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Recursive evolution of spin‑wave 
multiplets in magnonic crystals 
of antidot‑lattice fractals
Gyuyoung Park, Jaehak Yang & Sang‑Koog Kim*

We explored spin‑wave multiplets excited in a different type of magnonic crystal composed of 
ferromagnetic antidot‑lattice fractals, by means of micromagnetic simulations with a periodic 
boundary condition. The modeling of antidot‑lattice fractals was designed with a series of self‑similar 
antidot‑lattices in an integer Hausdorff dimension. As the iteration level increased, multiple splits 
of the edge and center modes of quantized spin‑waves in the antidot‑lattices were excited due to 
the fractals’ inhomogeneous and asymmetric internal magnetic fields. It was found that a recursive 
development  (Fn =  Fn−1 +  Gn−1) of geometrical fractals gives rise to the same recursive evolution of spin‑
wave multiplets.

A recursive sequence is one of the most fundamental growth mechanisms in nature, interest in it having grown 
significantly for its potential quantum  applications1–3. That is, a successive descendant of the nth generation is an 
aggregation of one or more preceding ascendants and their variations. More intriguing sequences are involved 
in fractal geometries in  nature4. Those fractals are classified as statistical and random  fractals5. Although the 
random fractals are relatively sporadic and weakly self-similar, the deterministic (exact) fractals have regularity 
and strong self-similarity. The recursive ordering has been discovered in the context of those two different fractal 
growths. Despite their close relationship, the recursive sequences in fractal growths have barely been studied in 
ordered spin systems.

Meanwhile, spatial periodicities of spin ordering in lattice crystals lead to the modifications of magnonic 
properties such as band  structure6–8 and  quantization9–12 of spin-waves. The antidot-lattice, a periodic array of 
many holes in a continuous film, has been a basic and promising two-dimensional (2D) magnonic crystal due 
to its scalability and good hysteric effect without superparamagnetic  bottleneck13. The alteration of internal 
magnetic fields in the antidot-lattices results in several non-propagating eigenmodes even in forbidden bands. 
For example, edge modes, which resemble a “butterfly state”10, are localized around the boundary of each antidot, 
while center modes are extended along the channel in between the neighboring holes (antidots)12,14. Furthermore, 
standing spin-wave modes can be excited by different field conditions as well as in geometric  confinements15. 
A variety of types of antidot-lattices have been employed that include bi-component (of different  materials16 or 
different sizes of  holes17), different Bravais  type18, and defective  lattices19. On the other hand, non-trivial mag-
nonic dynamic behaviors were observed in aperiodic structures of antidots such as magnonic quasicrystals of 
Fibonacci  structure20–22, Penrose and Ammann  tilings23, and Sierpiński  carpet24–26. In fact, Sierpiński fractals 
have led to unique phenomena in  electronics27,28 and  photonics29,30.

Model system of antidot‑lattice fractals. Here, we propose magnonic crystals composed of ferromag-
netic antidot-lattice fractals, arranged similarly to one of Sierpiński aperiodic motifs, as studied by micromag-
netic simulations along with a delicate analysis of multiplet spin-wave modes. The overlap of scaled antidot-
lattices in a regular routine yields deterministic fractals, e.g., periodic structures with a local aperiodicity. This 
controllable non-statistical geometry provides a self-similarity in a part of the structure at every magnification, 
and can be designated according to the Hausdorff dimension of logSN , where S is the scale factor and N is the 
number of scaled  objects31. That is, we used a series of scaled antidot-lattices (Fig. 1a) to construct antidot-lattice 
fractals deterministically with iterations, as illustrated in Fig. 1b. The antidot-lattices are self-similar in their geo-
metric parameters of diameter D and lattice constant L. The  Dn and  Ln of the nth antidot-lattice  (An) are exactly 
half of those of  An−1. For example,  A2 has L2 = L1/2 and D2 =D1/2 . Next, the nth fractal  Sn is constructed by 
the superposition of  A1 +  A2 + ⋯ +  An as follows:  S1 =  A1,  S2 =  A1 +  A2,  S3 =  A1 +  A2 +  A3, and  S4 =  A1 +  A2 +  A3 +  A4, 
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as depicted in the series up to  S4 (see Fig. 1b). In detail,  A1 with D =  D1 and L =  L1 corresponds to the initiator 
(mother).  A1 and  A2 make up  S2. Since the  D2 and  L2 of  A2 are half those of  A1, the number of antidots for  A2 
is increased by 4 times, and thus the Hausdorff dimension is  log24 = 2. Following  An are scaled copies of previ-
ous  An−1 in the same manner. Due to the self-similarity of the fractals, a recursive sequence arises inside the 
geometry of the motifs: let  Fn denote the geometrical sequence.  Fn ( 0 ≤ x ≤ L/2 ) of each  Sn is a summation 
of  Fn−1 ( L/4 ≤ x ≤ L/2 ) and  Gn−1 ( 0 ≤ x < L/4 ). The appearance of  Fn−1 in  Sn is a scaled recursion of  Fn−1 
( 0 ≤ x ≤ L/2 ) in  Sn−1. In  Sn,  Gn−1 is a variation of  Fn−1 and can be viewed as the  A1 antidot superimposed onto 
 Fn−1.

