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Elucidate multidimensionality 
of type 1 diabetes mellitus 
heterogeneity by multifaceted 
information
Shaw‑Ji Chen1,2, Jen‑Liang Cheng3, Sheng‑An Lee4, Tse‑Yi Wang3, Jyy‑Yu Jang3 & 
Kuang‑Chi Chen3*

Type 1 diabetes (T1D) is an autoimmune disease. Different factors, including genetics and viruses 
may contribute to T1D, but the causes of T1D are not fully known, and there is currently no cure. 
The advent of high‑throughput technologies has revolutionized the field of medicine and biology, 
and analysis of multi‑source data along with clinical information has brought a better understanding 
of the mechanisms behind disease pathogenesis. The aim of this work was the development of a 
data repository linking clinical information and interactome studies in T1D. To address this goal, 
we analyzed the electronic health records and online databases of genes, proteins, miRNAs, and 
pathways to have a global view of T1D. There were common comorbid diseases such as anemia, 
hypertension, vitreous diseases, renal diseases, and atherosclerosis in the phenotypic disease 
networks. In the protein–protein interaction network, CASP3 and TNF were date‑hub proteins 
involved in several pathways. Moreover, CTNNB1, IGF1R, and STAT3 were hub proteins, whereas miR‑
155‑5p, miR‑34a‑5p, miR‑23‑3p, and miR‑20a‑5p were hub miRNAs in the gene‑miRNA interaction 
network. Multiple levels of information including genetic, protein, miRNA and clinical data resulted 
in multiple results, which suggests the complementarity of multiple sources. With the integration of 
multifaceted information, it will shed light on the mechanisms underlying T1D; the provided data and 
repository has utility in understanding phenotypic disease networks for the potential development of 
comorbidities in T1D patients as well as the clues for further research on T1D comorbidities.

Diabetes mellitus (DM) is a group of metabolic diseases that involve the problems with the regulation of glucose 
in  blood1. With diabetes, the body either makes insufficient insulin or defectively uses the insulin, resulting in 
hyperglycemia. Diabetes is divided into type 1 diabetes (TID), type 2 diabetes (T2D), and others (gestational 
diabetes mellitus and prediabetes). T2D is a complex endocrine and metabolic disease; T1D is an autoimmune 
disease. The insulin-producing pancreatic β-cells of T1D patients are destroyed by T lymphocytes and mac-
rophages, so β-cells cannot produce sufficient insulin. The DM patients would easily develop unstable glucose 
levels with life threatening conditions of hypoglycemia (low blood sugar) or hyperglycemia (high blood sugar).

In the past, many studies on DM disorders (T1D, T2D, and others) only focused on specific pathways or 
mechanisms involving DM formulation, whereas a few studies explored the global picture of  DM2–5. The emerg-
ing concept of “network medicine” assumes that the biological systems, like social or technological systems, 
are governed by simple and quantifiable organizational rules, albeit with lots of components and complicated 
 relationships6,7. With the wealth of the interaction data, network biology provides a suitable framework to 
describe the cellular processes, quantify the perturbation patterns, and understand how their collective pertur-
bations from subcellular networks affect disease  states8. Moreover, the advent of high-throughput technologies 
have allowed the systematic and comprehensive mapping of the interactions between the biochemical entities 
that together represent the human interactome network. Access to high-throughput data has revolutionized the 
field of medicine and biology, and analysis of multi-omics data along with clinical information has brought a 
better understanding of the mechanisms behind disease  pathogenesis9.
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Hidalgo et al. constructed the phenotypic disease network (PDN) from medical records of 13 million elderly 
American inpatients to elucidate the comorbidity correlations between diseases and the disease progression pref-
erentially along the links of the  PDN10. Klimek et al. quantified diabetes comorbidity risks across life and gender 
using nationwide claims of two million Austrian  inpatients11. Because all biochemical processes are governed by 
the proteins, the protein–protein interactions (PPIs) especially the proteins encoded by the casual and susceptible 
genes play crucial roles in orchestrating the regulatory  variation12–14. The large-scale protein interaction networks 
enhance the knowledge about the molecular etiology of diseases and the discovery of putative protein targets with 
therapeutic  significance15,16. Furthermore, microRNAs (miRNAs) are small, single-stranded, noncoding RNA 
molecules that negatively regulate gene by binding to the 3’ UTRs (untranslated region) of their target messenger 
RNAs (mRNAs), leading to mRNA degradation and protein target  suppression17. Growing evidence indicates that 
miRNAs are very important in the regulation of physiological and pathological  processes18, and some miRNAs 
might be used as potential biomarkers for cancer, cardiovascular disease, metabolic diseases and autoimmune 
 diseases19. It is a challenge to elucidate multidimensionality of DM heterogeneity by multifaceted  information5. 
The relation inference of network medicine is addressed by heterogeneous interconnected  dynamics7.

The analysis of genotype–phenotype associations at multiple scales can provide a comprehensive view of 
novel insights into the cause and effect of diseases, and lead to a surprising interest in uncovering the organ-
izing principles that govern the topology and the dynamics of various complex  networks8,20. It is an application 
of network science that offers a suitable framework to describe global relationships between human disorders, 
associated genes and interactome networks. For diabetes, to better understand the disease conditions, it is neces-
sary to analyze multifaceted  information5. The aim of this work was the development of a data repository linking 
clinical data and interactome studies in T1D. We analyzed the electronic health records (EHRs) to construct the 
PDNs and find out comorbid diseases of T1D. Moreover, the PPI network, miRNA information, GO enrichment 
 analysis21, and KEGG  pathways22,23 were employed to have a global view of T1D.

