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Quantum cryptographic resource 
distillation and entanglement
Minjin Choi & Soojoon Lee*

We look into multipartite quantum states on which quantum cryptographic protocols including 
quantum key distribution and quantum secret sharing can be perfectly performed, and define the 
quantum cryptographic resource distillable rate as the asymptotic rate at which such multipartite 
state can be distilled from a given multipartite state. Investigating several relations between 
entanglement and the rate, we show that there exists a multipartite bound entangled state whose 
quantum cryptographic resource distillable rate is strictly positive, that is, there exists a multipartite 
entangled state which is not distillable, but can be useful for quantum cryptography such as quantum 
key distribution and quantum secret sharing.

Entanglement is one of the most significant resources for quantum cryptography. In particular, it has been well 
known that any pure entangled state can be useful in performing quantum cryptographic protocols, such as 
quantum key  distribution1 and quantum secret  sharing2. However, it has also been known that there exist mixed 
states, called the private  states3–5 or the (genuine) secret sharing  states6,7, which can distill perfectly secure key bits 
or secret bits for secret sharing just by measurement. We here call such mixed states the quantum cryptographic 
resource (QCR) states. Hence, it can be seen that a QCR state is not only considered as a generalized version of 
the private state or the genuine secret sharing state, but is also regarded as a resource unit in a quantum cryp-
tographic theory, while a pure maximally entangled state plays a role of a resource unit in entanglement theory.

We consider a general form of the QCR states with one dealer party. In other words, the QCR state that we 
here deal with is a multipartite quantum state, and a private state on the parties can be obtained from the state 
by local quantum operations and classical communication (LOCC) so that perfectly secure key distribution is 
feasible between the dealer party and any player party of the state. In addition, complete secret sharing on any 
number of divided parties together with the dealer party of the QCR state is also possible, although dishonest 
players cooperating with any exterior eavesdropper exist. Thus, players can select one quantum cryptographic 
protocol among various kinds of ones with the dealer on the same QCR state, as they want.

As in any resource theories including entanglement theory, it is both natural and important to take into 
account the quantity representing how much amount of QCR can be extracted from a given state, which we call 
the QCR distillable rate of the state. We remark that since the simplest QCR state is a maximally entangled state, 
the QCR distillable rate in entanglement theory is nothing but the distillable  entanglement8, and since the private 
state is also a simple form of the QCR state, the QCR distillable rate in quantum key distribution is equal to the 
distillable key  rate3,5,9. Hence, in this paper, we discover the properties of the QCR distillable rate, and compare 
the QCR distillable rate with the distillable entanglement and the distillable key rate.

We say that a multipartite state is QCR distillable if its QCR distillable rate is strictly positive. Then it is clear 
that a QCR distillable state is entangled, since if a multipartite state has a separable bipartite split, then perfectly 
secure key distribution is impossible between the split, and hence the state is not QCR distillable. However, it 
does not seem to be true that all entangled states are QCR distillable, because its simplest case is not true, that 
is, there exists a bipartite bound entangled state with positive secret key distillable  rate3,5,9.

In this paper, we first present necessary and sufficient conditions for the QCR state with a dealer party, and 
definition of the QCR state, and then show that a given multipartite quantum state is a QCR state if and only if the 
conditions on the state hold. We also define the QCR distillable rate of a given multipartite state in a mathemati-
cal way, and present some properties on the QCR distillable rate. Finally, by providing the method to construct a 
QCR state with larger number of parties from several QCR states, we prove the existence of multipartite bound 
entangled but QCR distillable states.

This paper is organized as follows. We first define the QCR state, and justify the definition. After showing the 
several properties of the QCR states, we also present the mathematical definition of the QCR distillable rate of 
a given state, and investigate some relations between the QCR distillable rate and other distillable rates such as 
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the entanglement distillable rate and secret key distillable rate. We finally show that there exists a multipartite 
QCR distillable state without any distillable entanglement.

Results
QCR states. Assume that there are one dealer and N players who participate in a quantum cryptographic 
protocol, and let D = D̄D̃ be the dealer’s quantum system with two subsystems D̄ of d dimension and D̃ of arbi-
trary dimension in the protocol. Similarly, for each 1 ≤ i ≤ N , let Ai = ĀiÃi be the i-th player’s quantum system 
with subsystems Āi of d dimension and Ãi of arbitrary dimension. Throughout this paper, we denote Ā1 · · · ĀN 
and Ã1 · · · ÃN by Ā and Ã , respectively, and denote ĀÃ by A . The systems Ā and Ã are called the information 
part and the shield part, respectively.

