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Molecular search by NMR spectrum 
based on evaluation of matching 
between spectrum and molecule
Youngchun Kwon1,2, Dongseon Lee1, Youn‑Suk Choi1* & Seokho Kang3*

Inferring molecular structures from experimentally measured nuclear magnetic resonance (NMR) 
spectra is an important task in many chemistry applications. Herein, we present a novel method 
implementing an automated molecular search by NMR spectrum. Given a query spectrum and a pool 
of candidate molecules, the matching score of each candidate molecule with respect to the query 
spectrum is evaluated by introducing a molecule‑to‑spectrum estimation procedure. The candidate 
molecule with the highest matching score is selected. This procedure does not require any prior 
knowledge of the corresponding molecular structure nor laborious manual efforts by chemists. We 
demonstrate the effectiveness of the proposed method on molecular search using 13C NMR spectra.

In chemistry, nuclear magnetic resonance (NMR) spectroscopy is an important tool for the elucidation of chemi-
cal structures. Given an experimentally measured NMR spectrum, we analyze the resonance frequencies at which 
the peaks occur, called chemical shifts. Chemical shifts reflect the structural properties around spin-active atoms 
in the corresponding molecule, the use of which facilitates a better understanding of the chemical structure.

Because manual interpretation of an NMR spectrum is laborious and tedious, research has been conducted on 
the automatic determination of chemical structures from NMR spectra. A typical implementation is molecular 
search by NMR spectrum. For a query NMR spectrum, we search for the molecule that seems to provide the clos-
est spectral match from a pool of candidate molecules. There are two main approaches to evaluate the matching 
score between the query spectrum and each candidate molecule: chemical shift similarity and spectral similarity.

The first approach uses the similarity between the observed chemical shifts of the query spectrum and the 
predicted chemical shifts of each candidate  molecule1–4, as illustrated in Fig. 1a. To obtain the assigned chemi-
cal shifts, the peak picking and assignment procedure is required for the raw spectrum, which often relies on 
the manual efforts of chemists. To obtain the predicted chemical shifts, researchers have developed various 
methods, including quantum chemical  calculation4–6, search, and machine  learning1,2,9. This approach is very 
efficient, but is prone to error without prior knowledge of the query spectrum, such as the chemical formula of 
the matching molecule. In addition, it is difficult to accurately extract chemical shifts from highly noisy spectra 
and complex molecules.

The second approach compares the query spectrum with the measured/simulated spectrum of each candidate 
molecule, as illustrated in Fig. 1b. The spectrum of the candidate molecule can be experimentally measured using 
NMR spectroscopy or simulated via quantum chemical  calculation10. Various spectral similarity measures then 
become available for  use11–13, which directly operate on raw spectra without an explicit annotation of the chemi-
cal shifts. This approach requires securing the spectra of all candidate molecules, which is difficult in practice. 
Most public NMR databases do not provide raw spectra, but only provide the assigned chemical shifts of the 
 molecules12. It is impractical to directly obtain the spectra on a large scale.

In this study, we present a novel method to implement molecular search by NMR spectrum without neces-
sitating the use of assigned chemical shifts of the query spectrum or measured/simulated spectra of candidate 
molecules to overcome the limitations of conventional approaches. Given a query NMR spectrum and a pool of 
candidate molecules with no further information, the proposed method evaluates the matching score between 
the query spectrum and each candidate molecule based on the molecule-to-spectrum estimation procedure, as 
illustrated in Fig. 1c. The candidate molecule is then evaluated to determine whether its estimated spectrum is 
closest to the query spectrum with minimal alignment of its predicted chemical shifts.
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The main advantages of the proposed method over conventional approaches are as follows. Compared to 
the chemical shift similarity approach in Fig. 1a, the proposed method does not require any prior knowledge or 
laborious manual efforts for peak picking and assignment from the query spectrum. Compared to the spectral 
similarity approach in Fig. 1b, the proposed method does not require measured/simulated spectra of candidate 
molecules, which are expensive or otherwise difficult to obtain. These make it beneficial for implementing auto-
mated molecular search in general situations where information is limited.