Then, the 2D periodic lattice of magnonic crystals has a square Bravais symmetry, as shown in Fig. 1c.

Results
Recursive evolution of spin‑wave multiplets. Figure 2 reveals that the spin-wave eigenmodes in the 
antidot-lattice fractals split into multiplets according to the recursive sequence (for better spectra, see also Sup-
plementary Fig. S1). The first ordinary crystal denoted as  S1 (=  A1) exhibited three normal standing spin-wave 
modes as indexed by  E1,  C1, and  CV1

12. The very weak mode  (E1) at 1.77 GHz corresponds to the edge mode, 
and the strongest mode  (C1) at 5.02 GHz to the center mode. The two modes are periodically excited along the 
bias field direction. The last minor mode  (CV1) at 5.80 GHz is a center-vertical mode (or a fundamental-localized 
mode) at the center between the neighboring antidots along the axis perpendicular to the bias field direction.

For  S2, while keeping the  E1 mode at a similar frequency, an additional doublet  (E2) of the edge mode appeared, 
which originated from  A2. The doublet  (C2) of the center mode appeared as its substitution for the singlet  C1 in 
 S1 (see Fig. 2b). The higher mode (5.61 GHz) of the doublet  C2 was hybridized with the  CV1 mode (5.80 GHz) in 
 S1. In a similar manner, for  S3, an additional triplet  (E3) came from  A3, while the doublet  C2 in  S2 then became 
the triplet  C3. The center-vertical mode  (CV2) of  A2 was hybridized with the highest mode (6.38 GHz) of  C3. To 
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Figure 1.  (a) Sequence of antidot-lattices with self-similar geometry. The capital letters of D and L correspond 
to the diameter of a hole and the size of a square Bravais lattice, respectively. (b) Evolution of antidot-lattice 
fractals. Each motif of  Sn denotes the superposition of the individual lattices of  A1,  A2, … and  An. (c) Fractal 
magnonic crystal of 100 μm × 100 μm dimensions where periodic boundary condition was applied using the 
area marked by blue-dashed box  (S2 as an example). For excitations of all possible spin-wave modes, dc-bias and 
sinc-function magnetic fields were applied in the + x direction and along the z-axis, respectively.
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sum up, by adding  A2 and  A3 to  S2 and  S3, respectively, each  En mode was newly updated while the  Cn mode 
substituted for  Cn−1. This happened because the edge mode is strongly localized at the boundary of each antidot 
while the center mode is extended through the channels between the neighboring holes in the antidot-lattices. 
Whenever the next scaled antidot-lattices were overlapped to the previous one, each boundary of antidot entity 
of  An and  An−1 remained intact with each other, while the channels of  An were impacted by the channels of  An−1.

In the case of  A4, the edge mode and the center mode were hybridized into one mode, because the hole-to-
hole distance was smaller than the previous antidot-lattices: the dipolar and exchange interactions were equally 
dominant at the narrow channel of  A4. Therefore, for  S4, the hybrid mode  (E4 +  C4 →  EC4) appeared instead of 
the individual  E4 and  C4 modes. A total of five  EC4 modes (pink-colored peaks) substituted for the  C3 triplet.