In order to perform the quantum cryptographic protocol, the dealer’s and players’ information should satisfy 
the following cryptographic conditions: 

 (i) The probability distributions of the dealer’s and all players’ information must be unbiased and perfectly 
correlated.

 (ii) An eavesdropper and dishonest players cannot get any information about the dealer’s information.
 (iii) The dealer and any subset of players can perform the same protocol with smaller number of parties after 

properly applying LOCC.

When N = 1 , if the dealer and the player share the private  states3–5, or when N ≥ 2 , if the dealer and the players 
share the genuine secret sharing  states7, then the above three conditions are surely satisfied. However, since any 
player can be a dealer in the private states and the (genuine) secret sharing states, considering the case where the 
dealer is predetermined is more general than those in the private states and the (genuine) secret sharing states, 
Thus, we introduce the class of quantum states suitable for the case where the dealer is determined in advance.

Definition 1 ϒDA is called a QCR state if for any bipartite split {P1,P2} of the players with P1 consisting of at 
least one player and A = P1P2 , the given state ϒDA can be written as

where

D̄P̄1P̄2 = D̄Ā and D̃Ã are the information part and the shield part of the QCR state ϒDA , respectively, σD̃Ã is an 
arbitrary state, and the 

{
U

iI1

D̃P̃1

}
 and 

{
V

I2

D̃Ã

}
 are unitary operators on the systems D̃P̃1 and D̃Ã , respectively.

For instance, let |ϒ�D̄ĀB̄D̃ÃB̃ be the following state.

Then we can readily check that the state ϒ
D̄ĀB̄D̃ÃB̃

= |ϒ��ϒ | is a QCR state, but not a genuine secret sharing state 
in  Reference7. Furthermore, when N = 1 , the QCR state ϒD̄ĀD̃Ã in Definition 1 can be written as

which is essentially equivalent to a private state, and all genuine secret sharing states in  Reference7 are QCR states. 
Hence, the QCR state can be regarded as a generalization of the private states and the genuine secret sharing 
states with respect to quantum cryptography.

Theorem 1 Suppose that a dealer and N players share a quantum state ρDA . The dealer and players can obtain 
information satisfying the above cryptographic conditions (i) and (ii) after they measure their information parts in 
the computational basis if and only if the state ρDA is a QCR state.

Theorem 2 Assume that a dealer D and N players A share an (N + 1)-party QCR state. For any bipartite split 
{P1,P2} of the players A = P1P2 with |P1| = M ≥ 1 , if players P2 measure their information parts and correctly 
announce the measurement outcomes, then DP1 can share an (M + 1)-party QCR state after the dealer applies a 
proper unitary operation on the dealer’s part.

Theorem 2 tells us that from a given QCR state, a QCR state on any smaller number of players and the dealer 
as well as a private state between any player and the dealer can be shared by LOCC, as seen in the Fig. 1. In other 
words, Theorem 2 implies that any QCR state satisfies the cryptographic condition (iii).
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Theorem 3 Assume that there are two QCR states ϒDAA and ϒDBB , where both DA and DB are the dealer’s parties, 
and A = A1 · · ·AN and B = B1 · · ·BM are two different sets of players. Then the dealer and all players share a QCR 
state ϒDAB via the dealer’s proper local operations, where D = DADB.

By Theorem 3, we can see that a larger QCR state can be obtained from two different QCR states with the 
same dealer party as seen in the Fig. 2. Furthermore, we note that the private state is considered as a QCR state 
with one dealer and one player. Hence, by mathematical induction, we have the following corollary.

Corollary 4 Suppose that each of N players shares a private state with one dealer. Then they can have an (N + 1)
-party QCR state by applying the dealer’s proper local operations.

Figure 1.  As in Theorem 2, from the ϒDA , a private state ϒDAk
 or a QCR state ϒDA′ with smaller number of 

parties can be obtained by LOCC, where A′ = Ai1Ai2 · · ·Aim.

