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Comparing left atrial indices 
by CMR in association with left 
ventricular diastolic dysfunction 
and adverse clinical outcomes
James Nguyen1, Jonathan Weber1, Brittany Hsu1, Rajasekhar R. Mulyala1, Lin Wang1,2 & 
J. Jane Cao1,2*

Left atrial (LA) features are altered when diastolic dysfunction (DD) is present. The relations of LA 
features to the DD severity and to  adverse outcomes remain unclear using CMR images. We sought to 
compare LA features including volumes, emptying fraction, and strains as predictors of left ventricular 
(LV) DD and adverse outcomes. We compared four groups including normal controls (n = 32), grade 
I DD (n = 69), grade II DD (n = 42), and grade III DD (n = 21). DD was graded by echocardiography 
following the current ASE guidelines. Maximum LA volume  (LAVmax), minimum LA volume  (LAVmin), 
and LA emptying fraction (LAEF) were assessed using CMR cine images. Phasic LA strains including 
reservoir, conduit, and booster pump strain were assessed by feature tracking. The outcome was 
a composite of hospital admissions for heart failure and all-cause mortality analyzed using Cox 
proportional hazard models.  LAVmax and  LAVmin were progressively larger while LAEF and LA strain 
measures were lower with worsening degree of DD (all p < 0.001). Among 132 patients with DD, 61 
reached the composite outcome after on average 36-months of follow-up. Each of the LA parameters 
except for LA conduit strain was an independent predictor of the outcome in the adjusted Cox 
proportional hazard models (all p < 0.001). They remained significant outcome predictors after the 
model additionally adjusted for LV longitudinal strain. The AUC of outcome prediction was highest by 
LAEF (0.760) followed by LA reservoir strain (0.733) and  LAVmin (0.725). Among all the LA features, 
increased LA volumes, reduced LAEF, reduced LA reservoir and booster pump strains were all 
associated with DD and DD severity.  While LA strains are valuable, conventional parameters such as 
LAEF and  LAVmin remain to be highly effective in outcome prediction with comparable performance.

Abbreviations
DD  Diastolic dysfunction
LV  Left ventricular
HF  Heart failure
LA  Left atrial
CMR  Cardiac magnetic resonance imaging
LAVmin  Left atrial minimum volume
LAVmax  Left atrial maximum volume

Diastolic dysfunction (DD), a condition of impaired left ventricular (LV) relaxation, is a risk factor for heart 
failure (HF) and cardiac mortality irrespective of LV ejection fraction (LVEF)1–3. The associated increase in LV 
filling pressures results in dilation of left atrial (LA) size and loss of LA compliance and  contractility4,5, which can 
be assessed using LA wall strain and LA emptying fraction (LAEF). Therefore, features of the LA are regarded as 
the barometer of DD. To date, many publications have addressed some LA features and have established com-
pelling evidence that LA parameters are essential in the evaluation of  DD6–9. However, few have compared the 
relative importance of their associations with DD and DD-related adverse outcomes. In addition, most of the 
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published work is based on echo parameters. As Cardiovascular Magnetic Resonance Imaging (CMR) becomes 
increasingly utilized in the evaluation of cardiomyopathy or heart failure there is a need to better understand 
CMR based LA indices. In this study we sought to compare the associations of four LA parameters: minimum 
and maximum LA volume  (LAVmin and  LAVmax), LAEF, and phasic LA strain (reservoir, conduit, booster pump) 
assessed by CMR, with DD, DD severity, and hazards of HF and mortality. We have also compared the hazards 
of LA features with that of LV longitudinal strain to demonstrate the relative importance of LA parameters.