The number of multiplets in the serial spectra followed the recursive sequence,  Fn =  Fn−1 +  Gn−1. The two 
eigenmodes  (En and  Cn) appeared as a singlet, doublet, triplet, and quintet for  S1,  S2,  S3 and  S4, respectively. Since 
there is only one zeroth (n = 0) standing spin-wave mode in unpatterned (continuous) thin film (i.e.,  S0), the 

Figure 2.  Modes’ spectra in magnonic crystals of antidot-lattice fractals,  S1,  S2,  S3, and  S4, with  L1 = 1400 nm 
and  D1 = 300 nm.  En and  Cn denote the edge and center mode of  Sn. A bias magnetic field of 30 mT was applied 
in the + x direction.
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number of the split modes corresponded to 1, 1, 2, 3, and 5 for n = 0, 1, 2, 3, and 4, respectively, for both  En and 
 Cn. The difference sequence  (Gn) is 1, 1, and 2 for n = 1, 2, and 3, respectively.

In order to identify all of the excited modes represented by the FFT power-vs.-frequency spectra shown in 
Fig. 2, we performed FFTs on every single unit cell (or mesh) at the indicated resonance frequencies of the modes. 
Figure 3 shows the spatial distributions of FFT power in the bottom-right quarter of each motif ( 0 ≤ x ≤ L/2 , 
−L/2 ≤ y ≤ 0 ) for each resonance frequency of the excited modes (for the corresponding phase profiles, see 
Supplementary Fig. S2). For  S1, the major modes of  E1 and  C1 were visualized at 1.77 and 5.02 GHz, respectively. 
The edge mode was excited at the edge (or end) of the antidot (Fig. 3a), while the center mode was excited at 
the center (or channel) of the neighboring antidots (Fig. 3b). The higher mode (5.61 GHz) of the  C2 doublet, 
was vertically localized between the neighboring holes of  A1 in which  CV1 was also localized in  S1 (Fig. 3c). 
This explains why the higher mode of  C2 was hybridized with  CV1, as mentioned earlier. On the other hand, 
the lower (4.94 GHz) one of  C2 remained extended along the channel between  S2. The doublets of both  E2 and 
 C2 are antiphase with each other in temporal oscillation;  S2 can be considered to be a two-dimensional nano-
oscillator. For  S3, the highest  C3 at 6.38 GHz was fully localized in between the  A2 antidots along the y-axis: it was 
hybridized with  CV2 due to their shared localization area. The lowest  C3 (5.35 GHz) remained extended along the 
channel between  S3. Similarly, the lowest  EC4 (4.04 GHz) for  S4 was the only extended mode, while the others 
were localized in different local regions as noted by the red color. Since the distance between the antidots of  A3 
and  A4 are close, some localized modes (4.30 GHz and 4.98 GHz) were excited at antidots of  A3 together with 
certain antidots of  A4. On the other hand, some of the  E3 modes (4.04 GHz and 4.70 GHz) of  S4 were excited at 
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Figure 3.  Spatial distribution of power of FFTs in bottom-right quarter area of motifs of  S1,  S2,  S3 and  S4 at 
indicated frequencies of specific modes.
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the same frequencies as those of the  EC4 modes. Those  E3 and  EC4 modes become separated when the intensity 
of the bias field increased (see Supplementary Fig. S3).

The gap between the split modes narrowed down and finally merged into a singlet as the inhomogeneity of 
the magnetic energy decreased. In the other direction, the gap became wide and the corresponding different 
modes crossed over each other (showed conversion) as the inhomogeneity of the magnetic energy increased.