Material and methods
Electronic health records. We used the EHRs from Taiwan National Health Insurance Research Database 
(NHIRD) in the study. The data gives a nation-wide picture of the medical condition of 99% of 23.78 million Tai-
waneses. We analyzed the 2002–2008 hospitalization data and there were a total of 20,603,462 inpatient claims, 
pertaining to 8,044,512 persons (data approval number: NHIRD-104-293). Each record consists of the birthdate, 
gender, the date of visit, a main diagnosis and up to 4 side diagnoses, all specified by the International Classifica-
tion of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes of up to 5 digits. Our hospitalization 
data consists of 759,683 diabetic inpatients who were diagnosed with 250.×× (T1D by 250.×1 or 250.×3, and 
T2D by 250.×0 or 250.×2) during 2002–2008 and stayed one or more nights in hospitals for DM treatment. The 
non-DM inpatients were considered as control inpatients. The numbers and proportions of these DM inpatients 
across ages and types are listed in Table 1. These data are consistent with the fact that T1D is usually diagnosed 
before 20 years old, and T2D is usually diagnosed after 40 years  old24.

Phenotypic disease network. The phenotypic disease network (PDN) is constructed in the form of a 
network with diseases as the nodes and pairwise comorbidity correlations between diseases as the links, and it 
can be viewed as a map of the progression of  diseases10. The comorbidity correlation represents the "distance" 
between a pair of diseases. We employed the ϕ-correlation, a contingency coefficient, to quantify the comorbid-
ity correlations of T1D  inpatients10

where N is the total number of patients in the population, Ni and Nj are the prevalence of diseases i and j, and Nij 
is the number of patients affected by both diseases. The top 0.6% of comorbidity links and their related nodes 
were selected in each PDN. In the PDN, we divided disease codes into 13 categories (Table S1), and excluded 

φij = (N Nij − NiNj)/[NiNj(N−Ni)(N−Nj)]
0.5

Table 1.  The numbers and percentages of DM inpatients from 2002 to 2008.

Age group T1D T2D Others Total

[1, 10) 822 (80.75%) 173 (16.99%) 23 (2.26%) 1018 (100%)

[10, 20) 1912 (59.34%) 1262 (39.17%) 48 (1.49%) 3222 (100%)

[20, 30) 2088 (23.81%) 6034 (68.80%) 648 (7.39%) 8770 (100%)

[30, 40) 1746 (6.87%) 22,636 (89.07%) 1032 (4.06%) 25,414 (100%)

[40, 50) 1377 (1.88%) 71,492 (97.37%) 552 (0.75%) 73,421 (100%)

[50, 60) 1214 (0.82%) 145,947 (98.89%) 424 (0.29%) 147,585 (100%)

[60, 70) 1226 (0.65%) 185,581 (99.03%) 592 (0.32%) 187,399 (100%)

[70, 80) 1433 (0.69%) 207,022 (98.98%) 701 (0.34%) 209,156 (100%)

[80, 90) 611 (0.65%) 92,910 (99.04%) 290 (0.31%) 93,811 (100%)

90+ 61 (0.62%) 9798 (99.10%) 28 (0.28%) 9887 (100%)

Total 12,490 (1.64%) 742,855 (97.78%) 4338 (0.57%) 759,683 (100%)
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symptoms, injures, poisonings, pregnancies, external causes, and factors of morbidity. To evaluate the significance 
of each disease category, we used two-sample proportion test to compare whether the proportion of each disease 
category in one PDN was significantly different from the proportion of the same disease category in another PDN.

Candidate genes associated with T1D. We searched the OMIM  database25 with the keywords "DIA-
BETES MELLITUS, INSULIN-DEPENDENT" or IDDM or "EARLY-ONSET DIABETES MELLITUS" or 
"JUVENILE-ONSET DIABETES" or "DIABETES MELLITUS TYPE 1", and collected 48 non-redundant candi-
date genes associated with T1D (Table S2). These genes were involved in the biological process of carbohydrate 
homeostasis and glucose homeostasis according to the  GO21 annotation (the details listed in the Table S3), and 
constituted the seed proteins for constructing the following PPI network of T1D.

Protein–protein interactions network. Protein–protein interactions (PPIs) are important because bio-
logical processes in human bodies are directly controlled in the level of protein  proceedings12. Connecting the 
topological properties with biological knowledge will provide us more comprehensive information to under-
stand the biological mechanisms. We aimed to analyze the contribution of the proteins encoding by T1D related 
genes to the pathogenesis of T1D and discover other key proteins cooperating with them by topological analyses. 
The candidate genes were converted into the seed proteins to obtain the PPI network from the STRING v.11.0 
 database26, a precomputed database for the exploration of PPIs. Given a list of the proteins as inputs, STRING 
will search for their neighbor interactors, and generate the PPI network consisting of these proteins and the 
interactions between them. We constructed the PPI network of T1D under the setting with 0.93 confidence 
based on active interaction sources from high-throughput lab experiments and previous knowledge in curated 
databases.