Methods
Participants. This is a sub-study of a previously published larger study where participants underwent CMR 
and echocardiography within 7 days, between January 2007 and December 2015 at a single  center10. The patient 
cohort (N = 132) was selected if there was evidence of DD, which was characterized by echocardiography based 
on the current ASE  guidelines11. Of those, 66 were prospectively recruited for research and 66 were retrospec-
tively analyzed from clinical studies. Patients were excluded if they were found to have history of atrial fibrilla-
tion, mitral stenosis, more than moderate mitral regurgitation, or prosthetic valve in the mitral position, which 
are conditions not supported by ASE guidelines for DD  evaluation11. We also excluded subjects with indeter-
minate diastolic dysfunction grade. In addition to DD patients, normal controls were prospectively recruited 
who were free of cardiovascular history, major risk factors, and had both normal ECG and echocardiography. 
The vital signs and body surface area (BSA) for all subjects were collected at the time of CMR. Outcome data 
of hospitalized heart failure was extracted from electronic medical records of the health system consisting of 6 
hospitals. The all-cause mortality information was obtained from National Death Index.

Ethics approval and informed consent. This study was approved by the St. Francis Hospital Institu-
tional Review Board. Informed written consent was obtained from all participants and research was performed 
in accordance with relevant guidelines and regulations.

Imaging acquisition. Transthoracic echocardiography. Patients were scanned with a multi-frequency 
transducer ultrasound system (Philips IE 33, Andover, MA, USA). Comprehensive echocardiographic examina-
tion was performed using standard views. From the apical window, pulsed wave Doppler was used to record 
mitral inflow for 3–5 cardiac cycles at the level of the mitral valve annulus and at the mitral leaflets’ tips. Tissue 
Doppler was applied to record mitral annular velocities at the septal and lateral corners of the annulus. The 
resulting annular velocities by pulsed wave Doppler were recorded for 3 to 5 cardiac cycles at a sweep speed of 
100 mm/s. Tricuspid regurgitation signals were recorded by continuous wave Doppler from multiple windows. 
Two-dimensional measurements were performed according to recommendations of the American Society of 
 Echocardiography11 and indexed to body surface area. DD was assessed according to the algorithm from the 
recent ASE/EACI guidelines where mitral inflow early (E) and late (A) peak velocities, early diastolic annular 
myocardial longitudinal velocity (e′), tricuspid regurgitation and LA volume index were measured in order to 
determine the DD  grade12.

CMR Imaging acquisition. All subjects underwent CMR on a 1.5 T scanner (Avanto, Siemens, Malvern, PA, 
USA) with an 8-element phased array surface coil. Balanced ECG-gated cine imaging of the long axis planes (2-, 
3- and 4-chamber views) and a stack of 8–12 short axis planes (8 mm slice thickness, with 0 mm skip), starting 
from the mitral annulus, was acquired using balanced steady state free precession sequence with 30 phases per 
cardiac cycle. The average temporal resolution was 50 ms, with a field of view of 240 mm, flip angle of 70 degrees, 
repetition time (TR) of 3.1 ms and echo time (TE) 1.3 ms. All patients were in normal sinus rhythm at the time 
of imaging.

Post processing. LA volume was analyzed following the area and length  method13 using 2- and 4-chamber long 
axis cine images with commercial software (Circle Cardiovascular Imaging Inc, Calgary, Canada) and indexed 
to BSA. LA maximum volume  (LAVmax) was assessed at LV end systole and LA minimum volume  (LAVmin) at 
LV end diastole. Phasic LA strain was analyzed using feature tracking software (TomTec, Germany). LA endo-
cardial contours were first drawn manually and propagated through cardiac phases along the 2-, 3-, and 4- 
chamber views. Manual adjustment was made when needed. Peak LA strains were assessed as the average peak 
strain values of the 3 longitudinal planes (Fig. 1). LV longitudinal strain was analyzed by feature tracking (Circle 
Cardiovascular Imaging Inc, Calgary, Canada) in order to capture the strain of full myocardial thickness. The 
epi- and endocardial contours were drawn manually on the end diastolic phase of the 2-, 3-, and 4-chamber cine 
images and propagated by the software to calculate 2D peak systolic longitudinal strain. All image analysis was 
performed by experienced operators.

Statistical analysis. Continuous variables were described as mean (standard deviation) and count data as 
frequency (percent). Our primary exposures of interest were phasic LA strain (reservoir, conduit, and booster 
pump), LAEF,  LAVmin, and  LAVmax. Intra-observer reliability was assessed 6 months between the repeated meas-
urements and reported with intra-class correlation coefficients (ICC). The association between our predictors 
and DD was assessed using area under the ROC curve (AUC) comparisons, and multinomial logistic regression. 
In these models, our covariates included age, gender, BSA, prevalent diabetes, hypertension, and smoking status 
chosen based on a disjunctive cause  criterion14.