Methods
Problem definition. The problem of molecular search by NMR spectrum is formulated as follows. Suppose 
a spectrum experimentally measured by NMR spectroscopy is given as a query in the form of S = (x, y) , where 
x = [x1, . . . , xl] and y = [y1, . . . , yl] represent the x-axis (frequency) and y-axis (intensity) of the spectrum, 
respectively. The corresponding molecular structure of the query spectrum S is unknown. No prior informa-
tion about the molecular structure, such as the chemical formula, is available for use. We are also given a pool 
of candidate molecules D = {G1, . . . ,GN } for which experimentally measured spectra are not provided. From 
the candidate pool D with no further information, we wish to search for the best matching molecule G∗ that is 
expected to have an NMR spectrum that is the closest match to the query spectrum S.

To evaluate the matching between the query spectrum S and a candidate molecule Gt , we introduce the 
score function that involves a molecule-to-spectrum estimation procedure. The best matching molecule G∗ 
with the highest matching score is obtained as:

Molecule‑to‑spectrum estimation procedure. Given the query spectrum S and candidate molecule G , 
the molecule-to-spectrum estimation procedure is used to evaluate whether G has a spectrum similar to S . The 
procedure is composed of three sequential steps, as illustrated in Fig. 2. The first step is to predict the chemical 

(1)G∗ = argmax
Gt∈D

score(Gt; S).

(a) conventional approach (chemical shift similarity)

(b) conventional approach (spectral similarity)

(c) proposed method
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Figure 1.  Comparison of conventional approaches and proposed method.
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Figure 2.  Illustration of molecule-to-spectrum estimation procedure.
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shifts of G . The second step is to align the chemical shifts with S . The third step is to construct a spectrum that 
estimates S . For these three steps, we introduce the predict, align, and optimize functions.

From molecule to predicted chemical shifts. Given a candidate molecule G , the first step is to predict the chemi-
cal shifts of its NMR-active atom, which we denote by � , using the predict function:

where m is the number of NMR-active atoms in the molecule G and the elements of � are sorted in ascending 
order.

The success of molecular search primarily relies on the accuracy of the chemical shift prediction. Any method 
that provides an accurate prediction and is computationally efficient can be used in this step. In this study, we 
use two representative methods as the predict function:

• Hierarchical Organization of Spherical Environments (HOSE)7 A HOSE code encodes the neighborhood infor-
mation around an NMR-active atom in a spherical radius. If two atoms have similar neighbors, they will have 
similar HOSE codes. To predict the chemical shifts of the candidate molecule G , we generate HOSE codes 
for the NMR-active atoms in the molecule. For each NMR-active atom, we search all atoms with the same 
HOSE code from the NMRShiftDB2  database14. We then take the average shift of the atoms as the predicted 
chemical shift.

• Message Passing Neural Network (MPNN)1 A molecule is represented as a graph, whose nodes and edges cor-
respond to atoms and bonds, respectively. An  MPNN15 processes the graph representation of the molecule 
using multiple message passing steps to predict the chemical shifts of the NMR-active atoms in the molecule. 
We train the MPNN using the molecules and their annotated chemical shifts that are collected from the 
NMRShiftDB2  database14. The MPNN is then used to predict the chemical shifts of the candidate molecule 
G.

Alignment of predicted chemical shifts. Given the predicted chemical shifts � and the query spectrum S , we 
align the chemical shifts to S to obtain the aligned chemical shifts �′ using the align function:

The pseudocode of the align function is given below.

From the query spectrum S , we choose the frequency values whose intensity is above a threshold τ , denoted as 
xτ = {xj ∈ x|yj > τ } . The value of τ is the minimum intensity to identify a peak. It should be chosen adequately 
to distinguish between peaks and noise in the spectrum, thereby ensuring that τ is greater than the smallest peak 
intensity and xτ includes all the actual chemical shifts of the spectrum. Then, each element in � is aligned as fol-
lows. The smallest chemical shift δ1 is aligned to the minimum value of xτ . The largest chemical shift δm is aligned 
to the maximum value of xτ . The other chemical shifts δi , i = 2, . . . ,m− 1 are aligned to their closest values in 
xτ . Regarding the comparison between the candidate molecule G and query spectrum S , this step allows some 
inaccuracies in the predicted chemical shifts � from HOSE or MPNN as well as in the spectrum caused by such 
reasons as shielding, hydrogen-bonding, and solvent effects.