Figure 2.  Constructing a QCR state with larger number of parties from two QCR states ϒDAA and ϒDBB in 
Theorem 3.
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QCR distillable rate and bound entangled states. Before defining the QCR distillable rate, we look 
at the distillable entanglement and the distillable key rate. Let �m

AB and γm
ABA′B′ be denoted by the maximally 

entangled state with m = log dim(A) = log dim(B) and the private state with m = log dim(A) = log dim(B) , 
respectively, where dim(·) is the dimension of the system. The distillable entanglement ED is defined as the rate 
at which maximally entangled states can be distilled under  LOCC10, that is,

where �A:B is an LOCC protocol between Alice and Bob. Similarly, the distillable key rate KD is defined as the 
rate at which private states can be distilled under  LOCC3,5, that is,

Since we can define the QCR distillable rate for any state in a similar way to the above definitions, from the defini-
tion, we can know how many copies of the given state are required to asymptotically distill a QCR state through 
LOCC. The QCR distillable rate CRD of a given multipartite quantum state ρDA is defined as

where � is the dealer’s and all players’ LOCC operation, and ϒm
DA denotes a QCR state whose information part 

D̄Ā1Ā2 · · · ĀN satisfies m = log dim(D̄) = log dim(Āi) for all i.
Let us now investigate the connection between the distillable key rate and the QCR distillable rate. It follows 

from Theorem 2 that

for any bipartite split {P1,P2} of the players A = P1P2 . In addition, by Theorem 3, we have the following theorem.

Theorem 5 Let A = A1 · · ·AN and B = B1 · · ·BM be two different sets of players, and let DA and DB be the dealer’s 
parties. For given two states ρDAA and ρDBB,

Hence, the following corollary clearly comes from Theorem 5 and Corollary 4.

Corollary 6 For each i = 1, 2, . . . ,N , let ρDiAi be the quantum state shared by the dealer Di and the i-th player Ai . 
Then the following inequality holds.

Corollary 6 implies that if each ρDiAi has a positive distillable key rate, then 
⊗N

i=1 ρDiAi has a positive QCR 
distillable rate. We note that if each ρDiAi is a bipartite state with positive partial transposition (PPT), then ⊗N

i=1 ρDiAi is also an (N + 1)-partite state with PPT, since it is a PPT state with respect to any bipartite split of DA 
with one dealer D = D1D2 · · ·DN and N players A = A1A2 · · ·AN . Hence, we can readily construct multipartite 
PPT bound entangled states with positive QCR distillable rate from bipartite PPT bound entangled states with 
positive distillable key rate, which are presented in  References5,9. Therefore, we can finally present our theorem 
showing the existence of such states as follows.

Theorem 7 For any natural number N ≥ 2 , there exists an (N + 1)-partite bound entangled state ρDA with 
CRD(ρDA) > 0.

Discussion
We have defined the QCR state with a dealer party, and have shown that a given multipartite quantum state is 
a QCR state if and only if the two cryptographic conditions on the state hold. We have also defined the QCR 
distillable rate of a given multipartite state, and have presented several important properties on the QCR distill-
able rate. In the sequel, we have presented how to construct a QCR distillable state with larger number of parties 
from several QCR distillable states. Moreover, we have proved that there exist multipartite bound entangled 
states which are QCR distillable. This result implies that there exists a multipartite quantum state on which a 
dealer and players can perform one of several kinds of quantum cryptographic protocols to some extent, and 
from which they cannot distill any bipartite nor multipartite entanglement by LOCC. Hence, we can conclude 
that any bipartite or multipartite distillable entanglement is not necessarily required for quantum cryptography.

The QCR states that we have dealt with in this paper have one specific dealer party. Thus several kinds of 
perfectly secure classical communication feasible on the quantum state can be performed between the dealer 
party and any number of players. Therefore, the QCR state can be considered as a resource unit in quantum 
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cryptographic theory, and hence we could construct the quantum cryptographic network consisting of the QCR 
states instead of the bipartite maximally entangled states or the private states.

Methods
Proof of Theorem 1. This proof is almost the same as that of the theorem related to the genuine secret shar-
ing state in  Reference7. The details are as follows.