The association between our predictors of interest and a composite outcome of all-cause mortality and HF 
admission was assessed using Cox proportional hazards models. All-cause mortality data was obtained from the 
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National Death Index and HF admissions based on electronic medical record review of the entire health care net-
work. HF admissions were defined by an inpatient stay in a hospital setting with ICD 9 or ICD 10 diagnosis codes 
associated with congestive heart failure at the time of discharge. Individual Cox proportional hazards models 
were created for each primary exposure variable adjusting for age, gender, BSA (except for  LAVmin and  LAVmax), 
diabetes, hypertension, and smoking status. The associations of LA parameters with the composite outcome 
were also examined using AUC comparisons. In addition, the association between E/A and E/a′ with composite 
outcome was assessed using AUC curves. Statistical analyses were performed using SAS v. 9.4 (Cary, NC, USA). 

Results
LA indices and diastolic dysfunction. Our study subjects (n = 164) consisted of four groups: normal 
controls (n = 32), grade I DD (n = 69), grade II DD (n = 42), and grade III DD (n = 21). On average, patients with 
DD were 60 ± 14 years old and about half (N = 63) had advanced DD (grades II or III). Normal LVEF (> 50%) 
was present in 18 (14%) patients. Baseline characteristics of each DD grade are displayed in Table 1. Examples of 
phasic LA strains are shown in Fig. 1 where graded decreases of LA strains are shown from normal to grade 1, 
II and III diastolic dysfunction. Phasic LA strains and LAEF were progressively lower with increasing severity of 
DD (p < 0.001) (Fig. 2A–C, F; Table 2). Similarly, LV longitudinal strain was also progressively lower (Fig. 2G). 
Conversely,  LAVmin and  LAVmax were significantly higher with increasing severity of DD (p < 0.001) (Fig. 2D, E).

Figure 1.  The left panel represents the respective 2-, 3-, 4-, chamber cine views from a normal control subject 
with the green feature tracking contours overlaying the left atrial wall. The right panels are the corresponding 
left atrial strain graphs obtained from each view as well as representative strain graphs from subjects with 
diastolic dysfunction grades 1, 2, and 3.
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A reproducibility analysis was performed on 15 randomly selected subjects. The Intra-observer reliability 
by ICC for LA indices were 0.99 (0.96, 1.00), 0.96 (0.89, 0.99), 0.92 (0.75, 0.98), and 0.6 (0.29, 0.79) for  LAVmin, 
 LAVmax, LAEF and LA reservoir strain respectively.

In order to examine the dose–response relationship, we created an adjusted, generalized multinomial logistic 
regression model to estimate the log-odds of the association between LA parameters of each DD grade compared 
with normal controls (Table 3). We observed significant dose–response relationship in  LAVmin,  LAVmax, LAEF, LA 
reservoir strain, and booster pump strain, but not in LA conduit strain. Using LA reservoir strain as an example, 
for every 1% decrease in LA strain the log-odds of a person having a higher grade of DD compared with normal 
control were 1.11 (CI 1.03–1.19), 1.25 (CI 1.14–1.38), and 1.50 (1.30–1.73) for grades I, II and III, respectively. 
In attempting to remove the potential confounding effect of LV strain on DD, we added LV longitudinal strain 
as a covariate to the previously described model and found that all exposures except LA conduit strain remained 
associated with worsening categories of DD (Table 3).

LA indices and composite clinical outcome. LA parameters were then examined as predictors of a 
composite outcome of HF admission and all-cause mortality. After a mean follow-up time of 38 ± 37 months, 
61 (37%) patients reached the composite outcome due to 33 HF admissions and 28 deaths. No outcome events 
occurred in the normal controls. The outcome incidence was higher in more advanced DD: 45%, 63%, and 65% 
for grades I, II, and III, respectively (p < 0.001). After adjusting for age, BSA, gender, prevalent diabetes, hyper-
tension, and smoking status, all LA parameters with the exception of LA conduit strain were independently asso-
ciated with the composite outcome, and remained independently associated when the models were additionally 
adjusted for LV longitudinal strain (Table 4).