Topological analysis of the PPI network. The topological analyses have been applied extensively in 
recent years. Degree centrality (DC), betweenness centrality (BC), and closeness centrality (CC) are widely 
adopted to evaluate nodes in a  network8. The degree is the count of the direct links of a node in the network. 
The betweenness is the proportion of the number of shortest paths passing through a node to the number of 
all shortest paths in the network. The closeness is defined as the reciprocal average length of the shortest paths 
between a node and all other nodes. In a PPI network a node with high degree is considered as a hub protein, 
whereas a node with high betweenness is viewed as a bottleneck  protein8,13,27. A node with high closeness is close 
to the other nodes in the network.

Furthermore, average degree (<k>), diameter (D), mean shortest path length (mspl), and the average cluster-
ing coefficient (acc) are viewed as global topological measurements of networks. Average degree (<k>) is the 
mean of all degree measurements of nodes in a network. Diameter (D) is the largest among all shortest paths in 
a network. The mean shortest path length (mspl) is calculated by averaging over all shortest paths between all 
pairs of nodes. The clustering coefficient is a measure of the local interconnectedness of the network. A network 
is considered as a small-world if it has a low mspl and a high  acc28. In this study, the PPI network included a giant 
component and several small separate components derived from seed proteins. The structure of the PPI network 
was analyzed by Gephi v.0.9.229, a program for analysis and visualization of very large networks.

Retrieval of backbone from the PPI network. We aimed to identify the important proteins and the 
molecular connectivity between regulatory pathways related to T1D. In the PPI network the nodes with high BC 
are similar to heavily used intersections which have great influence on flow in the  network13,27. Because most of 
the shortest paths in a network go through the high BC nodes, these nodes play as the bottlenecks which have 
more control over the network. The nodes with top 20% BC were considered as important and these proteins 
and the links between them were extracted from the giant component to constitute the backbone of the network.

MiRNAs related to T1D. MiRNAs are related to immune system functions and β-cell metabolism, prolif-
eration involving in T1D pathogenesis, and modulate mRNA expressions of the major T1D  autoantigens18,19. 
A number of studies show that miRNAs have a vital role in the etiology and pathogenesis of DM and its 
 complications19,30,31. Changes in miRNA expression levels in T1D are noticed because the dysregulation of 
miRNA expression might play important functions in moderating the development of T1D. We searched for 
miRNA of T1D from the HMDD v3.2  database32, a database collecting experiment-supported evidence for 
human miRNA and disease associations, and connected these miRNAs with our T1D backbone proteins to 
construct an interaction network.

Ethical approval and consent for participation and publication. This study was approved and 
granted for exempt review by the Institutional Review Board (IRB) of Tzu Chi Hospital, Hualien, Taiwan, cer-
tificated by the Ministry of Health & Welfare, Taiwan (IRB approval number: IRB 104-114-C). All methods were 
carried out in accordance with relevant guidelines and regulations, and the informed consent was waived.

Results
EHR data and the PDN of T1D. We analyzed the hospitalization data in Taiwan from 2002 to 2008 to 
draw the PDNs of T1D consisting of 566 nodes with 644 links for male inpatients and 577 nodes with 667 links 
for female inpatients (Fig. 1). The PDNs of T1D were complex, mainly covering neoplasms (140–239), endo-
crine, nutritional and metabolic diseases, and immunity disorders (240–279), diseases of the nervous system 
and the sense organs (320–389), diseases of the circulatory system (390–459), and disease of the digestive system 
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(520–579) for both male and female T1D inpatients (Table S4). Additionally, female T1D inpatients tended to 
have significantly more comorbidities than male T1D inpatients in diseases of the genitourinary system (580–
629) by two-sample proportion test.

The PDNs of control group consisted of 722 nodes with 2358 links for male inpatients and 769 nodes with 
2445 links for female inpatients (Figure S1). The PDNs of control group mainly covered neoplasms (140–239), 
diseases of the nervous system and the sense organs (320–389), diseases of the circulatory system (390–459), 
and disease of the digestive system (520–579) for both male and female control inpatients (Table S4). There 
was no different between male control inpatients and female control inpatients. When comparing the PDNs 
of TID inpatients with the PDNs of control inpatients, we found that the male TID inpatients had significantly 
more comorbidities than male control inpatients in diseases of the skin and subcutaneous tissue (680–709) and 
endocrine, nutritional and metabolic diseases (240–279). The male T1D inpatients had less comorbidities than 
male control inpatients in infectious and parasitic diseases (001–139).

Moreover, because T1D is usually diagnosed before the age of 20, we selected 1–20 T1D inpatients to construct 
the PDN (Figure S2(A), (B)). For male (or female) inpatients with T1D aged 1–20 years, the PDN has 323 (or 
366) nodes and 741 (or 829) links. Both PDNs of male and female inpatients with T1D aged 1–20 years had more 
comorbid nodes in the same disease categories of 240–279, 320–389, 390–459, and 520–579 (Table S5). There 
was no different between young male T1D inpatients and young female T1D inpatients. For comparison, we 
also selected 40–60 T1D inpatients to construct the PDNs (Figure S2(C), (D)). For male (or female) inpatients 
with T1D aged 40–60 years, the PDN has 594 (or 544) nodes and 918 (or 953) links. There were more comorbid 
nodes and links in the 40–60 PDNs than the 1–20 PDNs. Based on the proportion test, both 1–20 PDNs of male 
and female had significantly less comorbidities in neoplasm category (140–239) than the 40–60 PDNs. The 1–20 
PDN of male also had significantly less comorbidities in diseases of the musculoskeletal system and connective 
tissue (710–739) than the 40–60 PDN of male. The 1–20 PDN of male had significantly more comorbidities in 
endocrine, nutritional and metabolic diseases, and immunity disorders (240–279) than the 40–60 PDN of male. 
The details of T1D comorbid diseases for males and females were listed in the Table S6.