Let us consider the state

which is a purification of ρDA . Assume that the dealer and players can have cryptographic information that 
satisfies the cryptographic condition (i) by measuring the information part of ρDA . Then we have pI = 1/dN for 
I ∈ S

0
N+1 and pI = 0 for I /∈ S

0
N+1.

Regarding the condition (ii), we first take account of the worst case that all players except one player, say Ak , 
are dishonest. Then the subsystem Ā′ = Ā1 · · · Āk−1Āk+1 · · · ĀN is the information part of the dishonest players.

Let i be the dealer’s measurement outcome. Then the eavesdropper and dishonest players’ state after meas-
urement becomes

if reordering the systems. From the cryptographic condition (ii), we have γ (i)

Ā′D̃ÃE
= γ

(i′)
Ā′D̃ÃE

 for any i, i′ ∈ Zd . It 
follows from the Hughston-Jozsa-Wootters  theorem11 that for i, ik , i′, i′k ∈ Zd with i + ik = i′ + i′k (mod d) , there 
is a unitary operator Ui,ik→i′ ,i′k

D̃Ãk
 on the system D̃Ãk such that

for all ξ ∈ S
−i−ik
N−1 .

Let {P1,P2} be an arbitrary bipartite split of the players with P1 consisting of at least one player and A = P1P2 . 
Without loss of generality, we may assume that P1 = A1 · · ·AM and P2 = AM+1 · · ·AN . Then by Eq. (13), it can 
be shown that if iI1I2 = ii1 · · · iMiM+1 · · · iN ∈ S

0
N+1 , then

where Ui,j

D̃Ãk
= U

i,j→i+j,0

D̃Ãk
 and jt ≡ i + i1 + · · · + it (mod d) . Let tr

D̃Ã
(|ψ00···0��ψ00···0|) =

∑
x �x|ηx�E�ηx| be 

its spectral decomposition. Then we have

for some unitary operators UiI1
D̃P̃1

 , VI2
D̃Ã

 and orthonormal set {|φx�} for the system D̃Ã . Therefore, ρDA is of the 
form in Eq. (1).

Conversely, assume that ρDA has the form in Eq. (1). Then it can be readily shown that players have crypto-
graphic information that obeys the cryptographic condition (i) after measuring their information parts in the 
computational basis.

We now show that players’ cryptographic information satisfies the condition (ii). Suppose that {P1,P2} is a 
bipartite split of the players A = P1P2 with P1 consisting of at least one player and P2 representing K dishonest 
players. Let σ

D̃Ã
=

∑
x κx|µx�D̃Ã�µx| be a spectral decomposition of σD̃Ã , and let

where {|νx�} forms an orthonormal set for the eavesdropper’s system E. Then the state

is a purification of ρDA . If the dealer has the measurement outcome i after measuring the dealer’s information 
part in the computational basis, then the quantum state of dishonest players and eavesdropper after the meas-
urement becomes

where 
∣∣ϕI2

〉
D̃P̃E

=
∑

x

√
κxV

I2
D̃P̃

|ξx�D̃P̃|ex�E . Since ϒ(i)
P2E

= ϒ
(j)
P2E

 for any i, j ∈ Zd , dishonest players and eavesdrop-
per cannot get any information about the dealer’s cryptographic information.

(11)
∣∣Ŵρ

〉
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=
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d

√
pI |I�D̄Ā|ψI �D̃ÃE ,
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|ξ�
Ā′
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=
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x

√
�xU
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(17)|ϒ�DP1P2E = 1√
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Proof of Theorem 2. The proof of Theorem 2 is also similar to that of the theorem associated with the genu-
ine secret sharing states in  Reference7. However, we here present its simple proof compared to that in  Reference7 
as follows.

Without loss of generality, we may assume that P1 = A1 · · ·AM and P2 = AM+1 · · ·AN . Let ϒDA be an (N + 1)
-party QCR state shared by a dealer and N players. Since ϒDA has the form in Eq. (1), if let I2 ∈ S

β
N−M be the 

measurement outcomes for some β when players P2 measure their information parts in the computational basis, 
then the resulting state of the dealer D and the players P1 after the measurement becomes

where σ̃
D̃P̃1

= tr
P̃2
Ṽ

I2

D̃Ã
σ
D̃Ã

(
Ṽ

I2

D̃Ã

)†
.