Similar to the recursive sequence in the geometrical fractals, we also found the recursive sequence in the 
evolution of the eigenmodes’ spatial profiles, as shown in Fig. 4. In detail, for the  En modes, let  E1 in  S1 be  F1. The 
two  E2 modes in  S2 are  F2. The right part (L/4 ≤ x ≤ L/2) of the  E2 (2.93 GHz) profile is the same as the  E1 profile 
in  S1.  E2 (2.93 GHz) is  F1 in  S2. The left part (0 ≤ x < L/4) of the  E2 (3.65 GHz) profile is a variation of the  E2 
(2.93 GHz) profile.  E2 (3.65 GHz) is  G1 in  S2. The three  E3 modes in  S3 are  F3. The right parts of the  E3 (4.24 GHz 
and 5.09 GHz) profiles are similar to the  E2 profiles in  S2. The two  E3 modes are  F2 in  S3. The left part of the  E3 
(4.72 GHz) profile is a variation of the  E3 (4.24 GHz) profile.  E3 (4.72 GHz) is  G2 in  S3. The five  EC4 modes in  S4 
are  F4. The right parts of the  EC4 (4.04 GHz, 4.98 GHz, and 5.49 GHz) profiles are similar to the  E3 profiles in 
 S3. The three  EC4 modes are  F3 in  S4. The left parts of the  EC4 (4.30 GHz and 4.70 GHz) profiles are variations of 
the  EC4 (4.98 GHz and 4.04 GHz, respectively) profiles. The two  EC4 (4.30 GHz and 4.70 GHz) modes are  G3 in 
 S4. In the same way, let  C1 in  S1 be  F1. The two  C2 modes in  S2 are  F2. The right part of the  C2 (4.94 GHz) profile is 
the same as the  C1 profile in  S1.  C2 (4.94 GHz) is  F1 in  S2. The left part of the  C2 (5.61 GHz) profile is a variation 
of the  C2 (4.94 GHz) profile.  C2 (5.61 GHz) is  G1 in  S2. The three  C3 modes in  S3 are  F3. The right parts of the  C3 
(5.35 GHz and 6.38 GHz) profiles are the same as the  C2 profiles in  S2.  C3 (5.35 GHz and 6.38 GHz) are  F2 in  S3. 
The left part of the  C3 (5.72 GHz) profile is a variation of the  C3 (5.35 GHz) profile.  C3 (5.72 GHz) is  G2 in  S3. 
The  EC4 modes are considered in the same way as mentioned above.

Origin of recursive evolution. Next, in order to identify the splits of the spin-waves excited in  Sn with 
respect to  An, we plotted the contours of FFT power for the frequency and the longitudinal x-direction, as shown 
in the bottom row of Fig. 4. In the upper row of Fig. 4, we also plotted the spatial distributions of the total mag-
netic energy density ( Etot ), as expressed by

where HZeem and Hdemag are the Zeeman and demagnetization fields, respectively, M is the magnetization,  Aex is 
the exchange constant, and  Vmesh is the volume of the mesh. The gray-colored regions depict the locations of the 
antidots inside each motif. The color of each plot matches with the y-slice index (the black box) at the bottom of 
Fig. 4. The FFT powers along the x distance ( 0 ≤ x ≤ L/2 ) agree well with the spatial distributions of the total 
energy density in terms of the x position. For example, the FMR mode was excited in the thin film (denoted as 
 S0) at 5.10 GHz, as indicated by the homogeneous total energy distribution. The recursive sequence  (Fn) marked 
at the top of Fig. 4 denotes the evolution of both the total magnetic energy and the frequency of the eigenmodes. 

(1)εtot = −
µ0

2Vmesh

∫
M · (HZeem +Hdemag )dVmesh + Aexch

∫
|∇M|

2

dVmesh,

Figure 4.  (Upper row) Spatial distributions of total magnetic energy density for thin film  (S0) and magnonic 
crystals of  An and  Sn. The energy densities were plotted by cross-section along the y-axis where corresponding 
antidots were located. Each color of the plot matches with the index of the y-slice (black box) at the bottom of 
the figure. The gray-colored regions inside the plots denote the locations of the antidots. (Bottom row) Contour 
plots of FFT power on frequency and x position.
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The right region ( L/4 ≤ x ≤ L/2 ) of  Sn+1 is  Fn. The appearance of  Fn in  Sn+1 is similar to  Fn in  Sn. The left region 
( 0 ≤ x < L/4 ) of  Sn+1 is  Gn, which is a variation of  Fn in  Sn+1.