From aligned chemical shifts to estimated spectrum. Given the aligned chemical shifts �′ and query spectrum 
S , this step optimizes the chemical shifts to construct an estimated spectrum of the candidate molecule G with 
respect to S . Using the optimize function, the optimized chemical shifts �∗ and estimated spectrum ŷ are 
obtained as follows:

The pseudocode of the optimize function is given below.

(2)� = [δ1, . . . , δm] = predict(G),

(3)�′ = [δ′1, . . . , δ
′
m] = align(�; S)

(4)(�∗, ŷ) =
(

[δ∗1 , . . . , δ
∗
m], [ŷ1, . . . , ŷl]

)

= optimize(�′; S)
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We adapt the idea of kernel density  estimation16 to represent a spectrum as a function of chemical shifts. An 
estimated spectrum ŷ is defined by the parameters µ = [µ1, . . . ,µm] , σ = [σ1, . . . , σm] and the kernel function 
k with the kernel-specific parameter � = [�1, . . . , �m] as:

where the parameters µ and σ  are associated with the chemical shifts and their peak intensi-
ties, respectively. For the kernel function k, we use the Gaussian-Lorentzian sum function 
k(z; �) = (1− �) exp

(

−(4 ln 2)z2
)

+ �/(1+ 4z2) to approximate the shape of a peak in the spectrum, where 
� lies in the range of [0, 1].

The estimated spectrum ŷ is updated along with the parameters (µ, σ , �) to have a similar shape to that of 
the query spectrum S . We initialize µ to the values of the aligned chemical shifts �′ , σ to a certain initial value 
h, and � to 0.5. Then, (µ, σ , �) are optimized by maximizing the objective function J as follows:

The first term corresponds to the maximization of the cosine similarity between the two spectra y and ŷ , which is 
calculated as cossim(y, ŷ) = y · ŷ/(�y� · �ŷ�) , to ensure they have peaks at similar frequencies. The second term 
is used to minimize the squared Euclidean distance between the two normalized spectra y/‖y‖1 and ŷ/�ŷ�1 to 
ensure they have similar overall shapes. The third and fourth terms indicate the preferences for µi , which should 
be close to its initial value, and σi , which should have a small value. The last term indicates the penalty if µi+1 
is not greater than µi by a certain margin ǫ , thereby encouraging the peaks to split in the estimated spectrum 
ŷ . In this study, we employ the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)  algorithm17 for 
optimization.

After performing the optimization, we obtain the optimized parameters (µ∗, σ ∗) . We regard 
µ
∗ as the optimized chemical shifts �∗ . The estimated spectrum ŷ is updated with (µ∗, σ ∗, �∗) as 

[f (x1;µ
∗, σ ∗, �∗), . . . , f (xl;µ

∗, σ ∗, �∗)].

Matching scoring procedure. We calculate the matching score between the query spectrum S = (x, y) 
and candidate molecule G using the score function. This involves the calculation of the predict, align, 
and optimize functions for the molecule-to-estimation procedure. The pseudocode of the score function 
is as follows:

In the molecule-to-estimation procedure, the major bottleneck is the optimize function owing to its high 
computational cost. We do not perform the optimization if the candidate molecule G is expected to have a spec-
trum that is significantly different from the query spectrum S . We introduce two filtering criteria. The first cri-
terion is to abstain if the largest difference from � to �′ is greater than the allowance of θ , formulated as 

(5)ŷ = [f (x1;µ, σ , �), . . . , f (xl;µ, σ , �)]; f (x;µ, σ , �) =

m
∑

i=1

k

(

x − µi

σi
; �i

)

,

(6)

J(µ, σ , �) = cossim(y, ŷ)−

∥

∥

∥

∥

y

�y�1
−

ŷ

�ŷ�1

∥

∥

∥

∥

2

−

m
∑

i=1

(µi − δ′i)
2 −

m
∑

i=1

σ 2
i −

m−1
∑

i=1

max{µi − µi+1 + ǫ, 0}2.
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max
i

|δ′i − δi| > θ . The second criterion is to abstain if the aligned chemical shifts �′ fail to cover all peaks in S 
with a tolerance of θ , formulated as max

j
{min

i
|δ′i − xj| | xj ∈ xτ } > θ . If either condition is met, the score 

function returns a matching score of −C:

where C is a large constant. Setting θ to a smaller value speeds up the molecular search by filtering out more 
candidate molecules. However, if θ is set too small, there is a risk of filtering out the actual matching molecule.