(A)                                      (B)

ICD9 Disease Chapter Color ICD9 Disease Chapter Color

001-139 infectious and parasitic diseases 390-459 diseases of the circulatory system

140-239 neoplasms 460-519 diseases of the respiratory system

240-279 endocrine, nutritional and metabolic 
diseases, and immunity disorders 520-579 diseases of the digestive system

250 diabetes mellitus 580-629 diseases of the genitourinary system

280-289   diseases of the blood and blood-
forming organs 680-709 diseases of the skin and subcutaneous 

tissue

290-319 mental disorders 710-739 diseases of the musculoskeletal 
system and connective tissue

320-389 diseases of the nervous system and 
sense organs 740-759 congenital anomalies

Figure 1.  The PDNs of T1D for (A) Male and (B) Female inpatients. The PDN was generated using Gephi 
v0.9.229 (https:// gephi. org/).

https://gephi.org/
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PPI network of T1D. We constructed the PPI network under the STRING setting with 0.93 confidence 
based on active interaction sources from high-throughput lab experiments and previous knowledge in curated 
databases. The PPI network was generated from 48 genes related to T1D through the STRING database, covering 
278 nodes and 919 edges (Figure S3). The number of edges is significantly larger than the expected for random 
network of the same size (p-value ≤  10−16). It contained one giant component and several small separate compo-
nents derived from seed proteins. The giant network consisted of 230 nodes and 865 links. The characteristics of 
the giant network, number of nodes (N), average degree (<k>), diameter (D), mean shortest path length (mspl), 
and average clustering coefficient (acc) were listed in Table S7. Furthermore, nodes with top 20% highest BC, 
DC, and CC were selected and listed in Table 2, Tables S8 and S9, respectively.

Several KEGG  pathways33 are involved in T1D. The nodes of the PPI network demonstrated 39 nodes for the 
pathway of Th17 cell differentiation, 26 nodes for type 1 diabetes mellitus, 30 nodes for Th1 and Th2 cell differ-
entiation, 30 nodes for NF-kappa B signaling pathway, 31 nodes for Apoptosis, and 28 nodes for TNF signaling 
pathway (Table S10). The nodes of the PPI network involved in these KEGG pathways were marked in different 
colors (Fig. 2) and listed in Table S11.

Backbone in the PPI network. In the PPI network, nodes with a BC value of the top 10% (BC ≥ 0.0344) 
were viewed as bottleneck nodes; nodes with a DC value of the top 10%t (DC ≥ 12) were considered as hubs. 
According to the result of the topological analysis, CASP3 was a hub (with the largest degree k = 45) and a bot-
tleneck (with the highest BC = 0.219802) in the giant component. CASP3 also had the 6th highest CC value 
(CC = 0.372358), indicating that CASP3 was located at the center of the giant component. Because proteins with 
high BC are the heavily used  intersections13, the top 20% highest BC nodes were then selected as key proteins 
(Table 2) to constitute the backbone of the giant component. The nodes in the backbone had much control over 
the nodes in the giant component and were extensively connected with their neighbors. The backbone network 
consisted of 46 nodes and 147 links (Figure S4). Among them, 13 proteins, CASP3, TGFB1, SRC, CASP8, UBC, 
EGFR, SHC1, IGF1R, CBL, PIK3R1, LCK, TNF, and FYN were date-hubs (hub-bottlenecks) which preferentially 
connect functional modules to each  other34, whereas CTNNB1, CD4, AGT, APP, TGFBR2, SNCA, AGTR1, 
CREBBP, PTPN11, and CASP1 were bottlenecks but not hubs. In addition, UBC, UBB, TRAF2, CBLB, UBA52, 
IKBKG, RPS27A, BIRC2, MAP3K7, and BIRC3 were party-hubs (hub-nonbottlenecks) which preferentially act 
inside functional  modules34. All of them worth further investigating the signaling pathways involved in T1D 
development. The nodes of the backbone network involved in the KEGG pathways were listed in the Table 3.

MiRNAs related to T1D. We searched the HMDD v3.2  database32 with disease “Diabetes Mellitus, Type 
1” for miRNA related to T1D, and 32 entries with 25 miRNAs were collected (Table S12). Five miRNAs (miR-
149-5p, miR-192, miR-21-5p, miR-23a-3p, and miR-23b-3p) were associated with T1D with causality. The miR-
149, miR-23a, and miR-23b, downregulated by cytokines, regulated the expression of the proapoptotic Bcl-2 
family members resulting in pancreatic β-cell  destruction35. The miR-21 increased β-cell apoptosis in rats and 
humans through mRNA BCL2 transcript degradation and inhibition of BCL2  translation30. The miR-192 regu-
lated β-cell development and inhibits insulin secretion via suppressing GLP-1  expression36.

The other miRNAs may play a crucial role in T1D pathogenesis. For example, serum let-7g expression 
reflected the decline of residual β-cell function and autoimmunity in T1D  patients37. Eleven miRNAs (miR-100, 
miR-1275, miR-146a, miR-148a, miR-150, miR-181a, miR-21, miR-210, miR-24, miR-342, and miR-375) seem to 
be dysregulated in T1D  patients30. Some miRNAs, miR-103a, miR-155, miR-200a, and miR-210 were confirmed 
as being upregulated in T1D patients; whilst miR-146a was downregulated in T1D  patients31. Both miR-20a and 
miR-326 were upregulated in T1D  patients38.