In  S1, at a similar frequency to that of the FMR mode, the  C1 mode was excited at 5.02 GHz in the region of 
D/2 < x ≤ L/2 . To be specific, the FFT power spatially informed that the  C1 mode started to be excited at the 
end of the  E1 mode (1.77 GHz) in terms of the x position. This profile well matches the total energy distribu-
tion of  S1 (=  A1). The magnetic energy variation inside the magnonic crystal corresponds to the localization of 
the quantized spin-wave modes. The mode arrangement of  A2 was similar to that of  A1. The  C2 mode of  A2 was 
excited at 5.03 GHz, whereas the  E2 mode was excited at 3.00 GHz. With regard to  S2, the  E2 and  C2 modes were 
split into doublets. Due to the existence of the  A1 antidot on the left side of the  A2 antidot, the energy profile on 
the left side is different from the right side of the  A2 antidot. The  CV1 mode and the shifted  C2 mode were hybrid-
ized together, as shown in Fig. 3. In  S3, the magnetic energy profile inside the motif was divided into three distinct 
regions. Therefore, the  E3 mode at 4.42 GHz in  A3 became split into three modes at 4.24, 4.72, and 5.09 GHz in  S3. 
Similarly, the  C3 mode at 5.50 GHz in  A3 split into triplets (5.35, 5.72, and 6.38 GHz) in  S3. In  A4, the  EC4 mode 
was excited at 4.45 GHz, and the excitation profile showed that the edge and center modes had been hybridized 
into a single mode. Then, for  S4, the  EC4 mode was split into 5 modes (quintets). Since the  E3 mode of  A3 and 
the  EC4 mode of  A4 were excited at almost an equal frequency, a total of 8 split modes (the  E3 triplets plus the 
 EC4 quintets) in  S4 were mixed up. The total energy distribution of  S4 is complicated compared with those of the 
previous motifs, because of the complex arrangement of antidots inside  S4.

The self-similarity of the fractal motifs introduces aperiodic arrangements of antidots in recursive order. In 
 Sn, the total magnetic energy (most dominantly demagnetization energy) of the nth antidot array  (An) became 
aperiodic since the previous antidots modulated the magnetization configurations around  An antidots. The ape-
riodic energy variation inside the antidot-lattice fractals gives rise to the multiplets of the spin-wave eigenmodes 
under the recursive evolution. The energy aperiodicity can be reduced according to the geometric parameters or 
the externally applied magnetic fields in order to make the magnons’ multiplets degenerate. As the dot-to-dot 
distance increased, the extent of aperiodicity decreased, and then the magnons’ modes became degenerated (see 
Supplementary Fig. S5). In the same way, as the strength of the external magnetic field increased, the split modes 
were reunited (see Supplementary Fig. S3).

Origin of spin‑wave multiplets. Finally, in order to examine the difference of the magnonic excitations 
between the fractal and non-fractal structures, we conducted the same simulation for the non-fractal, 2D type 
of NaCl lattice where two different radius holes are arranged alternately. This type of antidot-lattice has been 
studied under different terminologies, either composite-antidot  array32,33 or bi-component antidot-lattice16,17. 
To avoid confusion, the term ‘2D NaCl type’ is employed to describe the antidot-lattice with alternating different 
diameters. The two antidot sublattices of  A1 and  A2 compose  S2 as well as 2D NaCl type. In  S2, they satisfy the 
initiator-generator relationship with L2 = L1/2 and D2 =D1/2 . In 2D NaCl type geometry, both antidots exist in 
the 1:1 ratio, since L2 = L1 but D2 =D1/2 . The location of the  A1 antidot is asymmetric to that of the  A2 antidot 
in the  S2 motif, while it is symmetric in the 2D NaCl type motif. In both structures, antidots of  L1 (L) = 1400 nm 
and  D1 (D) = 300 nm were used, while a 30 mT strength of magnetic field was applied in the + x-direction.