In a post-hoc analysis with an intention to remove potential confounding from LV abnormalities we tested 
the independent associations of LA parameters with the composite outcome in models adjusting for LVEF and 
indexed LV end diastolic volume in addition to age, gender, BSA, diabetes and hypertension. We found that 
LA parameters remained to be independent predictors of outcome with HR 1.05 (1.00–1.10) for  LAVmin, 1.06 
(1.00–1.11) for  LAVmax, 1.05 (1.00–1.10) for LA reservoir strain, 1.00 (0.95–1.05) for LA conduit strain and 1.07 
(1.01–1.13) for LA booster pump strain. Overall, the results were similar to previously adjusted models.

The associations of LA parameters with the composite outcome were additionally examined using AUC 
comparisons. The AUC was highest in LAEF (0.760) followed by LA reservoir strain (0.733) and  LAVmin (0.725) 
(Fig. 3A). For reference purpose the AUC of LV longitudinal strain was 0.747. Additionally, we examined markers 
of diastolic dysfunction measured by echocardiography for reference including E/A ratio and averaged E/e′ ratio 
(Fig. 3B). The performance of E/e′ ratio (AUC 0.76) was similar to that of LAEF and reservoir LA strain but not 
E/A ratio (AUC 0.54). When comparing the AUC of  LAVmax alone, the AUC of combined  LAVmax and LAEF made 
an improvement in outcome prediction (AUC 0.77, p = 0.046) but combined  LAVmax and LA reservoir strain did 
not (AUC 0.73, p = 0.28). Furthermore, combined  LAVmin and LAEF (0.76) or  LAVmin and LA reservoir strain 
(0.73) did not improve outcome prediction from  LAVmin alone (p = 0.33 and p > 0.99, respectively).

Table 1.  Baseline characteristics* describing subjects with and without left ventricular diastolic dysfunction. 
*Described as mean (SD) or N (%).

Normal (N = 32)
Diastolic dysfunction grade I 
(N = 69)

Diastolic dysfunction grade II 
(N = 42)

Diastolic dysfunction grade III 
(N = 21)

Age (years) 44 (15) 57 (14) 65 (12) 62 (15)

Female (%) 11 (34) 8 (12) 15 (36) 10 (48)

Body surface area  (m2) 1.93 (0.21) 1.46 (0.14) 1.41 (0.17) 1.42 (0.17)

Hypertension (%) 0 (0) 31 (45) 24 (57) 10 (48)

Diabetes mellitus (%) 0 (0) 15 (22) 13 (31) 3 (14)

Hyperlipidemia (%) 6 (19) 33 (49) 20 (48) 9 (43)

History of congestive heart failure (%) 0 (0) 33 (52) 26 (65) 16 (80)

Heart rate (bpm) 68 (13) 73 (15) 70 (21) 67 (27)

Systolic blood pressure (mmHg) 126 (19) 135 (20) 125 (37) 122 (34)

Diastolic blood pressure (mmHg) 72 (11) 80 (13) 68 (20) 72 (22)

Left ventricular ejection fraction (%) 57 (5) 37 (9) 44 (17) 31 (12)

Left ventricular end diastolic volume 
(mL/m2) 76 (16) 104 (37) 104 (46) 117 (48)

Left ventricular end systolic volume 
(mL/m2) 33 (9) 65 (32) 64 (48) 86 (50)

Left ventricular stroke volume (mL) 77 (24) 75 (20) 79 (23) 64 (17)

Right ventricular ejection fraction (%) 54 (6) 11 (20) 15 (23) 11 (17)

Right ventricular end diastolic volume 
(mL/m2) 72 (15) 69 (23) 74 (26) 77 (23)

Right ventricular end systolic volume 
(mL/m2) 33 (9) 37 (18) 40 (23) 48 (22)

