists who 
perform refractive surgery. J. Cataract Refract Surg. 41, 1826–1832. https:// doi. org/ 10. 1016/j. jcrs. 2015. 10. 027 (2015).

 39. Kim, S. et al. Analysis of the change in the number of cataract surgeries: KNHIS data 2013–2018. J. Korean Ophthalmol. Soc. 61, 
726–736. https:// doi. org/ 10. 3341/ jkos. 2020. 61.7. 726 (2020).

 40. Zhang, P., Lu, L. N., Lin, S. L. & Zou, H. D. Analysis of cataract surgery status in public hospitals of Shanghai from 2013 to 2015. 
Zhonghua Yan Ke Za Zhi 56, 615–620. https:// doi. org/ 10. 3760/ cma.j. cn112 142- 20191 030- 00548 (2020).

 41. Dai, C. et al. Optical coherence tomography for whole eye segment imaging. Opt. Express 20, 6109–6115. https:// doi. org/ 10. 1364/ 
oe. 20. 006109 (2012).

 42. Fan, S. et al. Whole eye segment imaging and measurement with dual-channel spectral-domain OCT. Ophthalmic Surg. Lasers 
Imaging Retin. 46, 186–194. https:// doi. org/ 10. 3928/ 23258 160- 20150 213- 25 (2015).

 43. McNabb, R. P. et al. Wide-field whole eye OCT system with demonstration of quantitative retinal curvature estimation. Biomed. 
Opt. Express 10, 338–355. https:// doi. org/ 10. 1364/ BOE. 10. 000338 (2019).

 44. Kuo, A. N., McNabb, R. P. & Izatt, J. A. Advances in whole-eye optical coherence tomography imaging. Asia Pac. J. Ophthalmol. 
(Phila) https:// doi. org/ 10. 22608/ apo. 201901 (2019).

 45. Shimada, N. et al. Detection of paravascular lamellar holes and other paravascular abnormalities by optical coherence tomography 
in eyes with high myopia. Ophthalmology 115, 708–717. https:// doi. org/ 10. 1016/j. ophtha. 2007. 04. 060 (2008).

 46. Spencer, L. M. & Foos, R. Y. Paravascular vitreoretinal attachments. Role in retinal tears. Arch. Ophthalmol. 84, 557–564. https:// 
doi. org/ 10. 1001/ archo pht. 1970. 00990 04055 9001 (1970).

 47. Forte, R., Cennamo, G., Pascotto, F. & de Crecchio, G. En face optical coherence tomography of the posterior pole in high myopia. 
Am. J. Ophthalmol. 145, 281–288. https:// doi. org/ 10. 1016/j. ajo. 2007. 09. 022 (2008).

 48. Bando, H. et al. Ultrastructure of internal limiting membrane in myopic foveoschisis. Am. J. Ophthalmol. 139, 197–199. https:// 
doi. org/ 10. 1016/j. ajo. 2004. 07. 027 (2005).

 49. Sakaguchi, H., Ikuno, Y., Choi, J. S., Ohji, M. & Tano, T. Multiple components of epiretinal tissues detected by triamcinolone and 
indocyanine green in macular hole and retinal detachment as a result of high myopia. Am. J. Ophthalmol. 138, 1079–1081. https:// 
doi. org/ 10. 1016/j. ajo. 2004. 06. 078 (2004).

 50. Baba, T. et al. Prevalence and characteristics of foveal retinal detachment without macular hole in high myopia. Am. J. Ophthalmol. 
135, 338–342. https:// doi. org/ 10. 1016/ s0002- 9394(02) 01937-2 (2003).

 51. Coppé, A. M., Ripandelli, G., Parisi, V., Varano, M. & Stirpe, M. Prevalence of asymptomatic macular holes in highly myopic eyes. 
Ophthalmology 112, 2103–2109. https:// doi. org/ 10. 1016/j. ophtha. 2005. 06. 028 (2005).

 52. Fujiwara, T., Imamura, Y., Margolis, R., Slakter, J. S. & Spaide, R. F. Enhanced depth imaging optical coherence tomography of the 
choroid in highly myopic eyes. Am. J. Ophthalmol. 148, 445–450. https:// doi. org/ 10. 1016/j. ajo. 2009. 04. 029 (2009).