If the molecule G passes both filtering criteria, the optimized chemical shifts �∗ and the estimated spectrum 
ŷ are obtained via optimization. The matching score for the query spectrum S is then calculated as follows:

where the hyperparameter α controls the strength of the penalty for the magnitude of the alignment from � to 
�∗ . The matching score increases if the cosine similarity between the query spectrum y and the estimated spectra 
ŷ is higher and the difference between the original predicted chemical shifts � and optimized chemical shifts 
�∗ is lower. The second term prevents the score from becoming spuriously high when the molecule G has many 
chemical shifts. The score can be negatively valued if �∗ is significantly different from �.

Results and discussion
Dataset. We investigated the effectiveness of the proposed method on the problem of molecular search by 
13 C NMR spectrum. Given a 13 C NMR spectrum as the query spectrum, we searched for the best matching mol-
ecule from a pool of candidate molecules.

For the query spectra, we used 36 spectra from our in-house database, which were experimentally measured 
using 13 C NMR spectroscopy. Each spectrum was transformed into a sequence of intensity-frequency pairs with 
a frequency interval of 0.05ppm.

The candidate pool for the search was composed of 36 molecules that corresponded to the query spectra, 
another 30 molecules from the in-house database that were collected for the same purpose, and 5,000 molecules 
that were randomly sampled from the NMRShiftDB2  database14. The summary statistics of the candidate mol-
ecules used are listed in Table 1. We do not report the detailed information and query spectra of the molecules 
from the in-house database to comply with the confidentiality policy.

Implementation. For the experimental investigation, we implemented the proposed method with the fol-
lowing configurations. For the predict function, we predicted the chemical shifts of the candidate molecules 
from the in-house database using the HOSE and MPNN, resulting in two different predictions per molecule, and 
then, we chose the prediction with the better matching score for each molecule. We used the annotated chemical 
shifts provided by the database itself for the candidate molecules sampled from the NMRShiftDB2 database. For 
the optimize function, we implemented the L-BFGS algorithm for optimization using the SciPy  library18 in 
Python.

The proposed method requires the following five hyperparameters to be predetermined: τ , θ , ǫ, h , and α . 
We suggest the following guidelines for determining their values. The value of τ should be manually chosen 
between the highest noise and the lowest peak intensity, depending on the NMR instrument used to measure 
the spectrum. Choosing a proper value for h facilitates faster convergence of optimization. Setting the value of ǫ 
to be greater than 0 and smaller than the frequency interval of the query spectrum is sufficient. A smaller/larger 
value of θ allows more/less candidate molecules to be filtered out before optimization. The value of α should be 
chosen considering the overall scale of the chemical shifts. We note that the hyperparameters h, ǫ , and θ do not 
significantly affect the molecular search performance but are related to the efficiency of molecular search. For the 
molecular search with the query spectra measured using 13 C NMR spectroscopy, we used the hyperparameter 
settings listed in Table 2.

Molecular search performance was evaluated in terms of the top-K accuracy. For each query spectrum, we 
determined whether the matching molecule was retrieved from the best K candidate molecules with the highest 
scores. We computed the measure with varying values of K as 1, 2, 3, 5, and 10.

molecular search by NMR spectrum. Table 3 shows the molecular search performance for the 36 query 
spectra in terms of the top-K accuracy on various numbers of candidate molecules. The numbers 66 and 5,066 
indicate that only the in-house database and entire molecules were respectively used to constitute the candidate 

(7)score(G; S) = −C,

(8)score(G; S) = cossim(y, ŷ)− α · ��∗ −��,

Table 1.  Summary statistics of candidate molecules.

Source No. molecules

No. heavy atoms 
per mol

No. NMR-active 
atoms per mol

Range Avg. Range Avg.

In-house (query spectrum) 36 (10, 34) 20.0 (6, 32) 16.9

In-house (others) 30 (15, 61) 35.7 (12, 56) 31.7

NMRShiftDB2 5000 (3, 85) 15.2 (1, 71) 11.5
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pool. The proposed method achieved a considerably high top-K accuracy, indicating that it succeeded in retriev-
ing the matching molecules from the pool for most query spectra. When the molecular search was conducted 
using only the in-house database as the pool, the top-1 accuracy and top-5 accuracy were 94.44% and 100%, 
respectively. Molecular search performance gradually decreased with the inclusion of more candidate molecules 
taken from NMRShiftDB2, because some of them coincidentally provided higher matching scores for some 
query spectra. When all 5,066 candidate molecules were considered for the search, the top-1 accuracy and top-5 
accuracy decreased to 83.33% and 97.22%, respectively.