Right ventricular stroke volume (mL) 71 (22) 65 (24) 68 (23) 60 (17)
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Figure 2.  The graded change of left atrial reservoir strain (A), left atrial conduit strain (B), left atrial booster 
pump strain (C), left atrial minimum volume (D), left atrial maximum volume (E), left atrial emptying fraction 
(F), and left ventricular global longitudinal strain (G) in relation to the severity of left ventricular diastolic 
dysfunction. ANOVA with post-hoc Dunnett’s test yielded statistically significant differences between the means 
(p < 0.05) in each panel.
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Discussion
In this study, we compared the relationships of LA parameters assessed by CMR including  LAVmin,  LAVmax, 
LAEF, and phasic LA strains with DD. Each LA parameter except LA conduit strain was independently associ-
ated with DD in a dose–response manner. Furthermore, each of the LA parameters except LA conduit strain was 
independently associated with the composite outcome of HF admission and all-cause mortality in the adjusted 
model including LV longitudinal strain or LVEF as a covariate.

Consistent with prior  observations15–18, we found dose-responses between LAV (both  LAVmax and  LAVmin) 
and the severity of DD. We have also confirmed prior reports that impaired LA function is closely associated 

Table 2.  Distribution of left atrial strains and volumes across diastolic dysfunction categories.

Normal diastolic 
function

Grade I diastolic 
dysfunction

Grade II diastolic 
dysfunction

Grade III diastolic 
dysfunction

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LA reservoir strain (%) − 27.4 (8.13) − 19.1 (8.01) − 13.5 (5.42) − 8.9 (5.77)

LA conduit strain (%) − 13.9 (5.85) − 10.4 (7.24) − 9.3 (5.15) − 6.2 (3.3)

LA pump strain (%) − 13.6 (5.65) − 8.7 (5.52) − 4.2 (4.1) − 2.8 (3.93)

LAVmin  (ml/m2) 15.9 (5.23) 30.5 (14.84) 48.1 (24.48) 74.7 (66.51)

LAVmaxvol (ml/m2) 38.8 (10.13) 53.4 (18.81) 71 (26.5) 94.3 (66.86)

LAEF  (%) 58.6 (8.21) 44.3 (12.04) 36.6 (13.95) 29.4 (17.61)

LV longitudinal strain (%) − 13.9 (1.97) − 8.4 (3.32) − 8.6 (4.52) − 6.5 (2.65)

Table 3.  The association between change in LA features and worsening categories of left ventricular diastolic 
dysfunction. ORADJ = adjusted odds ratio; 95% CL = 95% confidence limit;  LAVmax = left atrial maximum 
volume;  LAVmin = left atrial minimum volume; LAEF = left atrial emptying fraction. *Adjusted for age, gender, 
BSA (except in models with  LAVmax and  LAVmin), diabetes, hypertension, and smoking. **Additionally adjusted 
for left ventricular global longitudinal strain.

Left atrial measurement Diastolic Dysfunction category ORADJ* (95% CL) ORADJ**(95% CL)

LA strain (reservoir) (%)

Normal Reference Reference

I 1.11 (1.03, 1.19) 1.05 (0.96, 1.14)

II 1.25 (1.14, 1.38) 1.20 (1.07, 1.34)

III 1.50 (1.30, 1.73) 1.38 (1.17, 1.63)

LA strain (conduit) (%)

Normal Reference Reference

I 1.05 (0.97, 1.14) 1.01 (0.90, 1.12)

II 1.06 (0.97, 1.16) 1.01 (0.90, 1.13)

III 1.24 (1.08, 1.42) 1.18 (0.99, 1.41)

LA strain (booster pump) (%)

Normal Reference Reference

I 1.20 (1.08, 1.35) 1.15 (0.99, 1.34)

II 1.47 (1.27, 1.70) 1.43 (1.19, 1.71)

III 1.64 (1.35, 1.97) 1.48 (1.19, 1.85)

LAVmin (ml/m2)

Normal Reference Reference

I 1.31 (1.13, 1.50) 1.33 (1.10, 1.61)

II 1.37 (1.19, 1.58) 1.40 (1.16, 1.70)