Moreover, we searched the miRNet 2.039, a miRNA-centric network visual analytics platform, for the miR-
NAs which target the backbone proteins. We took the intersection of this miRNet-miRNA set and the HMDD-
T1D-miRNA set to form a list of the T1D-related miRNAs targeting backbone proteins (Table 4). Genes APP, 
CASP3, CTNNB1, EGFR, IGF1R, STAT3, and TGFBR2 were hub proteins which were targeted by more than 
10 T1D-related miRNAs, whereas miRNAs miR-155-5p, miR-34a-5p, miR-23b-3p, miR-20a-5p, miR-103a-3p, 
miR-24-3p, miR-181a-5p, and miR-23a-3p were hub miRNAs which targeted more than 12 backbone proteins 
in the gene-miRNA network (Fig. 3).

Discussion
To address a global view of T1D, we analyzed medical claims of Taiwan NHIRD, gene data of the OMIM, protein 
interactions of the STRING, pathway information of the KEGG, and miRNA data of the HMDD. We developed 
a data repository linking medical claims and interactome studies in T1D. The main limitation of our study was 
not knowing where the T1D inpatients were in their disease course, e.g. at initial diagnosis or the number of 
years having suffered from T1D. Studies like  TEDDY40 are designed to study disease initiation and progression 
to the development of clinical T1D. The inferred results of our work using medical claims can be regarded as 
relevant but not causal. By multifaceted information including genes, proteins, miRNAs, pathways, and medical 
claims, we elucidated multidimensionality of T1D heterogeneity and provided some hints for further research.

Both the PDNs of T1D males and females had more nodes in neoplasms (140–239), endocrine, nutritional 
and metabolic diseases, and immunity disorders (240–279), diseases of the nervous system and the sense organs 
(320–389), diseases of the circulatory system (390–459), and disease of the digestive system (520–579). Addi-
tionally, female inpatients have more comorbidities in the diseases of the genitourinary system (580–629). Fur-
thermore, anemia caused by chronic renal disease, hypertensive renal disease, peripheral arterial disease with 
ulceration, nephritis and nephropathy, and chronic renal failure were correlated to T1D in men and women. 
Women with T1D aged 1–20 years old had comorbidity of peripheral angiopathy, whereas men with T1D aged 
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1–20 years old had comorbidities of cholesteatoma, orthostatic hypotension, decubitus ulcer, and osteomy-
elitis. Comorbid diseases of T1D such as anemia, atherosclerosis in peripheral vessels, cellulitis and abscess, 
decubitus ulcer, osteomyelitis, renal diseases, ureteral diseases, and vitreous diseases were reported in previous 
 researches1,10,11. Nevertheless, cholesteatoma, orthostatic hypotension, and nonunion of fracture were novel 
comorbid diseases of T1D.

Table 2.  The list of nodes with top 20% BC and their DC and CC values. The bold proteins were also seed 
proteins. There were 11 seed proteins.

Rank Protein Degree BC CC

1 CASP3 45 0.219802 0.372358

2 TGFB1 21 0.105624 0.286967

3 CTNNB1 15 0.095291 0.379139

4 CD4 9 0.087143 0.298956

5 SRC 28 0.074667 0.391453

6 CASP8 21 0.072508 0.340774

7 UBC 40 0.071289 0.382304

8 EGFR 22 0.067592 0.373573

9 AGT 11 0.066604 0.250273

10 APP 7 0.052618 0.311141

11 SHC1 23 0.051452 0.370550

12 TGFBR2 8 0.051187 0.329496

13 IGF1R 22 0.050850 0.348554

14 CBL 27 0.048630 0.369355

15 PIK3R1 25 0.047302 0.377265

16 LCK 20 0.045433 0.353395

17 SNCA 6 0.044806 0.337261

18 AGTR1 5 0.041871 0.286250

19 CREBBP 14 0.041003 0.333333

20 PTPN11 19 0.036798 0.360063

21 TNF 29 0.036016 0.344361

22 FYN 22 0.035117 0.358372

23 CASP1 2 0.034475 0.256726

24 CDC5L 12 0.034223 0.298177

25 TGFBR1 8 0.033620 0.322535

26 CCR5 10 0.033599 0.253039

27 CBLB 26 0.033107 0.355590

28 RELA 15 0.032008 0.330925

29 STAT3 16 0.030426 0.340267

30 UBB 30 0.028880 0.360063

31 NOS2 5 0.026136 0.296632

32 CTLA4 7 0.026063 0.287688

33 IL18 4 0.026048 0.205566

34 TOR1A 4 0.026048 0.254162

35 SYK 16 0.025902 0.333819

36 ESR1 9 0.025628 0.337261

37 BIRC2 22 0.024823 0.346970

38 MAPK14 9 0.024158 0.350153

39 CAV1 11 0.023528 0.342814

40 TRAF2 28 0.023094 0.342302

41 ZAP70 12 0.022875 0.340267

42 ARRB1 6 0.021873 0.303311

43 UBE2I 8 0.021765 0.327611

44 NFKBIA 13 0.020635 0.360630

45 IL16 2 0.020558 0.290609

46 PRKCD 12 0.020103 0.353941

Average 15.78261 0.045287 0.329266
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In our PPI network (Figures S1, S2), CASP3 is a hub and bottleneck protein. CASP3, one downstream effector 
caspase, and CASP8, one upstream initiator caspase, are members of caspases family and are both in the T1D 
backbone network. Caspases as cysteine-aspartyl specific proteases play key roles in β-cell apoptosis which is 
a fundamental process involved in the pathogenesis of  T1D41. CASP3-mediated β-cell apoptosis is a necessary 
condition for T-cell priming which is a key initiating event to  T1D42. CASP8 is critical for β-cell apoptosis in T1D 
and T2D and in maintaining β-cell mass and insulin secretion under physiological  conditions43.