Figure 3 shows an example of searching from three candidate molecules given a query spectrum. We calcu-
lated the matching score of each candidate molecule with respect to the query spectrum. For candidate molecule 
A, its predicted chemical shifts required little alignment to match the peaks in the query spectrum. The estimated 
spectrum was similar to the query spectrum, and thus, its final matching score was considerably high. On the 
other hand, candidate molecules B and C yielded lower matching scores with respect to the query spectrum. 
For molecule B, the magnitude of alignment was large. For molecule C, the estimated spectrum was dissimilar 
to the query spectrum. Consequently, among the three molecules, we chose molecule A as the best matching 
molecule for the query spectrum.

We investigated the relationship between the matching score and the success of the molecular search for 
each query spectrum. Figure 4 plots the rank among all 5,066 candidate molecules against the matching score 
for the actual matching molecules of the 36 query spectra. As demonstrated, when the actual matching mol-
ecule of a query spectrum yielded a high matching score, its rank among the candidate molecules was close to 
1. The molecules for some query spectra yielded smaller matching scores and were subsequently ranked lower. 
We found that the molecular search failures were primarily caused by inaccuracies in the chemical shift pre-
diction. Accordingly, other candidate molecules that provided moderate matching scores could take a higher 
rank, thereby degrading molecular search performance. We believe that molecular search performance can be 
improved further by enhancing the accuracy of the chemical shift prediction method used in the molecule-to-
spectrum estimation procedure.

Conclusion
In this paper, we presented a method for automated molecular search by NMR spectrum. Given a query spec-
trum and a pool of candidate molecules, the proposed method calculated the matching score of each candidate 
molecule with respect to the query spectrum by performing a molecule-to-spectrum estimation procedure. The 
candidate molecule with the highest matching score was retrieved by the molecular search. We demonstrated the 
effectiveness of the proposed method in identifying the molecules corresponding to 13 C NMR spectra.

Compared with conventional approaches, the proposed method is advantageous in that it does not require any 
prior knowledge of the corresponding molecular structure nor laborious manual efforts by chemists to imple-
ment the molecular search. Nevertheless, incorporating prior knowledge, such as the number of NMR-active 
atoms and chemical formula, would be beneficial for filtering out most non-matching candidate molecules in 
advance, thereby further improving molecular search performance. The proposed method is versatile for any 
type of spectrum by adjusting the hyperparameter settings. We expect that the proposed method will prove 
effective in the automatic identification of molecular structures from spectra in many chemistry applications.

Table 2.  Hyperparameter settings used for molecular search by 13 C NMR spectrum.

Function Hyperparameter Setting Description

Align τ 0.05 Threshold of peak intensity

Optimize
h 1 ppm Initialization for σ

ǫ 0.01 ppm Margin for peak splitting

Score
θ 10 ppm Tolerance of alignment error

α 0.05 Strength of penalty for alignment

Table 3.  Results of molecular search by 13C NMR spectrum.

No. candidate molecules

Top-K accuracy (%)

K=1 2 3 5 10

66 (In-house only) 94.44 97.22 100.00 100.00 100.00

566 94.44 97.22 100.00 100.00 100.00

1066 94.44 94.44 100.00 100.00 100.00

2066 94.44 94.44 97.22 100.00 100.00

5066 (all) 83.33 94.44 97.22 97.22 100.00
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(a) candidate molecule A (matching score: 0.841)

(b) candidate molecule B (matching score: 0.189)

(c) candidate molecule C (matching score: 0.129)

Figure 3.  Example of molecular search by 13C NMR spectrum.
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Data availability
The source code used in this study is available online at http:// github. com/ seokh okang/ molec ule_ search_ nmr/. 
For the implementation of HOSE and MPNN, we respectively used the source codes provided in https:// github. 
com/ jvans an/ nmrsh iftdb_ predi ctors_ app/ and https:// github. com/ seokh okang/ nmr_ mpnn_ pytor ch/. The NMR-
ShiftDB2 database is publicly accessible at https:// nmrsh iftdb. nmr. uni- koeln. de/.
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