III 1.40 (1.21, 1.62) 1.43 (1.18, 1.73)

LAVmax (ml/m2)

Normal Reference Reference

I 1.08 (1.03, 1.13) 1.13 (1.04, 1.23)

II 1.12 (1.07, 1.17) 1.17 (1.08, 1.28)

III 1.14 (1.08, 1.20) 1.19 (1.09, 1.30)

LAEF (%)

Normal Reference Reference

I 1.16 (1.07, 1.24) 1.14 (1.04, 1.25)

II 1.20 (1.11, 1.30) 1.19 (1.08, 1.31)

III 1.24 (1.14, 1.35) 1.21 (1.09, 1.34)

LV longitudinal strain (%)

Normal Reference

N/A
I 1.61 (1.28, 2.03)

II 1.66 (1.31, 2.11)

III 1.99 (1.49, 2.65)
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with  DD19–22 in a dose–response relationship in our study. Similarly, phasic LA strains also demonstrated similar 
dose–response relationships, confirming prior observations made from an echocardiography speckle-tracking 
 study23.

While LA reservoir and booster pump strain are valuable, we found it is comparable at best to  LAVmin and 
LAEF in predicting adverse clinical outcomes. The outcome prediction by  LAVmax alone is not as strong as  LAVmin 
and LAEF. But by combining it with LAEF, the prediction is significantly enhanced. Our findings highlights the 
strength of  LAVmin in DD evaluation which is superior to widely used  LAVmax. Physiologically,  LAVmin is directly 
modulated by LV filling pressure during LV end diastole as opposed to  LAVmax which is predominantly influenced 
by the descending of mitral annulus thereby related to LV systolic function and LA compliance. Our collective 
findings suggest that  LAVmin evaluation should be considered more favorably in the assessment of DD. It is also 
important to understand the relative importance of LA parameters in the context of other well-established imag-
ing markers such as E/e′ and LV longitudinal strain in outcome prediction. We found that LAEF, the strongest 
outcome predictor of all LA indices including LA strain, has a comparable AUC from E/e′ and that from LV 
longitudinal strain. Given that LAEF correlates well with LV end diastolic  pressure18 it is biologically plausible 
for it to predict clinical outcome effectively. Future research should examine the potential role of LAEF as an 
essential parameter in routine clinical evaluation.

It should be recognized that both LAV and LA strain evaluation are modality dependent. For instance, CMR 
has better spatial resolution than echocardiography rendering more accurate and reproducible LAV evaluation. 
In contrast, echocardiography has higher temporal resolution than CMR, hence providing a more favorable LA 
strain assessment. The technical differences may yield discrepancies in observations. That is why CMR specific 
investigations for LA in DD is essential despite the large body of literature using echocardiography. A recently 
published review article by Thomas et al.24 included a comprehensive list of studies that had investigated LAV 
and LA strain individually or collectively for their associations with DD. Most, if not all of the studies are echo-
cardiography based and few, if any, use CMR. Additionally, we delineated the relative value of  LAVmax,  LAVmin, 
LAEF and phasic LA strain in DD and outcome prediction which has not been reported before. We have also 
established the associations of these LA indices with outcomes independent of LV longitudinal strain or LVEF. 
Of the LA parameters studied,  LAVmin is easily attainable which allows LAEF to be calculated  from routine CMR 
or echocardiographic examination without the demand of additional post processing such as for LA strain. It is 
foreseeable to incorporate  LAVmin and LAEF into future clinical algorithms for DD evaluation.