Transforming growth factor beta (TGF-β) is one of the factors involved in the cellular growth, differentia-
tion and migration, and  apoptosis44. TGFB1 could be a response to immuno‐inflammatory activation present 
at the onset of  T1D45. It displays potent strong immunomodulatory activity and is involved in the control of 
autoimmune diseases, therefore it may aid in development of therapeutics to prevent the onset of autoimmunity, 
including  T1D44.

CD4 belongs to the family of CD (cluster of differentiation) antigens which are cell surface-expressed anti-
gens defined by monoclonal antibodies providing targets for immunophenotyping of  cells46. It has an impact 
on immune function and carcinogenesis and is called T helper cell. The antigen is associated with a number 
of autoimmune diseases such as vitiligo and  T1D46. In an animal study, TGF-β1 derived from T cells acts on 
diabetogenic CD4 + T cells, but not Foxp3 + Treg cells, to control Th1 cell differentiation and spontaneous T1D 
 development47.

Figure 2.  The KEGG pathways in the PPI network of T1D. The nodes involved in Th17 cell differentiation 
(hsa04659), type 1 diabetes mellitus (hsa04940), Th1 and Th2 cell differentiation (hsa04658), NF-kappa B 
signaling pathway (hsa04064), apoptosis (hsa04210), and TNF signaling pathway (hsa04668) were colored in 
blue, red, green, yellow, pink, and orange, respectively. The KEGG information were from KEGG  database22,23. 
The PPI network was generated using STRING v11.026 (https:// string- db. org/).

https://string-db.org/
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TNF is the cytokine which is mainly secreted by macrophages. Tumor necrosis factor-alpha (TNF-α) as a pro-
inflammatory cytokine, participates in the regulation of several biological processes including cell apoptosis. It is 
suspected to relate to T1D  pathogenesis48. Serum TNF-α level in T1D patients has significantly elevated among 
all age, disease duration and ethnicity groups. In addition, TNFRSF1A, a ubiquitous membrane receptor bind-
ing TNF-α, is associated with chronic renal  failure49, which had comorbidity correlation with T1D in the PDNs. 
Circulating level of TNFRSF1A is considered as a biomarker of glomerular filtration rate decline in T1D patients.

Recently, studies on the renin angiotensin system (RAS) have shed light on the contribution of the RAS to 
the complications of T1D. The RAS includes circulating renin, acting on angiotensinogen (AGT) to produce 
angiotensin I (Ang I) and peptide angiotensin II (Ang II)50. An increase in the expression of AGT mRNA and in 
the Ang II synthesis may contribute to the glomerular sclerosis observed in diabetic  nephropathy51. The IGF1R 
is generally considered as a growth factor receptor, and has important metabolic effects in many organisms. 
Once activated, the IGF1R will lead to glucose and lipid  metabolism52. The IGF1R is involved in several signaling 
pathways (MAPK signaling pathway, PI3-kinase/PKB pathway, etc.), therefore it is related to T1D.

In the PPI network, six pathways related to T1D pathogenesis were marked in different colors. Three of them 
were also related to chronic renal failure, which had comorbidity correlations with T1D in the PDNs, including 
Th17 cell  differentiation53, NF-kappa B signaling  pathway54, and TNF signaling  pathway55. Moreover, plenty 
of diseases pathways, such as pathways in cancer, toxoplasmosis, HTLV-1 infection, herpes simplex infection, 
Kaposi’s sarcoma-associated herpesvirus infection, Chagas disease (American trypanosomiasis), inflammatory 
bowel disease (IBD), Epstein-Barr virus infection, tuberculosis, allograft rejection, measles, Leishmaniasis, viral 
myocarditis, hepatitis B, influenza A, chronic myeloid leukemia, and autoimmune thyroid disease were involved 
in T1D PPI network (Table S10). Most of them have been confirmed by previous studies to be related to  T1D56–59.

Several recent studies have identified some key genes and pathways for T1D using documented genes in 
 literature60, selecting differentially expressed genes from microarray  data4,61, combining GWAS statistics with 
gene expression  profiles62, or mining RNA-seq  datasets63. All these studies indicated that the genes and pathways 
involved in the immune system were key to the progression of T1D, which was consistent with our findings. 
Immune-linked biological pathways such as apoptosis, cytokine-cytokine receptor interaction, regulation of 
immune response, etc. were commonly highlighted, although the identified genes were somewhat different for 
different research purposes. Some solely focused on T1D-assocated genes and  pathways60,62, another aimed at the 
interaction between peripheral blood mononuclear cells and pancreatic β-cells61, and the others were interested 
in T1D, multiple sclerosis, and other autoimmune  diseases4,63. Compared to them, we investigated the genes and 
pathways related to T1D as well as chronic renal failure that had comorbidity correlations with T1D in our PDNs.