Acknowledgements
This research was supported by the Bio and Medical Technology Development Program of the National Research 
Foundation of South Korea (NRF), funded by the Ministry of Science and ICT (NRF-2017M3A9E1064784).

Author contributions
These authors contributed equally as first authors: K.J.C., J.E.C. These authors contributed equally as correspond-
ing authors: S.J.K., B.H.C. K.J.C, J.E.C., Y.K.S., S.W.K., B.H.C., and S.J.K. conceived of and designed the study. 
K.J.C. H.C.R., J.S.E., J.M.K., Y.K.S., M.C.K., J.K.C., C.Y.L., and D.Y.L. performed data collection. K.J.C. and J.E.C. 

https://doi.org/10.1001/jamaophthalmol.2021.2273
https://doi.org/10.1016/j.oret.2016.12.009
https://doi.org/10.1007/s00417-017-3850-3
https://doi.org/10.1007/s00417-017-3850-3
https://doi.org/10.1364/oe.17.016820
https://doi.org/10.1111/j.1755-3768.1988.tb02681.x
https://doi.org/10.1111/j.1755-3768.1988.tb02681.x
https://arxiv.org/abs/1712.04621
https://arxiv.org/abs/1712.04621
https://doi.org/10.19101/TIPCV.2018.413001
https://doi.org/10.1038/s41598-020-63887-8
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/7544814
https://doi.org/10.1016/j.cmpb.2019.105063
https://doi.org/10.1016/j.cmpb.2019.105063
https://doi.org/10.1038/s41598-021-93026-w
https://www.statstodo.com/CohenFleissKappa_Pgm.php
https://ieeexplore.ieee.org/document/8354201
https://ieeexplore.ieee.org/document/8354201
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://doi.org/10.1016/S0140-6736(12)60272-4
https://doi.org/10.1001/jamaophthalmol.2016.1261
https://doi.org/10.1016/j.ophtha.2006.04.022
https://doi.org/10.1016/j.jcrs.2015.10.027
https://doi.org/10.3341/jkos.2020.61.7.726
https://doi.org/10.3760/cma.j.cn112142-20191030-00548
https://doi.org/10.1364/oe.20.006109
https://doi.org/10.1364/oe.20.006109
https://doi.org/10.3928/23258160-20150213-25
https://doi.org/10.1364/BOE.10.000338
https://doi.org/10.22608/apo.201901
https://doi.org/10.1016/j.ophtha.2007.04.060
https://doi.org/10.1001/archopht.1970.00990040559001
https://doi.org/10.1001/archopht.1970.00990040559001
https://doi.org/10.1016/j.ajo.2007.09.022
https://doi.org/10.1016/j.ajo.2004.07.027
https://doi.org/10.1016/j.ajo.2004.07.027
https://doi.org/10.1016/j.ajo.2004.06.078
https://doi.org/10.1016/j.ajo.2004.06.078
https://doi.org/10.1016/s0002-9394(02)01937-2
https://doi.org/10.1016/j.ophtha.2005.06.028
https://doi.org/10.1016/j.ajo.2009.04.029


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21663  | https://doi.org/10.1038/s41598-021-00622-x

www.nature.com/scientificreports/

wrote the main manuscript text and prepared figures. J.E.C. and B.H.J. generated the deep learning models. 
H.C.R., J.S.E., J.M.K., M.C.K., J.K.C., C.Y.L., D.Y.L., S.W.K., and S.J.K. participated in the tests as human doctors. 
K.J.C., J.E.C., S.W.K., B.H.C. and S.J.K. reviewed the manuscript. All authors read and approved the final version 
of the manuscript. All authors have approved the manuscript and agree with submission.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 00622-x.

Correspondence and requests for materials should be addressed to B.H.C. or S.J.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-00622-x
https://doi.org/10.1038/s41598-021-00622-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning models for screening of high myopia using optical coherence tomography
	Methods
	Dataset. 
	Preprocessing and data augmentation. 
	CNN model architectures. 
	Evaluation of the model and experimental settings. 
	Comparison of the model with human doctors. 

	Results
	Cross validation results on training dataset. 
	Results on the test dataset. 
	Classification performances of left vs. right and vertical vs. horizontal OCT images. 
	Comparison of performances between the CNN model and human doctors. 

	Discussion
	Conclusion
	References
	Acknowledgements