We note that unitary operators on the shield part of the state ϒDA can be expressed as in Eq. (14), and it can 
be easily shown that WD̄ϒ

(I2)
DP1

W†
D̄

 is an (M + 1)-party QCR state, where W =
∑d−1

i=0 |i + β��i| . Therefore, if the 
players P2 announces the value β , then the dealer D and the players P1 can share the (M + 1)-party QCR state 
after applying the unitary operator W on the dealer’s information part.

Proof of Theorem 3. Let

be a purification of the QCR state ϒDAA , and let

be a purification of the QCR state ϒDBB . For I = i1i2 · · · iL ∈ Z
L
d , let |I| be defined as |I| = i1 + · · · + iL . Then the 

states |ϒ�DAAEA and |ϒ�DBBEB in Eqs. (20) and (21) can be rewritten as

and

respectively.
Let cX be the unitary operator defined as

If the dealer applies the unitary operator cXD̄AD̄B
 on the system D̄AD̄B in the state |ϒ�DAAEA ⊗ |ϒ�DBBEB , then 

after properly rearranging the order of the systems, the state becomes

We remark that if the dealer and all players measure their information part D̄AĀB̄ in the computational basis, 
then they have cryptographic information that satisfies the cryptographic condition (i). In order to show that 
the cryptographic information obeys the cryptographic condition (ii), we consider the worst case as in the proof 
of Theorem 1.

Let us assume that the dealer measures the information part D̄A , and let i be the dealer’s measurement out-
come. By tracing out the system D̄AD̄BD̃AD̃B of the resulting state, we have

Let us now consider the situation where all players except the dealer and one player are dishonest as the worst 
case. Without loss of generality, we may assume that the honest player is A1 , by symmetry. When N ≥ 2 , after 
tracing out the system A1 , the dishonest players and eavesdropper’s state becomes
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N

∑

J ,J ′∈S−α−i
M

|I , J�
ĀB̄

〈
I ′, J ′

∣∣⊗trD̃A

∣∣ψ−α,I

〉
D̃AÃEA

〈
ψ−α,I′

∣∣⊗ trD̃B

∣∣φα+i,J

〉
D̃BB̃EB

〈
φα+i,J′

∣∣.
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where Î = i2 · · · iL ∈ Z
L−1
d

 for I = i1i2 · · · iL ∈ Z
L
d and Â = Ā2 · · · ĀL for Ā = Ā1Ā2 · · · ĀL . Since ϒDAA is a QCR 

state,

for any α,β ∈ Zd and Î , Î ′ ∈ S
α−β
N−1 . Hence, the state in Eq. (27) can be rewritten as

We can here see that the state in Eq. (29) is independent on the dealer’s measurement outcome i. In other words, 
the dealer’s cryptographic information is perfectly secure against the dishonest players and any exterior eaves-
dropper, which implies that the dealer’s and all players’ cryptographic information satisfies the cryptographic 
condition (ii).

Now assume that N = 1 , that is, A = A1 . Then the state of the dishonest players B and eavesdropper EAEB 
after the dealer’s measurement is

where the dealer’s measurement outcome is i. Since

for all α ∈ Zd , the state in Eq. (30) does not depend on the measurement outcome i, and hence the cryptographic 
information is perfectly secure against the dishonest players and any exterior eavesdropper.

Let |ϒ�DABE be the pure state in Eq. (25), which is the resulting state after the dealer applies the unitary opera-
tor cXD̄AD̄B

 on the system D̄AD̄B in the state |ϒ�DAAEA ⊗ |ϒ�DBBEB , where D = DADB and E = EAEB . Then, for 
any cases, the cryptographic information from the state |ϒ�DABE obeys the cryptographic conditions (i) and (ii). 
Therefore, the state cXD̄AD̄B

(
ϒDAA ⊗ ϒDBB

)
cX†

D̄AD̄B
 is an (N +M + 1)-party QCR state by Theorem 1, since the 

state is equal to trE|ϒ�DABE�ϒ |.