The biomarkers of T1D often use autoantibodies against islet antigen, such as GADA (glutamate decarboxy-
lase), IAA (insulin), ICA (islet cells), IA-2, IA-2β (tyrosine phosphatase), and ZnT8 (zinc transporter 8). Never-
theless, because autoantibodies appear relatively late and there are many false positives, additional biomarkers 
for T1D are  needed19. Recently, miRNAs in serum, plasma or blood cells have been developed to predict the 
development and progression of T1D. Many of miRNAs targeted mRNAs (miRNA-mRNA interactions) are 
associated with diabetes pathogenesis. The miR-181a-5p targets mRNAs for  CD4+ and  CD8+ in the T cell receptor 
(TCR) signaling pathway (hsa04660)30. The miR-181a-5p and miR-21-5p bind to STAT3 mRNA in the Jak-STAT 
signaling pathway (hsa04630)30. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate proapoptotic 
Bcl-2 proteins DP5 and PUMA and consequent human β-cell  apoptosis35. More studies focused on clarifying 
the specific role of miRNAs in pancreatic islets and islet-infiltrating immune  cells31,36–38. These pioneering stud-
ies demonstrate the potential of miRNAs as biomarkers for T1D, but the heterogeneity of the results need to be 
verified by more studies.

Table 3.  The proteins of the backbone involved in the KEGG pathways.

Pathway Description # Proteins involved in the KEGG pathway

hsa04659 Th17 cell differentiation 10 CD4, LCK, MAPK14, NFKBIA, RELA, STAT3,
TGFB1, TGFBR1, TGFBR2, ZAP70 (blue)

hsa04940 Type I diabetes mellitus 1 TNF

hsa04658 Th1 and Th2 cell differentiation 6 CD4, LCK, MAPK14, NFKBIA, RELA, ZAP70 (green)

hsa04064 NF-kappa B signaling pathway 9 BIRC2, LCK, NFKBIA, RELA, SYK, TNF, TRAF 2, UBE2I, ZAP70 (yellow)

hsa04210 Apoptosis 8 BIRC2, CASP3, CASP8, NFKBIA, PIK3R1, RELA, TNF, TRAF2 (pink)

hsa04668 TNF signaling pathway 9 BIRC2, CASP3, CASP8, MAPK14, NFKBIA, PIK3R1, RELA, TNF, TRAF2 
(orange)

hsa04060 Cytokine-cytokine receptor interaction 7 CCR5, EGFR, IL18, TGFB1, TGFBR1, TGFBR2, TNF

hsa04660 T cell receptor signaling pathway 11 CBLB, CD4, CTLA4, FYN, LCK, MAPK14, NFKBIA, PIK3R1, RELA, TNF, 
ZAP70

hsa04620 Toll-like receptor signaling pathway 6 CASP8, MAPK14, NFKBIA, PIK3R1, RELA, TNF

hsa04010 MAPK signaling pathway 11 ARRB1, CASP3, EGFR, IGF1R, MAPK14, RELA, TGFB1, TGFBR1, TGFBR2, 
TNF, TRAF2

hsa04910 Insulin signaling pathway 4 CBL, CBLB, PIK3R1, SHC1

hsa04630 Jak-STAT signaling pathway 5 CREBBP, EGFR, PIK3R1, PTPN11, STAT3

hsa04151 PI3K-Akt signaling pathway 5 EGFR, IGF1R, PIK3R1, RELA, SYK
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Table 4.  The T1D-related miRNAs targeting backbone proteins.

Proteins # miRNAs

AGT 0

AGTR1 2 miR-155-5p, miR-34a-5p

APP 11 let-7g-3p, miR-103a-3p, miR-148a-3p, miR-155-5p, miR-181a-3p, miR-181a-5p, miR-20a-5p, miR-210-3p, miR-21-3p, 
miR-23b-3p, miR-34a-3p

ARRB1 4 miR-146a-5p, miR-155-5p, miR-20a-5p, miR-34a-5p

BIRC2 6 let-7g-5p, miR-149-5p, miR-20a-5p, miR-210-3p, miR-23b-3p, miR-34a-5p

CASP1 2 miR-21-3p, miR-34a-5p

CASP3 10 let-7g-5p, miR-100-5p, miR-1275, miR-155-5p, miR-20a-3p, miR-21-3p, miR-23a-3p, miR-23b-3p, miR-34a-5p, miR-375

CASP8 5 miR-146a-5p, miR-155-5p, miR-20a-5p, miR-21-5p, miR-34a-5p

CAV1 7 miR-103a-3p, miR-155-5p, miR-192-5p, miR-20a-5p, miR-210-3p, miR-23b-3p, miR-24-3p

CBL 8 let-7g-5p, miR-146a-5p, miR-148a-3p, miR-150-5p, miR-155-5p, miR-23a-3p, miR-23b-3p, miR-24-3p

CBLB 2 miR-146a-5p, miR-21-3p

CCR5 3 let-7g-5p, miR-103a-3p, miR-21-3p

CD4 3 miR-100-5p, miR-181a-5p, miR-23b-3p

CDC5L 3 miR-181a-5p, miR-20a-5p, miR-34a-5p

CREBBP 4 miR-100-5p, miR-103a-3p, miR-20a-3p, miR-24-3p

CTLA4 1 miR-155-5p

CTNNB1 14 miR-103a-3p, miR-155-5p, miR-181a-5p, miR-200a-3p, miR-20a-3p, miR-210-3p, miR-21-3p, miR-21-5p, miR-23a-3p, 
miR-23b-3p, miR-24-3p, miR-34a-3p, miR-34a-5p, miR-375