We recognize the limitations of our study. This is a pooled sample of both prospective and retrospective 
cohorts. The demographic data from the retrospective cohort was collected from electronic medical records and 
thereby subject to availability. CMR and echocardiography were performed within the same day for half of the 
DD patients but within 7 days for the other half. As DD diagnosis and grading were based on echocardiographic 
criteria, CMR evaluation that followed echocardiography was subject to the interval variation of hemodynam-
ics, although there was no significant change reported during the interval. The DD patients consisted of both 
reduced and preserved EF. While the sample size is powered for outcome risk assessment we acknowledge the 
relatively small sample size originating from a single center clinical cohort. In addition, female gender is under 
represented. Similar to LV strain assessment, the value of LA strain is likely vendor  dependent25. Therefore, the 
LA strain values generated from our normal subjects or from patients with DD cannot be directly compared 
with published studies using different vendors. Nonetheless, the relative importance of LA strain in our study 
that was compared with the normal controls is not subject to the variability of absolute value. It should also be 
noted that most of the feature tracking software is designed for LV strain evaluation and not for LA specifically. 
That is probably why the reproducibility of LA strain is only modest at best. However, our experience showed 
that the modern feature tracking program tracks the LA very well despite the thin wall. Tracking of the mobile 
mitral annulus is not always reproducible, and that seems to contribute to the variability. While the spatial 
resolution is excellent the temporal resolution of the CMR cine imaging is relatively low (about 50 ms) which 

Table 4.  The associations between LA features and increased hazards of clinical composite outcome. 
HR = hazard ratio; LL = lower limit; UL = upper limit;  LAVmax = left atrial maximum volume;  LAVmin = left 
atrial minimum volume; LAEF = left atrial emptying fraction; LV = Left ventricle. *Adjusted for age, gender, 
BSA (except in models with  LAVmax and  LAVmin), diabetes, hypertension, and smoking status. **Additionally 
adjusted for left ventricular global longitudinal strain.

Unadjusted Adjusted* Adjusted**

HR LL UL p value HR LL UL p value HR LL UL p value

LA strain (reservoir) per 1% 1.09 1.05 1.13 < 0.001 1.09 1.05 1.14 < 0.001 1.06 1.01 1.11 0.021

LA strain (conduit) per 1% 1.08 1.03 1.13 0.003 1.04 0.99 1.10 0.104 1.00 0.95 1.06 0.9

LA strain (booster pump) per 1% 1.09 1.03 1.14 0.001 1.11 1.05 1.17 < 0.001 1.09 1.02 1.16 0.007

LAVmin per 5 mL/m2 1.08 1.04 1.12 < 0.001 1.08 1.04 1.13 < 0.001 1.07 1.02 1.12 0.009

LAVmax per 5 mL/m2 1.08 1.03 1.12 < 0.001 1.08 1.03 1.14 0.002 1.08 1.03 1.13 0.003

LAEF per 1% 1.04 1.02 1.06 < 0.001 1.04 1.02 1.06 < 0.001 1.03 1.01 1.05 0.01

LV longitudinal strain per 1% 1.16 1.08 1.25 < 0.001 1.21 1.11 1.31 < 0.001 N/A

LVEF per 1% 0.96 0.94 0.98 < 0.001 0.95 0.93 0.97 < 0.001 0.98 0.95 1.01 0.15

LVEDV per 5 mL/m2 1.05 1.02 1.08 < 0.001 1.07 1.04 1.10 < 0.001 1.03 1.00 1.07 0.080
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may have compromised the accuracy of assessing the cardiac motion occurring within a short time frame such 
as LA boost pump strain. LA fibrosis evaluation by CMR can be valuable in patients with DD, but it was not 
performed in this study. While our electronic medical record allows us to capture HF admissions in the entire 
health system consisting of 6 hospitals, it is still possible that patients were admitted elsewhere, and therefore 
we may underestimate the scope of the outcomes. Lastly, this is a single center study and most of our patients 
are Caucasian. Future multicenter studies with diverse patient populations are warranted.

Conclusion
LA features including LAV, emptying fraction,  as well as LA reservoir and booster pump strains have 
dose–response relationships with DD severity. They are also independent predictors of HF admission and all-
cause mortality.  LAVmax is not a strong outcome predictor but the prediction can be enhanced significantly by 
combining it with LAEF. While LA strains are valuable, conventional parameters such as LAEF and  LAVmin 
remain highly effective in outcome prediction with comparable performance.

Figure 3.  Receiver operating characteristic analyses of left atrial parameters (A) for predicting the composite 
clinical outcome as well as standard echocardiographic parameters for diastolic dysfunction (B) for comparison.
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The datasets used and/or analysed during the current study are available from the corresponding author on 
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