Proof of Theorem 5. We first note that the set of all LOCC operations �DAB on the dealer D = DADB 
and all players AB contains LOCC operations of the form �DAA ⊗�DBB . Hence, CRD

(
ρDAA ⊗ ρDBB

)
 is lower 

bounded by

where UD ’s are unitary operators acting on the system D. In addition, as seen in the proof of Theorem 3, there 
exists a unitary operator ŪD such that

Then it follows from Eq. (33) that

By the telescoping property of the trace  distance12,13, that is,

we can see that the lower bound on CRD
(
ρDAA ⊗ ρDBB

)
 in Eq. (32) is also lower bounded by

which is greater than or equal to both CRD
(
ρDAA

)
 and CRD

(
ρDBB

)
 . This completes the proof, that is,

(27)

1

dN+M−1

∑

α,β∈Zd

∑

Î ,Î ′∈Sα−β
N−1

∑

J ,J ′∈S−α−i
M

∣∣∣Î
〉
Â

〈
Î ′
∣∣∣⊗ |J�

B̄

〈
J ′
∣∣⊗tr

D̃AÃ1

∣∣∣ψ−α,β ,Î

〉
D̃AÃEA

〈
ψ−α,β ,Î ′

∣∣∣⊗ tr
D̃B

∣∣φα+i,J

〉
D̃BB̃EB

〈
φα+i,J ′

∣∣,

(28)tr
D̃AÃ1

∣∣∣ψ−α,β ,Î

〉
D̃AÃEA

〈
ψ−α,β ,Î ′

∣∣∣ = tr
D̃AÃ1

∣∣∣ψ0,β−α,Î

〉
D̃AÃEA

〈
ψ
0,β−α,Î ′

∣∣∣

(29)

1

dN+M−1

∑

s,t∈Zd

∑

Î ,Î ′∈Ss
N−1

∑

J ,J ′∈St
M

∣∣∣Î
〉
Â

〈
Î ′
∣∣∣⊗ |J�

B̄

〈
J ′
∣∣⊗tr

D̃AÃ1

∣∣∣ψ0,−s,Î

〉
D̃AÃEA

〈
ψ
0,−s,Î ′

∣∣∣⊗ tr
D̃B

∣∣φ−t,J

〉
D̃BB̃EB

〈
φ−t,J ′

∣∣.

(30)
1

dM

∑

α∈Zd

∑

J ,J ′∈S−α−i
M

|J�
B̄

〈
J ′
∣∣⊗trD̃AÃ

∣∣ψ−α,α

〉
D̃AÃEA

〈
ψ−α,α

∣∣⊗ trD̃B

∣∣φα+i,J

〉
D̃BB̃EB

〈
φα+i,J′

∣∣,

(31)trD̃AÃ

∣∣ψ−α,α

〉
D̃AÃEA

〈
ψ−α,α

∣∣ = trD̃AÃ

∣∣ψ0,0

〉
D̃AÃEA

〈
ψ0,0

∣∣

(32)lim
δ→0

lim
n→∞

sup
UD

sup
�DAA ,�DBB

{
K :

∥∥∥UD

(
�DAA

(
ρ⊗n
DAA

)
⊗�DBB

(
ρ⊗n
DBB

))
U†
D −ϒnK

DAB

∥∥∥
1
≤ δ

}
,

(33)ŪD

(
ϒnK
DAA

⊗ ϒnK
DBB

)
Ū†
D = ϒnK

DAB.

(34)

∥∥∥ŪD

(
�DAA

(
ρ⊗n
DAA

)
⊗�DBB

(
ρ⊗n
DBB

))
Ū†
D − ϒnK

DAB

∥∥∥
1
=

∥∥∥�DAA

(
ρ⊗n
DAA

)
⊗�DBB

(
ρ⊗n
DBB

)
−ϒnK

DAA
⊗ ϒnK

DBB

∥∥∥
1
.

(35)�σ1 ⊗ σ2 − τ1 ⊗ τ2�1 ≤ �σ1 − τ1�1 + �σ2 − τ2�1,

(36)lim
δ→0

lim
n→∞

sup
�DAA ,�DBB

{
K :

∥∥∥�DAA

(
ρ⊗n
DAA

)
−ϒnK

DAA

∥∥∥
1
≤ δ

2
,
∥∥∥�DBB

(
ρ⊗n
DBB

)
−ϒnK

DBB

∥∥∥
1
≤ δ

2

}
,

(37)CRD
(
ρDAA ⊗ ρDBB

)
≥ min{CRD

(
ρDAA

)
, CRD

(
ρDBB

)
}.
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