EGFR 12 let-7g-3p, miR-103a-3p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-200a-3p, miR-21-3p, miR-21-5p, miR-23a-3p, 
miR-23b-3p, miR-24-3p, miR-34a-5p

ESR1 7 miR-100-5p, mir-181a, miR-192-5p, miR-21-5p, miR-23a-3p, miR-23b-3p, miR-24-3p

FYN 8 let-7g-3p, miR-155-5p, miR-20a-5p, miR-210-3p, miR-21-5p, miR-23a-3p, miR-23b-3p, miR-34a-5p

IGF1R 14 let-7g-3p, let-7g-5p, miR-100-5p, miR-103a-3p, miR-1275, miR-148a-3p, miR-181a-5p, miR-192-5p, miR-20a-5p, miR-
21-5p, miR-342-3p, miR-34a-3p, miR-34a-5p, miR-375

IL16 1 miR-155-5p

IL18 5 miR-103a-3p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-24-3p

LCK 1 miR-210-3p

MAPK14 5 miR-103a-3p, miR-149-5p, miR-155-5p, miR-200a-3p, miR-24-3p

NFKBIA 8 leg-7g-3p, miR-155-5p, miR-200a-3p, miR-20a-5p, miR-21-3p, miR-23b-3p, miR-24-3p, miR-34a-5p

NOS2 1 miR-146a-5p

PIK3R1 8 miR-103a-3p, miR-155-5p, miR-181a-5p, miR-20a-5p, miR-21-5p, miR-23a-3p, miR-23b-3p, miR-487a-3p

PRKCD 3 miR-155-5p, miR-181a-5p, miR-20a-5p

PTPN11 7 miR-100-5p, miR-146a-5p, miR-181a-5p, miR-210-3p, miR-21-3p, miR-23a-3p, miR-34a-5p

RELA 3 miR-155-5p, miR-24-3p, miR-34a-4p

SHC1 2 miR-155-5p, miR-200a-3p

SNCA 6 miR-103a-3p, miR-155-5p, miR-20a-5p, miR-23a-3p, miR-23b-3p, miR-34a-5p

SRC 4 miR-146a-5p, miR-155-5p, miR-23b-3p, miR-34a-5p

STAT3 14 let-7g-5p, miR-148a-3p, miR-155-5p, miR-181a-5p, miR-200a-3p, miR-20a-3p, miR-20a-5p, miR-21-3p, miR-21-5p,  
miR-210-3p, miR-23a-3p, miR-23b-3p, miR-34a-5p, miR-375

SYK 1 miR-210-3p

TGFB1 6 miR-103a-3p, miR-146a-5p, miR-21-5p, miR-23b-3p, miR-24-3p, miR-34a-5p

TGFBR1 9 let-7g-3p, let-7g-5p, miR-103a-3p, miR-148a-3p, miR-181a-5p, miR-20a-5p, miR-210-3p, miR-21-5p, miR-34a-3p

TGFBR2 12 let-7g-3p, let-7g-5p, miR-103a-3p, miR-148a-3p, miR-155-5p, miR-181a-5p, miR-20a-5p, miR-21-5p, miR-23a-3p,  
miR-23b-3p, miR-24-3p, miR-34a-5p

TNF 3 miR-155-5p, miR-24-3p, miR-34a-5p

TOR1A 2 let-7g-5p, miR-34a-5p

TRAF2 1 miR-34a-5p

UBB 6 miR-100-5p, miR-192-5p, miR-20a-5p, miR-23a-3p, miR-23b-3p, miR-34a-3p

UBC 5 miR-155-5p, miR-20a-5p, miR-24-3p, miR-326, miR-34a-5p

UBE2I 3 let-7g-5p, miR-181a-5p, miR-34a-5p

ZAP70 1 miR-34a-5p
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Conclusion
Advances in science and technology have enabled the study of biological systems in their integrity. By under-
standing the multifaceted complexity of biological systems, predicting the risk of disease development and 
controlling disease progression to prevent complications will be realized. We used the medical records of Tai-
wan NHRID and online databases of genes, proteins, and miRNAs to have a systemic view of T1D. There were 
common comorbid diseases such as anemia, hypertension, vitreous diseases, renal diseases, and atherosclerosis; 
whereas there were novel comorbid diseases such as cholesteatoma, orthostatic hypotension, and nonunion 
of fracture in the PDN. We constructed the PPI network derived from T1D related genes. In the PPI network, 
CASP3 is a date-hub protein involved in apoptosis, TNF signaling, and MAPK pathways. The protein TNF is 
also a date-hub protein involving T1DM, NFKB, apoptosis, cytokine-cytokine, TCR, TLR, TNF signaling, and 
MAPK pathways. Moreover, we connected T1D related miRNAs with backbone proteins to understand the rela-
tionships between miRNAs and backbone proteins. CTNNB1, IGF1R, and STAT3 were hub proteins, whereas 
miR-155-5p, miR-34a-5p, miR-23-3p, and miR-20a-5p were hub miRNAs in the gene-miRNA network. Multiple 
levels of information including genetic, protein, and clinical data resulted in multiple results, which suggests 
the complementarity of multiple sources. With the integration of multifaceted information, it will shed light 
on the mechanisms underlying T1D; the provided data and repository has utility in understanding phenotypic 
disease networks for the potential development of comorbidities in T1D patients as well as the clues for further 
research on T1D comorbidities.
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