Figure 5 shows the FFT power versus frequency and the x position ( 0 ≤ x ≤ L/2 ) along with the total energy 
( εtot ) density distribution. In the range of f = 1 ~ 6 GHz, the  E1,  E2 and  C2 modes appeared noticeably in both  S2 
and 2D NaCl type. Both of the  E1 modes were independent singlets derived from the  A1 antidots in both pat-
terns. The only difference was that the  E1 mode in  S2 was excited at a slightly higher frequency, since the total 
magnetic field near the ends of the  A1 antidots in  S2 was higher than that of 2D NaCl type. The  E2 and  C2 modes 
appeared as doublets only in  S2, whereas those modes were typical singlets in 2D NaCl type. In a comparison of 
the energy distributions between the two structures, the above difference resulted from the asymmetry of the 
internal energy about x = L/4 . Unlike  S2, the non-fractal 2D NaCl type has the same energy distribution at both 
sides of the  A2 hole; i.e., it shows a mirror symmetry about x = L/4 . For  S2, the asymmetry of the total magnetic 
energy inside the fractal magnonic crystal is the origin of the spin-wave multiplets.

Discussion
The proposition of novel magnonic crystals composed of antidot-lattice fractals enlarges a basic understanding 
of quantized spin-wave modes. The fractals of 2-Hausdorff dimensions were constructed by the superposition 
of self-similar antidot-lattices. Local asymmetries inside the aperiodic magnonic motifs result in the split of 
the spin-wave eigenmodes: the edge mode, the center mode and the center-vertical mode (see Supplementary 
Fig. S5b,c). Due to the recursive sequence from the geometrical fractal growth, the local asymmetries inside the 
antidot-lattice fractals split the spin-waves into multiplets in the frequency spectra, showing the same recursive 
development. The split modes were finely localized into their own characteristic regions enabling selective excita-
tion of the local area inside the magnonic crystals. Some of those split modes were reunited (or even duplicated) 
by the variations of the strength and direction of applied bias magnetic fields (see Supplementary Figs. S3 and 
S4, respectively). The reunion and the crossover among those finely divided modes would make the most of an 
active control with the bias magnetic field and the crystal geometry design (see Supplementary Fig. S5).

The proliferous standing spin-wave modes with fine localizations would be good candidates for magnonic 
devices that require diminutive excitation in a certain area of 2D nano-oscillators, memory devices, and sensors.

Methods
Micromagnetic simulation procedure. In the present simulations, we used an open-source software, 
 MuMax334, which incorporates the Landau-Lifshitz-Gilbert  equation35,36 along with GPU acceleration to solve 
the dynamic motions of individual magnetizations in given magnonic crystals, for example, as shown in Fig. 1c. 
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There, the motif, the  S2 fractal marked by a dashed square box, was extended to sufficiently large dimensions 
(100 μm × 100 μm × 10 nm) with a periodic boundary condition in order to avoid the distortions of the static and 
dynamic magnetizations at the discontinuous boundaries of its finite dimensions. The sizes of unit cells in the 
simulations were set up to 5 nm × 5 nm × 10 nm. The material parameters used for Permalloy (Py:  Ni80Fe20) were 
as follows: gyromagnetic ratio γ = 2.211 ×  105 [m/A s], saturation magnetization  Ms = 8.6 ×  105 [A/m], exchange 
stiffness  Aex = 1.3 ×  10–11 [J/m], damping constant α = 0.01, and zero magnetic anisotropy constant,  K1 =  K2 = 0 
[J/m3].

In order to excite spin-wave modes in the given magnonic crystals, we used a sinc (sine-cardinal) field as 
expressed by h(t) =  h0sin[2πf0(t −  t0)]/[2πf0(t −  t0)] with µ0h0 = 1 mT, f0 = 20 GHz,  t0 = 1 ns, and t = 100 ns. This 
pumping field was applied along the film normal under a dc bias field of µ0Hbias = 30 mT applied in the + x direc-
tion on the film plane (The eigenmodes of antidot-lattice fractals were stabilized at magnetic fields of greater 
strength than 20 mT; see Supplementary Fig. S3). The temporal oscillations of local magnetizations at each cell 
were transformed into the frequency domain via Fast Fourier Transforms (FFTs).

Received: 20 August 2021; Accepted: 11 October 2021
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